

Feature Engineering for Machine
Learning

Principles and Techniques for Data Scientists

Alice Zheng and Amanda Casari

Feature Engineering for Machine Learning
by Alice Zheng and Amanda Casari

Copyright © 2018 Alice Zheng, Amanda Casari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com/safari).
For more information, contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Editors: Rachel Roumeliotis and Jeff Bleiel Indexer: Ellen Troutman

Production Editor: Kristen Brown Interior Designer: David Futato

Copyeditor: Rachel Head Cover Designer: Karen Montgomery

Proofreader: Sonia Saruba Illustrator: Rebecca Demarest

April 2018: First Edition

Revision History for the First Edition

2018-03-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491953242 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Feature
Engineering for Machine Learning, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that
the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in
this work is at your own risk. If any code samples or other technology this work

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491953242

contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-491-95324-2

[LSI]

Preface

Introduction
Machine learning fits mathematical models to data in order to derive insights or
make predictions. These models take features as input. A feature is a numeric
representation of an aspect of raw data. Features sit between data and models in
the machine learning pipeline. Feature engineering is the act of extracting
features from raw data and transforming them into formats that are suitable for
the machine learning model. It is a crucial step in the machine learning pipeline,
because the right features can ease the difficulty of modeling, and therefore
enable the pipeline to output results of higher quality. Practitioners agree that the
vast majority of time in building a machine learning pipeline is spent on feature
engineering and data cleaning. Yet, despite its importance, the topic is rarely
discussed on its own. Perhaps this is because the right features can only be
defined in the context of both the model and the data; since data and models are
so diverse, it’s difficult to generalize the practice of feature engineering across
projects.

Nevertheless, feature engineering is not just an ad hoc practice. There are deeper
principles at work, and they are best illustrated in situ. Each chapter of this book
addresses one data problem: how to represent text data or image data, how to
reduce the dimensionality of autogenerated features, when and how to
normalize, etc. Think of this as a collection of interconnected short stories, as
opposed to a single long novel. Each chapter provides a vignette into the vast
array of existing feature engineering techniques. Together, they illustrate the
overarching principles.

Mastering a subject is not just about knowing the definitions and being able to
derive the formulas. It is not enough to know how the mechanism works and
what it can do—one must also understand why it is designed that way, how it
relates to other techniques, and what the pros and cons of each approach are.
Mastery is about knowing precisely how something is done, having an intuition
for the underlying principles, and integrating it into one’s existing web of
knowledge. One does not become a master of something by simply reading a

book, though a good book can open new doors. It has to involve practice—
putting the ideas to use, which is an iterative process. With every iteration, we
know the ideas better and become increasingly more adept and creative at
applying them. The goal of this book is to facilitate the application of its ideas.

This book tries to teach the reason first, and the mathematics second. Instead of
only discussing how something is done, we try to teach why. Our goal is to
provide the intuition behind the ideas, so that the reader may understand how
and when to apply them. There are tons of descriptions and pictures for folks
who learn in different ways. Mathematical formulas are presented in order to
make the intuition precise, and also to bridge this book with other existing
offerings.

Code examples in this book are given in Python, using a variety of free and open
source packages. The NumPy library provides numeric vector and matrix
operations. Pandas provides the DataFrame that is the building block of data
science in Python. Scikit-learn is a general-purpose machine learning package
with extensive coverage of models and feature transformers. Matplotlib and the
styling library Seaborn provide plotting and visualization support. You can find
these examples as Jupyter notebooks in our GitHub repo.

The first few chapters start out slow in order to provide a bridge for folks who
are just getting started with data science and machine learning. Chapter 1
introduces the fundamental concepts in the machine learning pipeline (data,
models, features, etc.). In Chapter 2, we explore basic feature engineering for
numeric data: filtering, binning, scaling, log transforms and power transforms,
and interaction features. Chapter 3 dives into feature engineering for natural text,
exploring techniques like bag-of-words, n-grams, and phrase detection.
Chapter 4 examines tf-idf (term frequency–inverse document frequency) as an
example of feature scaling and discusses why it works. The pace starts to pick up
around Chapter 5, where we talk about efficient encoding techniques for
categorical variables, including feature hashing and bin counting. By the time we
get to principal component analysis (PCA) in Chapter 6, we are deep in the land
of machine learning. Chapter 7 looks at k-means as a featurization technique,
which illustrates the useful concept of model stacking. Chapter 8 is all about
images, which are much more challenging in terms of feature extraction than text
data. We look at two manual feature extraction techniques, SIFT and HOG,
before concluding with an explanation of deep learning as the latest feature

http://www.numpy.org/
http://pandas.pydata.org/
http://scikit-learn.org/stable/
https://matplotlib.org/
https://seaborn.pydata.org/
https://github.com/alicezheng/feature-engineering-book

extraction technique for images. We finish up in Chapter 9 by showing a few
different techniques in an end-to-end example, creating a recommender for a
dataset of academic papers.

IN LIVING COLOR
The illustrations in this book are best viewed in color. Really, you should print out the
color versions of the Swiss roll in Chapter 7 and paste them into your book. Your
aesthetic sense will thank us.

Feature engineering is a vast topic, and more methods are being invented every
day, particularly in the area of automatic feature learning. In order to limit the
book to a manageable size, we’ve had to make some cuts. This book does not
discuss Fourier analysis for audio data, though it is a beautiful subject that is
closely related to eigen analysis in linear algebra (which we touch upon in
Chapters 4 and 6). We also skip a discussion of random features, which are
intimately related to Fourier analysis. We provide an introduction to feature
learning via deep learning for image data, but do not go into depth on the
numerous deep learning models under active development. Also out of scope are
advanced research ideas like random projections, complex text featurization
models such as word2vec and Brown clustering, and latent space models like
Latent Dirichlet allocation and matrix factorization. If those words mean nothing
to you, then you are in luck. If the frontiers of feature learning are where your
interest lies, then this is probably not the book for you.

The book assumes knowledge of basic machine learning concepts, such as what
a model is and what a vector is, though a refresher is provided so we’re all on the
same page. Experience with linear algebra, probability distributions, and
optimization are helpful, but not necessary.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

The book also contains numerous linear algebra equations. We use the following
conventions with regard to notation: scalars are shown in lowercase italic (e.g.,
a), vectors in lowercase bold (e.g., v), and matrices in uppercase bold and italic
(e.g., U).

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download
at https://github.com/alicezheng/feature-engineering-book.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You

https://github.com/alicezheng/feature-engineering-book

do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Feature Engineering for
Machine Learning by Alice Zheng and Amanda Casari (O’Reilly). Copyright
2018 Alice Zheng and Amanda Casari, 978-1-491-95324-2.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based training and
reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths,
interactive tutorials, and curated playlists from over 250 publishers, including
O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://bit.ly/featureEngineering_for_ML.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, we want to thank our editors, Shannon Cutt and Jeff Bleiel,
for shepherding two first-time authors through the (unknown to us) long
marathon of book publishing. Without your many check-ins, this book would not
have seen the light of day. Thank you also to Ben Lorica, O’Reilly Mastermind,
whose encouragement and affirmation turned this from a crazy idea into an
actual product. Thank you to Kristen Brown and the O’Reilly production team
for their superb attention to detail and extreme patience in waiting for our
responses.

If it takes a village to raise a child, it takes a parliament of data scientists to
publish a book. We greatly appreciate every hashtag suggestion, notes on room
for improvement and calls for clarification. Andreas Müller, Sethu Raman, and
Antoine Atallah took precious time out of their busy days to provide technical
reviews. Antoine not only did so at lightning speed, but also made available his

http://bit.ly/featureEngineering_for_ML
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

beefy machines for use on experiments. Ted Dunning’s statistical fluency and
mastery of applied machine learning are legendary. He is also incredibly
generous with his time and his ideas, and he literally gave us the method and the
example described in the k-means chapter. Owen Zhang revealed his cache of
Kaggle nuggets on using response rate features, which were added to machine
learning folklore on bin-counting collected by Misha Bilenko. Thank you also to
Alex Ott, Francisco Martin, and David Garrison for additional feedback.

