旧版cntext入口

中文文本分析库,可对文本进行词频统计、词典扩充、情绪分析、相似度、可读性等

功能模块含

  • stats 文本统计指标
    • 词频统计
    • 可读性
    • 内置pkl词典
    • 情感分析
  • dictionary 构建词表(典)
    • Sopmi 互信息扩充词典法
    • W2Vmodels 词向量扩充词典法
  • similarity 文本相似度
    • cos相似度
    • jaccard相似度
    • 编辑距离相似度
  • mind.py 计算文本中的认知方向(态度、偏见)

安装

pip install cntext

QuickStart

import cntext as ct

print(ct.__version__)
help(ct)

Run

1.8.4

Help on package cntext:

NAME
    cntext

PACKAGE CONTENTS
    mind
    dictionary
    similarity
    stats

一、stats

目前stats内置的函数有

  • readability 文本可读性
  • term_freq 词频统计函数
  • dict_pkl_list 获取cntext内置词典列表(pkl格式)
  • load_pkl_dict 导入pkl词典文件
  • sentiment 情感分析
import cntext as ct

text = '如何看待一网文作者被黑客大佬盗号改文,因万分惭愧而停更。'

ct.term_freq(text, lang='chinese')

Run

Counter({'看待': 1,
         '网文': 1,
         '作者': 1,
         '黑客': 1,
         '大佬': 1,
         '盗号': 1,
         '改文因': 1,
         '万分': 1,
         '惭愧': 1,
         '停': 1})

1.1 readability

文本可读性,指标越大,文章复杂度越高,可读性越差。

readability(text, lang=‘chinese’)

  • text: 文本字符串数据
  • lang: 语言类型,“chinese"或"english”,默认"chinese"

**中文可读性 ** 算法参考自

徐巍,姚振晔,陈冬华.中文年报可读性:衡量与检验[J].会计研究,2021(03):28-44.

  • readability1 —每个分句中的平均字数
  • readability2 —每个句子中副词和连词所占的比例
  • readability3 —参考Fog Index, readability3=(readability1+readability2)×0.5

以上三个指标越大,都说明文本的复杂程度越高,可读性越差。

text1 = '如何看待一网文作者被黑客大佬盗号改文,因万分惭愧而停更。'


ct.readability(text1, lang='chinese')

Run

{'readability1': 28.0,
 'readability2': 0.15789473684210525,
 'readability3': 14.078947368421053}

句子中的符号变更会影响结果

text2 = '如何看待一网文作者被黑客大佬盗号改文,因万分惭愧而停更。'
ct.readability(text2, lang='chinese')

Run

{'readability1': 27.0,
 'readability2': 0.16666666666666666,
 'readability3': 13.583333333333334}



1.2 term_freq

词频统计函数,返回Counter类型

import cntext as ct 

text = '如何看待一网文作者被黑客大佬盗号改文,因万分惭愧而停更。'

ct.term_freq(text, lang='chinese')

Run

Counter({'看待': 1,
         '网文': 1,
         '作者': 1,
         '黑客': 1,
         '大佬': 1,
         '盗号': 1,
         '改文因': 1,
         '万分': 1,
         '惭愧': 1,
         '停': 1})

1.3 dict_pkl_list

获取cntext内置词典列表(pkl格式)

import cntext as ct

# 获取cntext内置词典列表(pkl格式)
ct.dict_pkl_list()

Run

['DUTIR.pkl',
 'HOWNET.pkl',
 'sentiws.pkl',
 'ChineseFinancialFormalUnformalSentiment.pkl',
 'ANEW.pkl',
 'LSD2015.pkl',
 'NRC.pkl',
 'geninqposneg.pkl',
 'HuLiu.pkl',
 'AFINN.pkl',
 'ADV_CONJ.pkl',
 'LoughranMcDonald.pkl',
 'STOPWORDS.pkl']

