基于词嵌入技术的心理学研究: 方法及应用

词嵌入是自然语言处理的一项基础技术。 其核心理念是根据大规模语料中词语和上下文的联系, 使用神经网络等机器学习算法自动提取有限维度的语义特征, 将每个词表示为一个低维稠密的数值向量(词向 量), 以用于后续分析。 心理学研究中, 词向量及其衍生的各种语义联系指标可用于探究人类的语义加工、认知判断、发散思维、社会偏见与刻板印象、社会与文化心理变迁等各类问题。 未来, 基于词嵌入技术的心理 学研究需要区分心理的内隐和外显成分, 深化拓展动态词向量和大型预训练语言模型(如 GPT、BERT)的应用, 并在时间和空间维度建立细粒度词向量数据库, 更多开展基于词嵌入的社会变迁和跨文化研究。 As a fundamental technique in natural language processing (NLP), word embedding quantifies a word as a low-dimensional, dense, and continuous numeric vector (i.e., word vector). Word embeddings can be obtained by using machine learning algorithms such as neural networks to predict the surrounding words given a word or vice versa (Word2Vec and FastText) or by predicting the probability of co-occurrence of multiple words (GloVe) in large-scale text corpora. Theoretically, the dimensions of a word vector reflect the pattern of how the word can be predicted in contexts; however, they also connote substantial semantic information of the word. Therefore, word embeddings can be used to analyze semantic meanings of text. In recent years, word embeddings have been increasingly applied to study human psychology, including human semantic processing, cognitive judgment, divergent thinking, social biases and stereotypes, and sociocultural changes at the societal or population level. Future research using word embeddings should (1) distinguish between implicit and explicit components of social cognition, (2) train fine-grained word vectors in terms of time and region to facilitate cross-temporal and cross-cultural research, and (3) apply contextualized word embeddings and large pre-trained language models such as GPT and BERT. To enhance the application of word embeddings in psychology。

2023-03-10 · 1 min · 包寒吴霜等

可视化 | 词嵌入模型用于计算社科领域刻板印象等信息(含代码)

语言的文字反映了人类思想的结构,使我们能够在个人之间传递思想, 而使用大规模语料训练得来的词嵌入模型蕴含着这类信息。 英文的词嵌入在社会科学中的应用教程较多,大家可以谷歌查询,我主要想丰富中文数据的教程。The words of language reflect the structure of human thought, allowing us to transfer thoughts between individuals, and word embedding models trained using large-scale corpora contain this information. There are many application tutorials of English word embedding in social science. You can search it on Google. I mainly want to enrich the tutorials of Chinese data....

2023-03-03 · 5 min · 大邓

simpleT5 库 | 根据英文摘要内容生成标题

T5(Text-to-Text Transfer Transformer)是一种基于 Transformer 架构的自然语言处理模型,由 Google Brain 团队开发。T5 模型采用了 encoder-decoder 架构,其中 encoder 将输入文本编码为向量,decoder 则从该向量生成目标文本。T5 模型的特点是将所有自然语言处理任务都视为“从输入文本到输出文本”的转换问题,它可以通过在任务之间共享模型参数和预训练模型来轻松地应用于各种 NLP 任务,如**文本分类、命名实体识别、文本摘要、问答系统**等。 与其他 NLP 模型不同的是,T5 模型使用了一种称为“text-to-text”方法的统一输入输出架构,使得所有 NLP 任务都能转化为文本转换问题,从而使得模型训练更加高效。...

2023-02-23 · 4 min · 大邓

训练&使用Glove语言模型, 可度量刻板印象等

训练&使用Glove语言模型, 可度量刻板印象等...

2022-11-22 · 2 min · 大邓

FinBERT | 金融文本BERT模型,可情感分析、识别ESG和FLS类型

金融语言模型...

2022-11-16 · 3 min · Yang Yi