Special Thanks from Alice
I would like to thank the GraphLab/Dato/Turi family for their generous support
in the first phase of this project. The idea germinated from interactions with our
users. In the process of building a brand new machine learning platform for data
scientists, we discovered that the world needs a more systematic understanding
of feature engineering. Thank you to Carlos Guestrin for granting me leave from
busy startup life to focus on writing.

Thank you to Amanda, who started out as technical reviewer and later pitched in
to help bring this book to life. You are the best finisher! Now that this book is
done, we’ll have to find another project, if only to keep doing our editing
sessions over tea and coffee and sandwiches and takeout food.

Special thanks to my friend and healer, Daisy Thompson, for her unwavering
support throughout all phases of this project. Without your help, I would have
taken much longer to take the plunge, and would have resented the marathon.
You brought light and relief to this project, as you do with all your work.

Special Thanks from Amanda
As this is a book and not a lifetime achievement award, I will attempt to scope
my thanks to the project at hand.

Many thanks to Alice for bringing me in as a technical editor and then coauthor.
I continue to learn so much from you, including how to write better math jokes
and explain complex concepts clearly.

Last in order only, special thanks to my husband, Matthew, for mastering the
nearly impossible role of grounding me, encouraging me towards my next goal,
and never allowing a concept to be hand-waved away. You are the best partner

and my favorite partner in crime. To the biggest and littlest sunshines, you
inspire me to make you proud.

Chapter 1. The Machine Learning
Pipeline

Before diving into feature engineering, let’s take a moment to take a look at the
overall machine learning pipeline. This will help us get situated in the larger
picture of the application. To that end, we’ll begin with a little musing on the
basic concepts like data and models.

Data
What we call data are observations of real-world phenomena. For instance, stock
market data might involve observations of daily stock prices, announcements of
earnings by individual companies, and even opinion articles from pundits.
Personal biometric data can include measurements of our minute-by-minute
heart rate, blood sugar level, blood pressure, etc. Customer intelligence data
includes observations such as “Alice bought two books on Sunday,” “Bob
browsed these pages on the website,” and “Charlie clicked on the special offer
link from last week.” We can come up with endless examples of data across
different domains.

Each piece of data provides a small window into a limited aspect of reality. The
collection of all of these observations gives us a picture of the whole. But the
picture is messy because it is composed of a thousand little pieces, and there’s
always measurement noise and missing pieces.

Tasks
Why do we collect data? There are questions that data can help us answer—
questions like “Which stocks I should invest in?” or “How can I live a healthier
lifestyle?” or “How can I understand my customers’ changing tastes, so that my
business can serve them better?”

The path from data to answers is full of false starts and dead ends (see Figure 1-
1). What starts out as a promising approach may not pan out. What was

originally just a hunch may end up leading to the best solution. Workflows with
data are frequently multistage, iterative processes. For instance, stock prices are
observed at the exchange, aggregated by an intermediary like Thomson Reuters,
stored in a database, bought by a company, converted into a Hive store on a
Hadoop cluster, pulled out of the store by a script, subsampled, massaged, and
cleaned by another script, dumped to a file, and converted to a format that you
can try out in your favorite modeling library in R, Python, or Scala. The
predictions are then dumped back out to a CSV file and parsed by an evaluator,
and the model is iterated multiple times, rewritten in C++ or Java by your
production team, and run on all of the data before the final predictions are
pumped out to another database.

Figure 1-1. The garden of bifurcating paths between data and answers

However, if we disregard the mess of tools and systems for a moment, we might
see that the process involves two mathematical entities that are the bread and
butter of machine learning: models and features.

Models
Trying to understand the world through data is like trying to piece together
reality using a noisy, incomplete jigsaw puzzle with a bunch of extra pieces. This
is where mathematical modeling—in particular statistical modeling—comes in.

The language of statistics contains concepts for many frequent characteristics of
data, such as wrong, redundant, or missing. Wrong data is the result of a
mistake in measurement. Redundant data contains multiple aspects that convey
exactly the same information. For instance, the day of week may be present as a
categorical variable with values of “Monday,” “Tuesday,” ... “Sunday,” and
again included as an integer value between 0 and 6. If this day-of-week
information is not present for some data points, then you’ve got missing data on
your hands.

A mathematical model of data describes the relationships between different
aspects of the data. For instance, a model that predicts stock prices might be a
formula that maps a company’s earning history, past stock prices, and industry to
the predicted stock price. A model that recommends music might measure the
similarity between users (based on their listening habits), and recommend the
same artists to users who have listened to a lot of the same songs.

Mathematical formulas relate numeric quantities to each other. But raw data is
often not numeric. (The action “Alice bought The Lord of the Rings trilogy on
Wednesday” is not numeric, and neither is the review that she subsequently
writes about the book.) There must be a piece that connects the two together.
This is where features come in.

Features
A feature is a numeric representation of raw data. There are many ways to turn
raw data into numeric measurements, which is why features can end up looking
like a lot of things. Naturally, features must derive from the type of data that is
available. Perhaps less obvious is the fact that they are also tied to the model;
some models are more appropriate for some types of features, and vice versa.
The right features are relevant to the task at hand and should be easy for the
model to ingest. Feature engineering is the process of formulating the most
appropriate features given the data, the model, and the task.

The number of features is also important. If there are not enough informative
features, then the model will be unable to perform the ultimate task. If there are
too many features, or if most of them are irrelevant, then the model will be more
expensive and tricky to train. Something might go awry in the training process
that impacts the model’s performance.

Model Evaluation
Features and models sit between raw data and the desired insights (see Figure 1-
2). In a machine learning workflow, we pick not only the model, but also the
features. This is a double-jointed lever, and the choice of one affects the other.
Good features make the subsequent modeling step easy and the resulting model
more capable of completing the desired task. Bad features may require a much
more complicated model to achieve the same level of performance. In the rest of
this book, we will cover different kinds of features and discuss their pros and
cons for different types of data and models. Without further ado, let’s get started!

Figure 1-2. The place of feature engineering in the machine learning workflow

Chapter 2. Fancy Tricks with
Simple Numbers

Before diving into complex data types such as text and image, let’s start with the
simplest: numeric data. This may come from a variety of sources: geolocation of
a place or a person, the price of a purchase, measurements from a sensor, traffic
counts, etc. Numeric data is already in a format that’s easily ingestible by
mathematical models. This doesn’t mean that feature engineering is no longer
necessary, though. Good features should not only represent salient aspects of the
data, but also conform to the assumptions of the model. Hence, transformations
are often necessary. Numeric feature engineering techniques are fundamental.
They can be applied whenever raw data is converted into numeric features.

The first sanity check for numeric data is whether the magnitude matters. Do we
just need to know whether it’s positive or negative? Or perhaps we only need to
know the magnitude at a very coarse granularity? This sanity check is
particularly important for automatically accrued numbers such as counts—the
number of daily visits to a website, the number of reviews garnered by a
restaurant, etc.

Next, consider the scale of the features. What are the largest and the smallest
values? Do they span several orders of magnitude? Models that are smooth
functions of input features are sensitive to the scale of the input. For example, 3x
+ 1 is a simple linear function of the input x, and the scale of its output depends
directly on the scale of the input. Other examples include k-means clustering,
nearest neighbors methods, radial basis function (RBF) kernels, and anything
that uses the Euclidean distance. For these models and modeling components, it
is often a good idea to normalize the features so that the output stays on an
expected scale.

Logical functions, on the other hand, are not sensitive to input feature scale.
Their output is binary no matter what the inputs are. For instance, the logical
AND takes any two variables and outputs 1 if and only if both of the inputs are
true. Another example of a logical function is the step function (e.g., is input x
greater than 5?). Decision tree models consist of step functions of input features.

Hence, models based on space-partitioning trees (decision trees, gradient boosted
machines, random forests) are not sensitive to scale. The only exception is if the
scale of the input grows over time, which is the case if the feature is an
accumulated count of some sort—eventually it will grow outside of the range
that the tree was trained on. If this might be the case, then it might be necessary
to rescale the inputs periodically. Another solution is the bin-counting method
discussed in Chapter 5.