词典对应关系, 部分情感词典资料整理自 quanteda.sentiment

pkl文件 词典 语言 功能
DUTIR.pkl 大连理工大学情感本体库 中文 七大类情绪,哀, 好, 惊, 惧, 乐, 怒, 恶
HOWNET.pkl 知网Hownet词典 中文 正面词、负面词
sentiws.pkl SentimentWortschatz (SentiWS) 英文 正面词、负面词;
效价
ChineseFinancialFormalUnformalSentiment.pkl 金融领域正式、非正式;积极消极 中文 formal-pos、
formal-neg;
unformal-pos、
unformal-neg
ANEW.pkl 英语单词的情感规范Affective Norms for English Words (ANEW) 英文 词语效价信息
LSD2015.pkl Lexicoder Sentiment Dictionary (2015) 英文 正面词、负面词
NRC.pkl NRC Word-Emotion Association Lexicon 英文 细粒度情绪词;
geninqposneg.pkl
HuLiu.pkl Hu&Liu (2004)正、负情感词典 英文 正面词、负面词
AFINN.pkl 尼尔森 (2011) 的“新 ANEW”效价词表 英文 情感效价信息valence
LoughranMcDonald.pkl 会计金融LM词典 英文 金融领域正、负面情感词
ADV_CONJ.pkl 副词连词 中文
STOPWORDS.pkl 中、英 停用词

注意:

  • 如果用户情绪分析时使用DUTIR词典发表论文,请在论文中添加诸如“使用了大连理工大学信息检索研究室的情感词汇本体” 字样加以声明。参考文献中加入引文“徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185.”

  • 如果大家有制作的词典,可以上传至百度网盘,并在issue中留下词典的网盘链接。如词典需要使用声明,可连同文献出处一起issue


1.4 load_pkl_dict

导入pkl词典文件,返回字典样式数据。

import cntext as ct

# 导入pkl词典文件,
print(ct.load_pkl_dict('DUTIR.pkl'))

Run

{'DUTIR': {'哀': ['怀想', '治丝而棼', ...],
           '好': ['进贤黜奸', '清醇', '放达', ...], 
           '惊': ['惊奇不已', '魂惊魄惕', '海外奇谈',...],
           '惧': ['忸忸怩怩', '谈虎色变', '手忙脚乱', '刿目怵心',...],
           '乐': ['百龄眉寿', '娱心', '如意', '喜糖',...],
           '怒': ['饮恨吞声', '扬眉瞬目',...],
           '恶': ['出逃', '鱼肉百姓', '移天易日',]
           }

1.5 sentiment

sentiment(text, diction, lang=‘chinese’) 使用diy词典进行情感分析,计算各个情绪词出现次数; 未考虑强度副词、否定词对情感的复杂影响,

  • text: 待分析中文文本
  • diction: 情感词字典;
  • lang: 语言类型,“chinese"或"english”,默认"chinese"
import cntext as ct

text = '我今天得奖了,很高兴,我要将快乐分享大家。'

ct.sentiment(text=text,
             diction=ct.load_pkl_dict('DUTIR.pkl')['DUTIR'],
             lang='chinese')

Run

{'哀_num': 0,
 '好_num': 0,
 '惊_num': 0,
 '惧_num': 0,
 '乐_num': 2,
 '怒_num': 0,
 '恶_num': 0,
 'stopword_num': 8,
 'word_num': 14,
 'sentence_num': 1}

如果不适用pkl词典,可以自定义自己的词典,例如

diction = {'pos': ['高兴', '快乐', '分享'],
           'neg': ['难过', '悲伤'],
           'adv': ['很', '特别']}

text = '我今天得奖了,很高兴,我要将快乐分享大家。'
ct.sentiment(text=text, 
             diction=diction, 
             lang='chinese')

Run

{'pos_num': 3,
 'neg_num': 0,
 'adv_num': 1,
 'stopword_num': 8,
 'word_num': 14,
 'sentence_num': 1}



二、dictionary

本模块用于构建词表(典),含

  • SoPmi 共现法扩充词表(典)
  • W2VModels 词向量word2vec扩充词表(典)

2.1 SoPmi 共现法

import cntext as ct
import os

sopmier = ct.SoPmi(cwd=os.getcwd(),
                   input_txt_file='data/sopmi_corpus.txt',  #原始数据,您的语料
                   seedword_txt_file='data/sopmi_seed_words.txt', #人工标注的初始种子词
                   )   

sopmier.sopmi()

Run

Step 1/4:...Preprocess   Corpus ...
Step 2/4:...Collect co-occurrency information ...
Step 3/4:...Calculate   mutual information ...
Step 4/4:...Save    candidate words ...
Finish! used 44.49 s

2.2 W2VModels 词向量

特别要注意代码需要设定lang语言参数

import cntext as ct
import os

#初始化模型,需要设置lang参数。
model = ct.W2VModels(cwd=os.getcwd(), 
                     lang='english')  #语料数据 w2v_corpus.txt
model.train(input_txt_file='data/w2v_corpus.txt')


