Nature | 通用中英文六维语义情感词典

来自心理学和认知神经科学的证据表明,人类大脑的语义系统包含几个特定的子系统,每个子系统都代表语义信息的特定维度。对这些不同语义维度上的词语评分可以帮助研究语义维度对语言处理的行为和神经影响,并根据人类认知系统的语义空间建立语言含义的计算表示。现有的语义评分数据库提供了数百到数千个词语的评分,但这无法支持对自然文本或语音的全面语义分析。本文报告了一个大型数据库——六维语义数据库(SSDD, 后文「数据库」均用「词典」代替),其中包含对 17,940个常用汉语词语在六个主要语义维度上的主观评分:视觉、运动、社交、情感、时间和空间。此外,使用计算模型学习主观评分和词嵌入之间的映射关系,我们在SSDD中包括了1,427,992个汉语和1,515,633个英语词语的估计语义评分。SSDD将有助于自然语言处理、文本分析和大脑中的语义表示研究。...

2023-03-20 · 1 min · 大邓

word_in_context | 查看某类词的上下文,更好的理解文本数据

通过一个单词所处的语境,我们可以了解该单词的含义。**该谚语源于英国语言学家 J.R. Firth 的理论,他认为单词的含义是由其周围的语境和与之相伴的其他单词所决定的,因此我们需要通过单词出现的上下文来理解其含义。这一理论在语言学、自然语言处理等领域有着广泛的应用。之前分享过 [ 使用正则表达式、文本向量化、线性回归算法从md&a数据中计算 「企业融资约束指标」 ], 使用的是正则表达式识别融资约束文本。但是正则表达式设计十分复杂且有难度,在此之前,如果能够查看某些融资关键词附近上下文, 可帮助研究者更全面地了解数据集中关键词的使用情况和语境,更好的设计正则表达式,亦或许意外找出新的有价值的线索。...

2023-03-19 · 2 min · 大邓

词嵌入技术在社会科学领域进行数据挖掘常见39个FAQ汇总

Literally, **word embedding (Embeddings)** is the use of dense vectors to represent the semantics of a word. **Scholars have shown that by comparing the distance between these word vectors, we can understand how "humans" understand the meaning of words**. So, if we have a corpus comparing the distance between "taxes" and social groups ("conservatives", "socialists"), semantically, "taxes" should be farther away from "socialists", after all The money collected is for the service of the general public and has elements of socialism. In the word embedding space, word vectors contain rich information, such as analogies. Spain is to Madrid what Germany is to Berlin and France to Paris.字面上,**词嵌入(Embeddings)**是使用稠密向量表示一个词语的语义。**学者们已经表明,通过比较这些词向量之间的距离,我们可以了解“人类”如何理解单词的含义**。因此,如果我们有一个语料库,比较“税收” 与 社会团体(“保守派”、“社会主义者”) 之间的距离, 按照语义,“税收”应该距离 “社会主义者” 跟多一些,毕竟收上来的钱是为了社会大众服务,有社会主义的成分。在词嵌入空间中,词向量含有丰富的信息,例如可以做类比。西班牙之于马德里, 正如德国至于柏林、法国之于巴黎。"...

2023-03-15 · 2 min · 大邓

PNAS | 历史文本中的语言积极性反映了动态的环境和心理因素(含Python代码)

Linguistic positivity in historical texts reflects dynamic environmental and psychological factors历史文本中的语言积极性反映了动态的环境和心理因素...

2023-03-13 · 4 min · Tiffany

基于词嵌入技术的心理学研究: 方法及应用

词嵌入是自然语言处理的一项基础技术。 其核心理念是根据大规模语料中词语和上下文的联系, 使用神经网络等机器学习算法自动提取有限维度的语义特征, 将每个词表示为一个低维稠密的数值向量(词向 量), 以用于后续分析。 心理学研究中, 词向量及其衍生的各种语义联系指标可用于探究人类的语义加工、认知判断、发散思维、社会偏见与刻板印象、社会与文化心理变迁等各类问题。 未来, 基于词嵌入技术的心理 学研究需要区分心理的内隐和外显成分, 深化拓展动态词向量和大型预训练语言模型(如 GPT、BERT)的应用, 并在时间和空间维度建立细粒度词向量数据库, 更多开展基于词嵌入的社会变迁和跨文化研究。 As a fundamental technique in natural language processing (NLP), word embedding quantifies a word as a low-dimensional, dense, and continuous numeric vector (i.e., word vector). Word embeddings can be obtained by using machine learning algorithms such as neural networks to predict the surrounding words given a word or vice versa (Word2Vec and FastText) or by predicting the probability of co-occurrence of multiple words (GloVe) in large-scale text corpora. Theoretically, the dimensions of a word vector reflect the pattern of how the word can be predicted in contexts; however, they also connote substantial semantic information of the word. Therefore, word embeddings can be used to analyze semantic meanings of text. In recent years, word embeddings have been increasingly applied to study human psychology, including human semantic processing, cognitive judgment, divergent thinking, social biases and stereotypes, and sociocultural changes at the societal or population level. Future research using word embeddings should (1) distinguish between implicit and explicit components of social cognition, (2) train fine-grained word vectors in terms of time and region to facilitate cross-temporal and cross-cultural research, and (3) apply contextualized word embeddings and large pre-trained language models such as GPT and BERT. To enhance the application of word embeddings in psychology。

2023-03-10 · 1 min · 包寒吴霜等