It’s also important to consider the distribution of numeric features. Distribution
summarizes the probability of taking on a particular value. The distribution of
input features matters to some models more than others. For instance, the
training process of a linear regression model assumes that prediction errors are
distributed like a Gaussian. This is usually fine, except when the prediction
target spreads out over several orders of magnitude. In this case, the Gaussian
error assumption likely no longer holds. One way to deal with this is to
transform the output target in order to tame the magnitude of the growth.
(Strictly speaking this would be target engineering, not feature engineering.) Log
transforms, which are a type of power transform, take the distribution of the
variable closer to Gaussian.

In addition to features tailoring to the assumptions of the model or training
process, multiple features can be composed together into more complex features.
The hope is that complex features can more succinctly capture important
information in raw data. Making the input features more “eloquent” allows the
model itself to be simpler, easier to train and evaluate, and to make better
predictions. Taken to an extreme, complex features may themselves be the
output of statistical models. This is a concept known as model stacking, which
we discuss in much more detail in Chapters 7 and 8. In this chapter, we give the
simplest example of complex features: interaction features.

Interaction features are simple to formulate, but the combination of features
results in many more being input into the model. In order to reduce the
computational expense, it is usually necessary to prune the input features using
automatic feature selection.

We’ll begin with the basic concepts of scalars, vectors, and spaces, followed by
discussions of scale, distribution, interaction features, and feature selection.

http://mathworld.wolfram.com/NormalDistribution.html

Scalars, Vectors, and Spaces
Before we go any further, we need to define some basic concepts that underlie
the rest of this book. A single numeric feature is also known as a scalar. An
ordered list of scalars is known as a vector. Vectors sit within a vector space. In
the vast majority of machine learning applications, the input to a model is
usually represented as a numeric vector. The rest of this book will discuss best-
practice strategies for converting raw data into a vector of numbers.

A vector can be visualized as a point in space. (Sometimes people draw a line or
arrow from the origin to that point. In this book, we will mostly use just the
point.) For instance, suppose we have a two-dimensional vector v = [1, –1]. The
vector contains two numbers: in the first direction, d , the vector has a value of
1, and in the second direction, d , it has a value of –1. We can plot v in a 2D
plot, as shown in Figure 2-1.

1

2

Figure 2-1. A single vector

In the world of data, an abstract vector and its feature dimensions take on actual
meaning. For instance, a vector can represent a person’s preference for songs.
Each song is a feature, where a value of 1 is equivalent to a thumbs-up, and –1 a
thumbs-down. Suppose the vector v represents the preferences of a listener, Bob.
Bob likes “Blowin’ in the Wind” by Bob Dylan and “Poker Face” by Lady
Gaga. Other people might have different preferences. Collectively, a collection
of data can be visualized in feature space as a point cloud.

Conversely, a song can be represented by the individual preferences of a group
of people. Suppose there are only two listeners, Alice and Bob. Alice likes
“Poker Face,” “Blowin’ in the Wind,” and “Hallelujah” by Leonard Cohen, but
hates Katy Perry’s “Roar” and Radiohead’s “Creep.” Bob likes “Roar,”
“Hallelujah,” and “Blowin’ in the Wind,” but hates “Poker Face” and “Creep.”
Each song is a point in the space of listeners. Just like we can visualize data in
feature space, we can visualize features in data space. Figure 2-2 shows this
example.

Figure 2-2. Illustration of feature space versus data space

Dealing with Counts

In the age of Big Data, counts can quickly accumulate without bound. A user
might put a song or a movie on infinite playback or use a script to repeatedly
check for the availability of tickets for a popular show, which will cause the play
count or website visit count to quickly rise. When data can be produced at high
volume and velocity, it’s very likely to contain a few extreme values. It is a good
idea to check the scale and determine whether to keep the data as raw numbers,
convert them into binary values to indicate presence, or bin them into coarser
granularity. To illustrate these ideas, let’s look at a few examples.

Binarization
The Echo Nest Taste Profile subset, the official user data collection for the
Million Song Dataset, contains the full music listening histories of one million
users on Echo Nest. Here are some relevant statistics about the dataset:

STATISTICS ON THE ECHO NEST TASTE PROFILE DATASET

There are more than 48 million triplets of user ID, song ID, and
listen count.

The full dataset contains 1,019,318 unique users and 384,546 unique
songs.

Suppose our task is to build a recommender to recommend songs to users. One
component of the recommender might predict how much a user will enjoy a
particular song. Since the data contains actual listen counts, should that be the
target of the prediction? This would be the right thing to do if a large listen count
means the user really likes the song and a low listen count means they’re not
interested in it. However, the data shows that while 99% of the listen counts are
24 or lower, there are also some listen counts in the thousands, with the
maximum being 9,667. (As Figure 2-3 shows, the histogram peaks in the bin
closest to 0. But more than 10,000 triplets have greater counts, with a few in the
thousands.) These values are anomalously large; if we were to try to predict the
actual listen counts, the model would be pulled off course by these large values.

http://labrosa.ee.columbia.edu/millionsong/tasteprofile

Figure 2-3. Histogram of listen counts in the Taste Profile subset of the Million Song Dataset—
note that the y-axis is on a log scale

In the Million Song Dataset, the raw listen count is not a robust measure of user
taste. (In statistical lingo, robustness means that the method works under a wide
variety of conditions.) Users have different listening habits. Some people might
put their favorite songs on infinite loop, while others might savor them only on
special occasions. We can’t necessarily say that someone who listens to a song
20 times must like it twice as much as someone else who listens to it 10 times.

A more robust representation of user preference is to binarize the count and clip
all counts greater than 1 to 1, as illustrated in Example 2-1. In other words, if the
user listened to a song at least once, then we count it as the user liking the song.
This way, the model will not need to spend cycles on predicting the minute
differences between the raw counts. The binary target is a simple and robust
measure of user preference.

Example 2-1. Binarizing listen counts in the Million Song Dataset
>>> import pandas as pd
>>> listen_count = pd.read_csv('millionsong/train_triplets.txt.zip',
... header=None, delimiter='\t')
The table contains user-song-count triplets. Only nonzero counts are
included. Hence, to binarize the count, we just need to set the entire
count column to 1.
>>> listen_count[2] = 1

http://labrosa.ee.columbia.edu/millionsong/

This is an example where we engineer the target variable of the model. Strictly
speaking, the target is not a feature because it’s not the input. But on occasion
we do need to modify the target in order to solve the right problem.

Quantization or Binning
For this exercise, we take data from round 6 of the Yelp dataset challenge and
create a much smaller classification dataset. The Yelp dataset contains user
reviews of businesses from 10 cities across North America and Europe. Each
business is labeled with zero or more categories.

STATISTICS ON THE YELP REVIEWS DATASET (ROUND 6)

There are 782 business categories.

The full dataset contains 1,569,264 (≈1.6M) reviews and 61,184
(61K) businesses.

“Restaurants” (990,627 reviews) and “Nightlife” (210,028 reviews)
are the most popular categories, review count–wise.

No business is categorized as both a restaurant and a nightlife venue.
So, there is no overlap between the two groups of reviews.

Each business has a review count. Suppose our task is to use collaborative
filtering to predict the rating a user might give to a business. The review count
might be a useful input feature because there is usually a strong correlation
between popularity and good ratings. Now the question is, should we use the raw
review count or process it further? Figure 2-4, produced by Example 2-2, shows
the histogram of all business review counts. We see the same pattern as in the
listen counts in the previous example: most of the counts are small, but some
businesses have reviews in the thousands.

Example 2-2. Visualizing business review counts in the Yelp dataset
>>> import pandas as pd
>>> import json

Load the data about businesses
>>> biz_file = open('yelp_academic_dataset_business.json')

http://www.yelp.com/dataset_challenge

>>> biz_df = pd.DataFrame([json.loads(x) for x in biz_file.readlines()])
>>> biz_file.close()

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns

Plot the histogram of the review counts
>>> sns.set_style('whitegrid')
>>> fig, ax = plt.subplots()
>>> biz_df['review_count'].hist(ax=ax, bins=100)
>>> ax.set_yscale('log')
>>> ax.tick_params(labelsize=14)
>>> ax.set_xlabel('Review Count', fontsize=14)
>>> ax.set_ylabel('Occurrence', fontsize=14)

Raw counts that span several orders of magnitude are problematic for many
models. In a linear model, the same linear coefficient would have to work for all
possible values of the count. Large counts could also wreak havoc in
unsupervised learning methods such as k-means clustering, which uses
Euclidean distance as a similarity function to measure the similarity between
data points. A large count in one element of the data vector would outweigh the
similarity in all other elements, which could throw off the entire similarity
measurement.