#根据种子词,筛选出没类词最相近的前100个词
model.find(seedword_txt_file='data/w2v_seeds/integrity.txt', 
           topn=100)
model.find(seedword_txt_file='data/w2v_seeds/innovation.txt', 
           topn=100)
model.find(seedword_txt_file='data/w2v_seeds/quality.txt', 
           topn=100)
model.find(seedword_txt_file='data/w2v_seeds/respect.txt', 
           topn=100)
model.find(seedword_txt_file='data/w2v_seeds/teamwork.txt', 
           topn=100)

Run

Step 1/4:...Preprocess   corpus ...
Step 2/4:...Train  word2vec model
            used   174 s
Step 3/4:...Prepare similar candidates for each seed word in the word2vec model...
Step 4/4 Finish! Used 187 s
Step 3/4:...Prepare similar candidates for each seed word in the word2vec model...
Step 4/4 Finish! Used 187 s
Step 3/4:...Prepare similar candidates for each seed word in the word2vec model...
Step 4/4 Finish! Used 187 s
Step 3/4:...Prepare similar candidates for each seed word in the word2vec model...
Step 4/4 Finish! Used 187 s
Step 3/4:...Prepare similar candidates for each seed word in the word2vec model...
Step 4/4 Finish! Used 187 s


需要注意

训练出的w2v模型可以后续中使用。

from gensim.models import KeyedVectors

w2v_model = KeyedVectors.load(w2v.model路径)
#找出word的词向量
#w2v_model.get_vector(word)
#更多w2_model方法查看
#help(w2_model)

例如本代码,运行生成的结果路径output/w2v_candi_words/w2v.model

from gensim.models import KeyedVectors

w2v_model = KeyedVectors.load('output/w2v_candi_words/w2v.model')
w2v_model.most_similar('innovation')

Run

[('technology', 0.689210832118988),
 ('infrastructure', 0.669672966003418),
 ('resources', 0.6695448160171509),
 ('talent', 0.6627111434936523),
 ('execution', 0.6549549102783203),
 ('marketing', 0.6533523797988892),
 ('merchandising', 0.6504817008972168),
 ('diversification', 0.6479553580284119),
 ('expertise', 0.6446896195411682),
 ('digital', 0.6326863765716553)]

#获取词向量
w2v_model.get_vector('innovation')

Run

array([-0.45616838, -0.7799563 ,  0.56367606, -0.8570078 ,  0.600359  ,
       -0.6588043 ,  0.31116748, -0.11956959, -0.47599426,  0.21840936,
       -0.02268819,  0.1832016 ,  0.24452794,  0.01084935, -1.4213187 ,
        0.22840202,  0.46387577,  1.198386  , -0.621511  , -0.51598716,
        0.13352732,  0.04140598, -0.23470387,  0.6402956 ,  0.20394802,
        0.10799981,  0.24908689, -1.0117126 , -2.3168423 , -0.0402851 ,
        1.6886286 ,  0.5357047 ,  0.22932841, -0.6094084 ,  0.4515793 ,
       -0.5900931 ,  1.8684244 , -0.21056202,  0.29313338, -0.221067  ,
       -0.9535679 ,  0.07325   , -0.15823542,  1.1477109 ,  0.6716076 ,
       -1.0096023 ,  0.10605699,  1.4148282 ,  0.24576302,  0.5740349 ,
        0.19984631,  0.53964925,  0.41962907,  0.41497853, -1.0322098 ,
        0.01090925,  0.54345983,  0.806317  ,  0.31737605, -0.7965337 ,
        0.9282971 , -0.8775608 , -0.26852605, -0.06743863,  0.42815775,
       -0.11774074, -0.17956367,  0.88813037, -0.46279573, -1.0841943 ,
       -0.06798118,  0.4493006 ,  0.71962464, -0.02876493,  1.0282255 ,
       -1.1993176 , -0.38734904, -0.15875885, -0.81085825, -0.07678922,
       -0.16753489,  0.14065655, -1.8609751 ,  0.03587054,  1.2792674 ,
        1.2732009 , -0.74120265, -0.98000383,  0.4521185 , -0.26387128,
        0.37045383,  0.3680011 ,  0.7197629 , -0.3570571 ,  0.8016917 ,
        0.39243212, -0.5027844 , -1.2106236 ,  0.6412354 , -0.878307  ],
      dtype=float32)