One solution is to contain the scale by quantizing the count. In other words, we
group the counts into bins, and get rid of the actual count values. Quantization
maps a continuous number to a discrete one. We can think of the discretized
numbers as an ordered sequence of bins that represent a measure of intensity.

Figure 2-4. Histogram of business review counts in the Yelp reviews dataset—the y-axis is on a
log scale

In order to quantize data, we have to decide how wide each bin should be. The
solutions fall into two categories: fixed-width or adaptive. We will give an
example of each type.

Fixed-width binning
With fixed-width binning, each bin contains a specific numeric range. The
ranges can be custom designed or automatically segmented, and they can be
linearly scaled or exponentially scaled. For example, we can group people into
age ranges by decade: 0–9 years old in bin 1, 10–19 years in bin 2, etc. To map
from the count to the bin, we simply divide by the width of the bin and take the
integer part.

It’s also common to see custom-designed age ranges that better correspond to
stages of life, such as:

0–12 years old

12–17 years old

18–24 years old

25–34 years old

35–44 years old

45–54 years old

55–64 years old

65–74 years old

75 years or older

When the numbers span multiple magnitudes, it may be better to group by
powers of 10 (or powers of any constant): 0–9, 10–99, 100–999, 1000–9999, etc.
The bin widths grow exponentially, going from O(10), to O(100), O(1000), and
beyond. To map from the count to the bin, we take the log of the count.
Exponential-width binning is very much related to the log transform, which we
discuss in “Log Transformation”. Example 2-3 illustrates several of these
binning methods.

Example 2-3. Quantizing counts with fixed-width bins
>>> import numpy as np

Generate 20 random integers uniformly between 0 and 99
>>> small_counts = np.random.randint(0, 100, 20)
>>> small_counts
array([30, 64, 49, 26, 69, 23, 56, 7, 69, 67, 87, 14, 67, 33, 88, 77, 75,
 47, 44, 93])
Map to evenly spaced bins 0-9 by division
>>> np.floor_divide(small_counts, 10)
array([3, 6, 4, 2, 6, 2, 5, 0, 6, 6, 8, 1, 6, 3, 8, 7, 7, 4, 4, 9],
dtype=int32)

An array of counts that span several magnitudes
>>> large_counts = [296, 8286, 64011, 80, 3, 725, 867, 2215, 7689, 11495,
91897,
... 44, 28, 7971, 926, 122, 22222]
Map to exponential-width bins via the log function
>>> np.floor(np.log10(large_counts))
array([2., 3., 4., 1., 0., 2., 2., 3., 3., 4., 4., 1., 1.,
 3., 2., 2., 4.])

Quantile binning
Fixed-width binning is easy to compute. But if there are large gaps in the counts,
then there will be many empty bins with no data. This problem can be solved by

adaptively positioning the bins based on the distribution of the data. This can be
done using the quantiles of the distribution.

Quantiles are values that divide the data into equal portions. For example, the
median divides the data in halves; half the data points are smaller and half larger
than the median. The quartiles divide the data into quarters, the deciles into
tenths, etc. Example 2-4 demonstrates how to compute the deciles of the Yelp
business review counts, and Figure 2-5 overlays the deciles on the histogram.
This gives a much clearer picture of the skew toward smaller counts.

Example 2-4. Computing deciles of Yelp business review counts
>>> deciles = biz_df['review_count'].quantile([.1, .2, .3, .4, .5, .6, .7, .8,
.9])
>>> deciles
0.1 3.0
0.2 4.0
0.3 5.0
0.4 6.0
0.5 8.0
0.6 12.0
0.7 17.0
0.8 28.0
0.9 58.0
Name: review_count, dtype: float64

Visualize the deciles on the histogram
>>> sns.set_style('whitegrid')
>>> fig, ax = plt.subplots()
>>> biz_df['review_count'].hist(ax=ax, bins=100)
>>> for pos in deciles:
... handle = plt.axvline(pos, color='r')
>>> ax.legend([handle], ['deciles'], fontsize=14)
>>> ax.set_yscale('log')
>>> ax.set_xscale('log')
>>> ax.tick_params(labelsize=14)
>>> ax.set_xlabel('Review Count', fontsize=14)
>>> ax.set_ylabel('Occurrence', fontsize=14)

Figure 2-5. Deciles of the review counts in the Yelp reviews dataset—both the x- and y-axes are
on a log scale

To compute the quantiles and map data into quantile bins, we can use the Pandas
library, as shown in Example 2-5. pandas.DataFrame.quantile and
pandas.Series.quantile compute the quantiles. pandas.qcut maps data into
a desired number of quantiles.

Example 2-5. Binning counts by quantiles
Continue example 2-3 with large_counts
>>> import pandas as pd

Map the counts to quartiles
>>> pd.qcut(large_counts, 4, labels=False)
array([1, 2, 3, 0, 0, 1, 1, 2, 2, 3, 3, 0, 0, 2, 1, 0, 3], dtype=int64)

Compute the quantiles themselves
>>> large_counts_series = pd.Series(large_counts)
>>> large_counts_series.quantile([0.25, 0.5, 0.75])
0.25 122.0
0.50 926.0
0.75 8286.0
dtype: float64

Log Transformation

http://bit.ly/2I8vpf2
http://bit.ly/2D89r80
http://bit.ly/2IamSrY

In the previous section, we briefly introduced the notion of taking the logarithm
of the count to map the data to exponential-width bins. Let’s take a closer look at
that now.

The log function is the inverse of the exponential function. It is defined such that
log (a) = x, where a is a positive constant, and x can be any positive number.
Since a = 1, we have log (1) = 0. This means that the log function maps the
small range of numbers between (0, 1) to the entire range of negative numbers (–
∞, 0). The function log (x) maps the range of [1, 10] to [0, 1], [10, 100] to [1,
2], and so on. In other words, the log function compresses the range of large
numbers and expands the range of small numbers. The larger x is, the slower
log(x) increments.

This is easier to digest by looking at a plot of the log function (see Figure 2-6).
Note how the horizontal x values from 100 to 1,000 get compressed into just 2.0
to 3.0 in the vertical y range, while the tiny horizontal portion of x values less
than 100 are mapped to the rest of the vertical range.

Figure 2-6. The log function compresses the high numeric range and expands the low range

The log transform is a powerful tool for dealing with positive numbers with a
heavy-tailed distribution. (A heavy-tailed distribution places more probability
mass in the tail range than a Gaussian distribution.) It compresses the long tail in
the high end of the distribution into a shorter tail, and expands the low end into a

a
x

0
a

10

longer head. Figure 2-7 compares the histograms of Yelp business review counts
before and after log transformation (see Example 2-6). The y-axes are now both
on a normal (linear) scale. The increased bin spacing in the bottom plot between
the range of (0.5, 1] is due to there being only 10 possible integer counts
between 1 and 10. Notice that the original review counts are very concentrated in
the low count region, with outliers stretching out above 4,000. After log
transformation, the histogram is less concentrated in the low end and more
spread out over the x-axis.

Example 2-6. Visualizing the distribution of review counts before and after log
transform
>>> fig, (ax1, ax2) = plt.subplots(2,1)
>>> biz_df['review_count'].hist(ax=ax1, bins=100)
>>> ax1.tick_params(labelsize=14)
>>> ax1.set_xlabel('review_count', fontsize=14)
>>> ax1.set_ylabel('Occurrence', fontsize=14)

>>> biz_df['log_review_count'].hist(ax=ax2, bins=100)
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_xlabel('log10(review_count))', fontsize=14)
>>> ax2.set_ylabel('Occurrence', fontsize=14)

Figure 2-7. Comparison of Yelp business review counts before (top) and after (bottom) log
transformation

As another example, let’s consider the Online News Popularity dataset from the
UC Irvine Machine Learning Repository (Fernandes et al., 2015).