2.3 co_occurrence_matrix

词共现矩阵

import cntext as ct

documents = ["I go to school every day by bus .",
         "i go to theatre every night by bus"]

ct.co_occurrence_matrix(documents, 
                        window_size=2, 
                        lang='english')

documents2 = ["编程很好玩",
             "Python是最好学的编程"]

ct.co_occurrence_matrix(documents2, 
                        window_size=2, 
                        lang='chinese')



三、similarity

四种相似度计算函数

  • cosine_sim(text1, text2) cos余弦相似
  • jaccard_sim(text1, text2) jaccard相似
  • minedit_sim(text1, text2) 最小编辑距离相似度;
  • simple_sim(text1, text2) 更改变动算法

算法实现参考自 Cohen, Lauren, Christopher Malloy, and Quoc Nguyen. Lazy prices. No. w25084. National Bureau of Economic Research, 2018.


import cntext as ct 


text1 = '编程真好玩编程真好玩'
text2 = '游戏真好玩编程真好玩啊'

print(ct.cosine_sim(text1, text2))
print(ct.jaccard_sim(text1, text2))
print(ct.minedit_sim(text1, text2))
print(ct.simple_sim(text1, text2))

Run

0.82
0.67
2.00
0.87



四、Text2Mind

词嵌入中蕴含着人类的认知信息,以往的词嵌入大多是比较一个概念中两组反义词与某对象的距离计算认知信息。

- 多个对象在某概念的远近,职业与性别,某个职业是否存在亲近男性,而排斥女性

- 多个对象在某概念的分量(fen,一声)的多少, 人类语言中留存着对不同动物体积的认知记忆,如小鼠大象。动物词在词向量空间中是否能留存着这种大小的记忆

这两种认知分别可以用向量距离、向量语义投影计算得来。

  • tm.sematic_distance(words, c_words1, c_words2) 向量距离
  • tm.sematic_projection(words, c_words1, c_words2) 向量语义投影

4.1 tm.sematic_distance(words, c_words1, c_words2)

分别计算words与c_words1、c_words2语义距离,返回距离差值。

例如

male_concept = ['male', 'man', 'he', 'him']
female_concept = ['female', 'woman', 'she', 'her']
software_engineer_concept  = ['engineer',  'programming',  'software']
d1 = distance(male_concept,  software_engineer_concept)
d2 = distance(female_concept,  software_engineer_concept)

如果d1-d2<0,说明在语义空间中,software_engineer_concept更接近male_concept,更远离female_concept。

换言之,在该语料中,人们对软件工程师这一类工作,对女性存在刻板印象(偏见)。

下载glove_w2v.6B.100d.txt链接: https://pan.baidu.com/s/1MMfQ7M0YCzL9Klp4zrlHBw 提取码: 72l0

import cntext as ct

#Note: this is a word2vec format model
tm = ct.Text2Mind(w2v_model_path='glove_w2v.6B.100d.txt')

engineer = ['program', 'software', 'computer']
mans =  ["man", "he", "him"]
womans = ["woman", "she", "her"]

#在语义空间中,工程师更接近于男人,而不是女人。
#in semantic space, engineer is closer to man, other than woman.
tm.sematic_distance(words=animals, 
                    c_words1=mans, 
                    c_words2=womans)

Run

-0.38

4.2 tm.sematic_projection(words, c_words1, c_words2)

语义投影,根据两组反义词c_words1, c_words2构建一个概念(认知)向量, words中的每个词向量在概念向量中投影,即可得到认知信息。

分值越大,word越位于c_words2一侧。

下图是语义投影示例图,本文算法和图片均来自 “Grand, G., Blank, I.A., Pereira, F. and Fedorenko, E., 2022. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nature Human Behaviour, pp.1-13.”

例如,人类的语言中,存在尺寸、性别、年龄、政治、速度、财富等不同的概念。每个概念可以由两组反义词确定概念的向量方向。

以尺寸为例,动物在人类认知中可能存在体积尺寸大小差异。

animals = ['mouse', 'cat', 'horse',  'pig', 'whale']
smalls = ["small", "little", "tiny"]
bigs = ["large", "big", "huge"]

# In size conception, mouse is smallest, horse is biggest.
# 在大小概念上,老鼠最小,马是最大的。
tm.sematic_projection(words=animals, 
                      c_words1=smalls, 
                      c_words2=bigs)

Run

[('mouse', -1.68),
 ('cat', -0.92),
 ('pig', -0.46),
 ('whale', -0.24),
 ('horse', 0.4)]



广而告之