STATISTICS ON THE ONLINE NEWS POPULARITY DATASET

The dataset includes 60 features of a set of 39,797 news articles
published by Mashable over a period of 2 years.

Our goal is to use these features to predict the popularity of the articles in terms
of the number of shares on social media. In this example, we’ll focus on only
one feature—the number of words in the article. Figure 2-8 shows the
histograms of the feature before and after log transformation (see Example 2-7).
Notice that the distribution looks much more Gaussian after log transformation,

https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity

with the exception of the burst of number of articles of length zero (no content).

Example 2-7. Visualizing the distribution of news article popularity with and
without log transformation
>>> fig, (ax1, ax2) = plt.subplots(2,1)
>>> df['n_tokens_content'].hist(ax=ax1, bins=100)
>>> ax1.tick_params(labelsize=14)
>>> ax1.set_xlabel('Number of Words in Article', fontsize=14)
>>> ax1.set_ylabel('Number of Articles', fontsize=14)

>>> df['log_n_tokens_content'].hist(ax=ax2, bins=100)
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_xlabel('Log of Number of Words', fontsize=14)
>>> ax2.set_ylabel('Number of Articles', fontsize=14)

Figure 2-8. Comparison of word counts in Mashable news articles before (top) and after
(bottom) log transformation

Log Transform in Action
Let’s see how the log transform performs for supervised learning. We’ll use both
of the previous datasets here. For the Yelp reviews dataset, we’ll use the number
of reviews to predict the average rating of a business (see Example 2-8). For the
Mashable news articles, we’ll use the number of words in an article to predict its
popularity. Since the outputs are continuous numbers, we’ll use simple linear
regression as the model. We use scikit-learn to perform 10-fold cross validation
of linear regression on the feature with and without log transformation. The
models are evaluated by the R-squared score, which measures how well a trained
regression model predicts new data. Good models have high R-squared scores. A
perfect model gets the maximum score of 1. The score can be negative, and a
bad model can get an arbitrarily low negative score. Using cross validation, we
obtain not only an estimate of the score but also a variance, which helps us
gauge whether the differences between the two models are meaningful.

Example 2-8. Using log transformed Yelp review counts to predict average
business rating
>>> import pandas as pd
>>> import numpy as np
>>> import json
>>> from sklearn import linear_model
>>> from sklearn.model_selection import cross_val_score

Using the previously loaded Yelp reviews DataFrame,
compute the log transform of the Yelp review count.
Note that we add 1 to the raw count to prevent the logarithm from
exploding into negative infinity in case the count is zero.
>>> biz_df['log_review_count'] = np.log10(biz_df['review_count'] + 1)

Train linear regression models to predict the average star rating of a
business,
using the review_count feature with and without log transformation.
Compare the 10-fold cross validation score of the two models.
>>> m_orig = linear_model.LinearRegression()
>>> scores_orig = cross_val_score(m_orig, biz_df[['review_count']],
... biz_df['stars'], cv=10)
>>> m_log = linear_model.LinearRegression()
>>> scores_log = cross_val_score(m_log, biz_df[['log_review_count']],
... biz_df['stars'], cv=10)
>>> print("R-squared score without log transform: %0.5f (+/- %0.5f)"

http://scikit-learn.org/
http://bit.ly/2D4ZKap

... % (scores_orig.mean(), scores_orig.std() * 2))
>>> print("R-squared score with log transform: %0.5f (+/- %0.5f)"
... % (scores_log.mean(), scores_log.std() * 2))
R-squared score without log transform: -0.03683 (+/- 0.07280)
R-squared score with log transform: -0.03694 (+/- 0.07650)

Judging by the output of the experiment, the two simple models (with and
without log transform) are equally bad at predicting the target, with the log
transformed feature performing slightly worse. How disappointing! It’s not
surprising that neither of them are very good, given that they both use just one
feature, but one would have hoped that the log transformed feature might have
performed better.

Now let’s look at how the log transform does on the Online News Popularity
dataset (Example 2-9).

Example 2-9. Using log transformed word counts in the Online News Popularity
dataset to predict article popularity
Download the Online News Popularity dataset from UCI, then use
Pandas to load the file into a DataFrame.
>>> df = pd.read_csv('OnlineNewsPopularity.csv', delimiter=', ')

Take the log transform of the 'n_tokens_content' feature, which
represents the number of words (tokens) in a news article.
>>> df['log_n_tokens_content'] = np.log10(df['n_tokens_content'] + 1)

Train two linear regression models to predict the number of shares
of an article, one using the original feature and the other the
log transformed version.
>>> m_orig = linear_model.LinearRegression()
>>> scores_orig = cross_val_score(m_orig, df[['n_tokens_content']],
... df['shares'], cv=10)
>>> m_log = linear_model.LinearRegression()
>>> scores_log = cross_val_score(m_log, df[['log_n_tokens_content']],
... df['shares'], cv=10)
>>> print("R-squared score without log transform: %0.5f (+/- %0.5f)"
... % (scores_orig.mean(), scores_orig.std() * 2))
>>> print("R-squared score with log transform: %0.5f (+/- %0.5f)"
... % (scores_log.mean(), scores_log.std() * 2))
R-squared score without log transform: -0.00242 (+/- 0.00509)
R-squared score with log transform: -0.00114 (+/- 0.00418)

The confidence intervals still overlap, but the model with the log transformed

feature is doing better than the one without. Why is the log transform so much
more successful on this dataset? We can get a clue by looking at the scatter plots
(Example 2-10) of the input feature and target values. As can be seen in the
bottom panel of Figure 2-9, the log transform reshaped the x-axis, pulling the
articles with large outliers in the target value (>200,000 shares) further out
toward the righthand side of the axis. This gives the linear model more
“breathing room” on the low end of the input feature space. Without the log
transform (top panel), the model is under more pressure to fit very different
target values under very small changes in the input.

Example 2-10. Visualizing the correlation between input and output in the news
popularity prediction problem
>>> fig2, (ax1, ax2) = plt.subplots(2,1)
>>> ax1.scatter(df['n_tokens_content'], df['shares'])
>>> ax1.tick_params(labelsize=14)
>>> ax1.set_xlabel('Number of Words in Article', fontsize=14)
>>> ax1.set_ylabel('Number of Shares', fontsize=14)

>>> ax2.scatter(df['log_n_tokens_content'], df['shares'])
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_xlabel('Log of the Number of Words in Article', fontsize=14)
>>> ax2.set_ylabel('Number of Shares', fontsize=14)

Figure 2-9. Scatter plots of number of words (input) versus number of shares (target) in the
Online News Popularity dataset—the top plot visualizes the original feature, and the bottom plot

shows the scatter plot after log transformation

Compare this with the same scatter plot applied to the Yelp reviews dataset
(Example 2-11). Figure 2-10 looks very different from Figure 2-9. The average
star rating is discretized in increments of half-stars ranging from 1 to 5. High
review counts (roughly >2,500 reviews) do correlate with higher average star
ratings, but the relationship is far from linear. There is no clear way to draw a
line to predict the average star rating based on either input. Essentially, the plot
shows that review count and its logarithm are both bad linear predictors of
average star rating.

Example 2-11. Visualizing the correlation between input and output in Yelp
business review prediction
>>> fig, (ax1, ax2) = plt.subplots(2,1)
>>> ax1.scatter(biz_df['review_count'], biz_df['stars'])

>>> ax1.tick_params(labelsize=14)
>>> ax1.set_xlabel('Review Count', fontsize=14)
>>> ax1.set_ylabel('Average Star Rating', fontsize=14)

>>> ax2.scatter(biz_df['log_review_count'], biz_df['stars'])
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_xlabel('Log of Review Count', fontsize=14)
>>> ax2.set_ylabel('Average Star Rating', fontsize=14)

THE IMPORTANCE OF DATA VISUALIZATION
The comparison of the effect of the log transform on two different datasets illustrates
the importance of visualizing the data. Here, we intentionally kept the input and target
variables simple so that we can easily visualize the relationship between them. Plots
like those in Figure 2-10 immediately reveal that the chosen model (linear) cannot
possibly represent the relationship between the chosen input and target. On the other
hand, one could convincingly model the distribution of review count given the average
star rating. When building models, it is a good idea to visually inspect the relationships
between input and output, and between different input features.

Figure 2-10. Scatter plots of review counts (input) versus average star rating (target) in the Yelp
reviews dataset—the top panel plots the original review count, and the bottom panel plots the

review count after log transformation

Power Transforms: Generalization of the Log
Transform
The log transform is a specific example of a family of transformations known as
power transforms. In statistical terms, these are variance-stabilizing
transformations. To understand why variance stabilization is good, consider the
Poisson distribution. This is a heavy-tailed distribution with a variance that is
equal to its mean: hence, the larger its center of mass, the larger its variance, and
the heavier the tail. Power transforms change the distribution of the variable so
that the variance is no longer dependent on the mean. For example, suppose a

random variable X has the Poisson distribution. If we transform X by taking its
square root, the variance of is roughly constant, instead of being
equal to the mean.

Figure 2-11 illustrates λ, which represents the mean of the distribution. As λ
increases, not only does the mode of the distribution shift to the right, but the
mass spreads out and the variance becomes larger.

Figure 2-11. A rough illustration of the Poisson distribution, an example distribution where the
variance increases along with the mean

A simple generalization of both the square root transform and the log transform
is known as the Box-Cox transform:

Figure 2-12 shows the Box-Cox transform for λ = 0 (the log transform), λ =
0.25, λ = 0.5 (a scaled and shifted version of the square root transform), λ = 0.75,
and λ = 1.5. Setting λ to be less than 1 compresses the higher values, and setting

λ higher than 1 has the opposite effect.

Figure 2-12. Box-Cox transforms for different values of λ

The Box-Cox formulation only works when the data is positive. For nonpositive
data, one could shift the values by adding a fixed constant. When applying the
Box-Cox transformation or a more general power transform, we have to
determine a value for the parameter λ. This may be done via maximum
likelihood (finding the λ that maximizes the Gaussian likelihood of the resulting
transformed signal) or Bayesian methods. A full treatment of the usage of Box-
Cox and general power transforms is outside the scope of this book. Interested
readers may find more information on power transforms in Econometric
Methods by Johnston and DiNardo (1997). Fortunately, SciPy’s stats package
contains an implementation of the Box-Cox transformation that includes finding
the optimal transform parameter. Example 2-12 demonstrates its use on the Yelp
reviews dataset.

Example 2-12. Box-Cox transformation of Yelp business review counts
>>> from scipy import stats

Continuing from the previous example, assume biz_df contains
the Yelp business reviews data.
The Box-Cox transform assumes that input data is positive.

https://docs.scipy.org/doc/scipy/reference/stats.html

Check the min to make sure.
>>> biz_df['review_count'].min()
3

Setting input parameter lmbda to 0 gives us the log transform (without
constant offset)
>>> rc_log = stats.boxcox(biz_df['review_count'], lmbda=0)
By default, the scipy implementation of Box-Cox transform finds the lambda
parameter that will make the output the closest to a normal distribution
>>> rc_bc, bc_params = stats.boxcox(biz_df['review_count'])
>>> bc_params
-0.4106510862321085

Figure 2-13 provides a visual comparison of the distributions of the original and
transformed counts (see Example 2-13).

Example 2-13. Visualizing the histograms of original, log transformed, and Box-
Cox transformed counts
>>> fig, (ax1, ax2, ax3) = plt.subplots(3,1)
original review count histogram
>>> biz_df['review_count'].hist(ax=ax1, bins=100)
>>> ax1.set_yscale('log')
>>> ax1.tick_params(labelsize=14)
>>> ax1.set_title('Review Counts Histogram', fontsize=14)
>>> ax1.set_xlabel('')
>>> ax1.set_ylabel('Occurrence', fontsize=14)

review count after log transform
>>> biz_df['rc_log'].hist(ax=ax2, bins=100)
>>> ax2.set_yscale('log')
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_title('Log Transformed Counts Histogram', fontsize=14)
>>> ax2.set_xlabel('')
>>> ax2.set_ylabel('Occurrence', fontsize=14)

review count after optimal Box-Cox transform
>>> biz_df['rc_bc'].hist(ax=ax3, bins=100)
>>> ax3.set_yscale('log')
>>> ax3.tick_params(labelsize=14)
>>> ax3.set_title('Box-Cox Transformed Counts Histogram', fontsize=14)
>>> ax3.set_xlabel('')
>>> ax3.set_ylabel('Occurrence', fontsize=14)

Figure 2-13. Box-Cox transformation of Yelp business review counts (bottom), compared to
original (top) and log transformed (middle) histograms

A probability plot, or probplot, is an easy way to visually compare an empirical
distribution of data against a theoretical distribution. This is essentially a scatter

plot of observed versus theoretical quantiles. Figure 2-14 shows the probplots of
original and transformed Yelp review counts data against the normal distribution
(see Example 2-14). Since the observed data is strictly positive and the Gaussian
can be negative, the quantiles could never match up on the negative end. Thus,
our focus is on the positive side. On this front, the original counts are obviously
much more heavy-tailed than a normal distribution. (The ordered values go up to
4,000, whereas the theoretical quantiles only stretch to 4.) Both the plain log
transform and the optimal Box-Cox transform bring the positive tail closer to
normal. The optimal Box-Cox transform deflates the tail more than the log
transform, as is evident from the fact that the tail flattens out under the red
diagonal equivalence line.

Example 2-14. Probability plots of original and transformed counts against the
normal distribution
>>> fig2, (ax1, ax2, ax3) = plt.subplots(3,1)
>>> prob1 = stats.probplot(biz_df['review_count'], dist=stats.norm, plot=ax1)
>>> ax1.set_xlabel('')
>>> ax1.set_title('Probplot against normal distribution')
>>> prob2 = stats.probplot(biz_df['rc_log'], dist=stats.norm, plot=ax2)
>>> ax2.set_xlabel('')
>>> ax2.set_title('Probplot after log transform')
>>> prob3 = stats.probplot(biz_df['rc_bc'], dist=stats.norm, plot=ax3)
>>> ax3.set_xlabel('Theoretical quantiles')
>>> ax3.set_title('Probplot after Box-Cox transform')

Figure 2-14. Comparing the distribution of raw and transformed review counts against the
normal distribution

Feature Scaling or Normalization
Some features, such as latitude or longitude, are bounded in value. Other
numeric features, such as counts, may increase without bound. Models that are

smooth functions of the input, such as linear regression, logistic regression, or
anything that involves a matrix, are affected by the scale of the input. Tree-based
models, on the other hand, couldn’t care less. If your model is sensitive to the
scale of input features, feature scaling could help. As the name suggests, feature
scaling changes the scale of the feature. Sometimes people also call it feature
normalization. Feature scaling is usually done individually to each feature. Next,
we will discuss several types of common scaling operations, each resulting in a
different distribution of feature values.

Min-Max Scaling
Let x be an individual feature value (i.e., a value of the feature in some data
point), and min(x) and max(x), respectively, be the minimum and maximum
values of this feature over the entire dataset. Min-max scaling squeezes (or
stretches) all feature values to be within the range of [0, 1]. Figure 2-15
demonstrates this concept. The formula for min-max scaling is:

Figure 2-15. Illustration of min-max scaling

Standardization (Variance Scaling)
Feature standardization is defined as:

It subtracts off the mean of the feature (over all data points) and divides by the
variance. Hence, it can also be called variance scaling. The resulting scaled
feature has a mean of 0 and a variance of 1. If the original feature has a Gaussian
distribution, then the scaled feature does too. Figure 2-16 is an illustration of
standardization.

Figure 2-16. Illustration of feature standardization

DON’T “CENTER” SPARSE DATA!
Use caution when performing min-max scaling and standardization on sparse features.
Both subtract a quantity from the original feature value. For min-max scaling, the shift
is the minimum over all values of the current feature; for standardization, it is the
mean. If the shift is not zero, then these two transforms can turn a sparse feature vector
where most values are zero into a dense one. This in turn could create a huge
computational burden for the classifier, depending on how it is implemented (not to
mention that it would be horrendous if the representation now included every word that
didn’t appear in a document!). Bag-of-words is a sparse representation, and most
classification libraries optimize for sparse inputs.

ℓ Normalization2

This technique normalizes (divides) the original feature value by what’s known
as the ℓ norm, also known as the Euclidean norm. It’s defined as follows:

The ℓ norm measures the length of the vector in coordinate space. The
definition can be derived from the well-known Pythagorean theorem that gives
us the length of the hypotenuse of a right triangle given the lengths of the sides:

The ℓ norm sums the squares of the values of the features across data points,
then takes the square root. After ℓ normalization, the feature column has norm
1. This is also sometimes called ℓ scaling. (Loosely speaking, scaling means
multiplying by a constant, whereas normalization could involve a number of
operations.) Figure 2-17 illustrates ℓ normalization.

Figure 2-17. Illustration of ℓ feature normalization

DATA SPACE VERSUS FEATURE SPACE

2

2

2

2

2

2

2

Note that the illustration in Figure 2-17 is in data space, not feature space. One can also
do ℓ normalization for the data point instead of the feature, which will result in data
vectors with unit norm (norm of 1). See the discussion in “Bag-of-Words” about the
complementary nature of data vectors and feature vectors.

No matter the scaling method, feature scaling always divides the feature by a
constant (known as the normalization constant). Therefore, it does not change
the shape of the single-feature distribution. We’ll illustrate this with the online
news article token counts (see Example 2-15).

Example 2-15. Feature scaling example
>>> import pandas as pd
>>> import sklearn.preprocessing as preproc

Load the Online News Popularity dataset
>>> df = pd.read_csv('OnlineNewsPopularity.csv', delimiter=', ')

Look at the original data - the number of words in an article
>>> df['n_tokens_content'].as_matrix()
array([219., 255., 211., ..., 442., 682., 157.])

Min-max scaling
>>> df['minmax'] = preproc.minmax_scale(df[['n_tokens_content']])
>>> df['minmax'].as_matrix()
array([0.02584376, 0.03009205, 0.02489969, ..., 0.05215955,
 0.08048147, 0.01852726])

Standardization - note that by definition, some outputs will be negative
>>> df['standardized'] =
preproc.StandardScaler().fit_transform(df[['n_tokens_content']])
>>> df['standardized'].as_matrix()
array([-0.69521045, -0.61879381, -0.71219192, ..., -0.2218518 ,
 0.28759248, -0.82681689])

L2-normalization
>>> df['l2_normalized'] = preproc.normalize(df[['n_tokens_content']], axis=0)
>>> df['l2_normalized'].as_matrix()
array([0.00152439, 0.00177498, 0.00146871, ..., 0.00307663,
 0.0047472 , 0.00109283])

We can also visualize the distribution of data with different feature scaling
methods (Figure 2-18). As Example 2-16 shows, unlike the log transform,

2

feature scaling doesn’t change the shape of the distribution; only the scale of the
data changes.

Example 2-16. Plotting the histograms of original and scaled data
>>> fig, (ax1, ax2, ax3, ax4) = plt.subplots(4,1)
>>> fig.tight_layout()
>>> df['n_tokens_content'].hist(ax=ax1, bins=100)
>>> ax1.tick_params(labelsize=14)
>>> ax1.set_xlabel('Article word count', fontsize=14)
>>> ax1.set_ylabel('Number of articles', fontsize=14)

>>> df['minmax'].hist(ax=ax2, bins=100)
>>> ax2.tick_params(labelsize=14)
>>> ax2.set_xlabel('Min-max scaled word count', fontsize=14)
>>> ax2.set_ylabel('Number of articles', fontsize=14)

>>> df['standardized'].hist(ax=ax3, bins=100)
>>> ax3.tick_params(labelsize=14)
>>> ax3.set_xlabel('Standardized word count', fontsize=14)
>>> ax3.set_ylabel('Number of articles', fontsize=14)

>>> df['l2_normalized'].hist(ax=ax4, bins=100)
>>> ax4.tick_params(labelsize=14)
>>> ax4.set_xlabel('L2-normalized word count', fontsize=14)
>>> ax4.set_ylabel('Number of articles', fontsize=14)

Figure 2-18. Original and scaled news article word counts—note that only the scale of the x-axis
changes; the shape of the distribution stays the same with feature scaling

Feature scaling is useful in situations where a set of input features differs wildly
in scale. For instance, the number of daily visitors to a popular ecommerce site
might be a hundred thousand, while the actual number of sales might be in the
thousands. If both of those features are thrown into a model, then the model will
need to balance its scale while figuring out what to do. Drastically varying scale
in input features can lead to numeric stability issues for the model training
algorithm. In those situations, it’s a good idea to standardize the features.
Chapter 4 goes into detail about feature scaling in the context of handling natural
text, including usage examples.

Interaction Features
A simple pairwise interaction feature is the product of two features. The analogy
is the logical AND. It expresses the outcome in terms of pairs of conditions: “the
purchase is coming from zip code 98121” AND “the user’s age is between 18
and 35.” Decision tree–based models get this for free, but generalized linear

models often find interaction features very helpful.

A simple linear model uses a linear combination of the individual input features
x , x , ... x to predict the outcome y:

y = w x + w x + ... + w x

An easy way to extend the linear model is to include combinations of pairs of
input features, like so:

y = w x + w x + ... + w x + w x x + w x x + w x x + ...

This allows us to capture interactions between features, and hence these pairs are
called interaction features. If x and x are binary, then their product x x is the
logical function x AND x . Suppose the problem is to predict a customer’s
preference based on their profile information. In our example, instead of making
predictions based solely on the age or location of the user, interaction features
allow the model to make predictions based on the user being of a certain age
AND at a particular location.

In Example 2-17, we use pairwise interaction features from the UCI Online
News Popularity dataset to predict the number of shares for each news article.
As the results show, interaction features result in some lift in accuracy above
singleton features. Both perform better than Example 2-9, which used as a single
predictor the number of words in the body of the article (with or without a log
transform).

Example 2-17. Example of interaction features in prediction
>>> from sklearn import linear_model
>>> from sklearn.model_selection import train_test_split
>>> import sklearn.preprocessing as preproc

Assume df is a Pandas DataFrame containing the UCI Online News Popularity
dataset
>>> df.columns
Index(['url', 'timedelta', 'n_tokens_title', 'n_tokens_content',
 'n_unique_tokens', 'n_non_stop_words', 'n_non_stop_unique_tokens',
 'num_hrefs', 'num_self_hrefs', 'num_imgs', 'num_videos',
 'average_token_length', 'num_keywords', 'data_channel_is_lifestyle',
 'data_channel_is_entertainment', 'data_channel_is_bus',
 'data_channel_is_socmed', 'data_channel_is_tech',
 'data_channel_is_world', 'kw_min_min', 'kw_max_min', 'kw_avg_min',
 'kw_min_max', 'kw_max_max', 'kw_avg_max', 'kw_min_avg', 'kw_max_avg',

1 2 n

1 1 2 2 n n

1 1 2 2 n n 1,1 1 1 1,2 1 2 1,3 1 3

1 2 1 2

1 2

 'kw_avg_avg', 'self_reference_min_shares', 'self_reference_max_shares',
 'self_reference_avg_sharess', 'weekday_is_monday',
'weekday_is_tuesday',
 'weekday_is_wednesday', 'weekday_is_thursday', 'weekday_is_friday',
 'weekday_is_saturday', 'weekday_is_sunday', 'is_weekend', 'LDA_00',
 'LDA_01', 'LDA_02', 'LDA_03', 'LDA_04', 'global_subjectivity',
 'global_sentiment_polarity', 'global_rate_positive_words',
 'global_rate_negative_words', 'rate_positive_words',
 'rate_negative_words', 'avg_positive_polarity',
'min_positive_polarity',
 'max_positive_polarity', 'avg_negative_polarity',
 'min_negative_polarity', 'max_negative_polarity', 'title_subjectivity',
 'title_sentiment_polarity', 'abs_title_subjectivity',
 'abs_title_sentiment_polarity', 'shares'],
 dtype='object')

Select the content-based features as singleton features in the model,
skipping over the derived features
>>> features = ['n_tokens_title', 'n_tokens_content',
... 'n_unique_tokens', 'n_non_stop_words',
'n_non_stop_unique_tokens',
... 'num_hrefs', 'num_self_hrefs', 'num_imgs', 'num_videos',
... 'average_token_length', 'num_keywords',
'data_channel_is_lifestyle',
... 'data_channel_is_entertainment', 'data_channel_is_bus',
... 'data_channel_is_socmed', 'data_channel_is_tech',
... 'data_channel_is_world']

>>> X = df[features]
>>> y = df[['shares']]

Create pairwise interaction features, skipping the constant bias term
>>> X2 = preproc.PolynomialFeatures(include_bias=False).fit_transform(X)
>>> X2.shape
(39644, 170)

Create train/test sets for both feature sets
>>> X1_train, X1_test, X2_train, X2_test, y_train, y_test = \
... train_test_split(X, X2, y, test_size=0.3, random_state=123)

>>> def evaluate_feature(X_train, X_test, y_train, y_test):
... """Fit a linear regression model on the training set and
... score on the test set"""
... model = linear_model.LinearRegression().fit(X_train, y_train)
... r_score = model.score(X_test, y_test)

... return (model, r_score)

Train models and compare score on the two feature sets
>>> (m1, r1) = evaluate_feature(X1_train, X1_test, y_train, y_test)
>>> (m2, r2) = evaluate_feature(X2_train, X2_test, y_train, y_test)
>>> print("R-squared score with singleton features: %0.5f" % r1)
>>> print("R-squared score with pairwise features: %0.10f" % r2)
R-squared score with singleton features: 0.00924
R-squared score with pairwise features: 0.0113276523

Interaction features are very simple to formulate, but they are expensive to use.
The training and scoring time of a linear model with pairwise interaction features
would go from O(n) to O(n), where n is the number of singleton features.

There are a few ways around the computational expense of higher-order
interaction features. One could perform feature selection on top of all of the
interaction features. Alternatively, one could more carefully craft a smaller
number of complex features.

Both strategies have their advantages and disadvantages. Feature selection
employs computational means to select the best features for a problem. (This
technique is not limited to interaction features.) However, some feature selection
techniques still require training multiple models with a large number of features.

Handcrafted complex features can be expressive enough that only a small
number of them are needed, which reduces the training time of the model—but
the features themselves may be expensive to compute, which increases the
computational cost of the model scoring stage. Good examples of handcrafted
(or machine-learned) complex features may be found in Chapter 8. Let’s now
look at some feature selection techniques.

Feature Selection
Feature selection techniques prune away nonuseful features in order to reduce
the complexity of the resulting model. The end goal is a parsimonious model that
is quicker to compute, with little or no degradation in predictive accuracy. In
order to arrive at such a model, some feature selection techniques require
training more than one candidate model. In other words, feature selection is not
about reducing training time—in fact, some techniques increase overall training
time—but about reducing model scoring time.

2

Roughly speaking, feature selection techniques fall into three classes:

Filtering

Filtering techniques preprocess features to remove ones that are unlikely to
be useful for the model. For example, one could compute the correlation or
mutual information between each feature and the response variable, and filter
out the features that fall below a threshold. Chapter 3 discusses examples of
these techniques for text features. Filtering techniques are much cheaper than
the wrapper techniques described next, but they do not take into account the
model being employed. Hence, they may not be able to select the right
features for the model. It is best to do prefiltering conservatively, so as not to
inadvertently eliminate useful features before they even make it to the model
training step.

Wrapper methods

These techniques are expensive, but they allow you to try out subsets of
features, which means you won’t accidentally prune away features that are
uninformative by themselves but useful when taken in combination. The
wrapper method treats the model as a black box that provides a quality score
of a proposed subset for features. There is a separate method that iteratively
refines the subset.

Embedded methods

These methods perform feature selection as part of the model training
process. For example, a decision tree inherently performs feature selection
because it selects one feature on which to split the tree at each training step.
Another example is the regularizer, which can be added to the training
objective of any linear model. The regularizer encourages models that use
a few features as opposed to a lot of features, so it’s also known as a sparsity
constraint on the model. Embedded methods incorporate feature selection as
part of the model training process. They are not as powerful as wrapper
methods, but they are nowhere near as expensive. Compared to filtering,
embedded methods select features that are specific to the model. In this
sense, embedded methods strike a balance between computational expense
and quality of results.

A full treatment of feature selection is outside the scope of this book. Interested

readers may refer to the survey paper by Guyon and Elisseeff (2003).

Summary
This chapter discussed a number of common numeric feature engineering
techniques, such as quantization, scaling (a.k.a. normalization), log transforms (a
type of power transform), and interaction features, and gave a brief summary of
feature selection techniques, necessary for handling large quantities of
interaction features. In statistical machine learning, all data eventually boils
down to numeric features. Therefore, all roads lead to some kind of numeric
feature engineering technique at the end. Keep these tools handy for the end
game of feature engineering!

Bibliography
Bertin-Mahieux, Thierry, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere.
“The Million Song Dataset.” Proceedings of the 12th International Society for
Music Information Retrieval Conference (2011): 591–596.

Fernandes, K., P. Vinagre, and P. Cortez. “A Proactive Intelligent Decision
Support System for Predicting the Popularity of Online News.” Proceedings of
the 17th Portuguese Conference on Artificial Intelligence (2015): 535–546.

Guyon, Isabell, and André Elisseeff. “An Introduction to Variable and Feature
Selection.” Journal of Machine Learning Research Special Issue on Variable
and Feature Selection 3 (2003): 1157–1182.

Johnston, Jack, and John DiNardo. Econometric Methods. 4th ed. New York:
McGraw Hill, 1997.

Chapter 3. Text Data: Flattening,
Filtering, and Chunking

What would you do if you were designing an algorithm to analyze the following
paragraph of text?

Emma knocked on the door. No answer. She knocked again and waited. There
was a large maple tree next to the house. Emma looked up the tree and saw a
giant raven perched at the treetop. Under the afternoon sun, the raven
gleamed magnificently. Its beak was hard and pointed, its claws sharp and
strong. It looked regal and imposing. It reigned the tree it stood on. The raven
was looking straight at Emma with its beady black eyes. Emma felt slightly
intimidated. She took a step back from the door and tentatively said, “Hello?”

The paragraph contains a lot of information. We know that it involves someone
named Emma and a raven. There is a house and a tree, and Emma is trying to get
into the house but sees the raven instead. The raven is magnificent and has
noticed Emma, who is a little scared but is making an attempt at communication.

So, which parts of this trove of information are salient features that we should
extract? To start with, it seems like a good idea to extract the names of the main
characters, Emma and the raven. Next, it might also be good to note the setting
of a house, a door, and a tree. And what about the descriptions of the raven?
What about Emma’s actions—knocking on the door, taking a step back, and
saying hello?

This chapter introduces the basics of feature engineering for text. We start out
with bag-of-words, which is the simplest representation based on word count
statistics. A very much related transformation is tf-idf, which is essentially a
feature scaling technique. It is pulled out into its own chapter (the next one) for a
full discussion. The current chapter first talks about text extraction features, then
delves into how to filter and clean those features.

Bag-of-X: Turning Natural Text into Flat Vectors
Whether constructing machine learning models or engineering features, it’s nice

when the result is simple and interpretable. Simple things are easy to try, and
interpretable features and models are easier to debug than complex ones. Simple
and interpretable features do not always lead to the most accurate model, but it’s
a good idea to start simple and only add complexity when absolutely necessary.

For text data, we can start with a list of word count statistics called a bag-of-
words. A list of word counts makes no special effort to find the interesting
entities, such as Emma or the raven. But those two words are repeatedly
mentioned in our sample paragraph, and they have a higher count than a random
word like “hello.” For simple tasks such as classifying a document, word count
statistics often suffice. This technique can also be used in information retrieval,
where the goal is to retrieve the set of documents that are relevant to an input
text query. Both tasks are well served by word-level features because the
presence or absence of certain words is a great indicator of the topic content of
the document.

Bag-of-Words
In bag-of-words (BoW) featurization, a text document is converted into a vector
of counts. (A vector is just a collection of n numbers.) The vector contains an
entry for every possible word in the vocabulary. If the word—say, “aardvark”—
appears three times in the document, then the feature vector has a count of 3 in
the position corresponding to that word. If a word in the vocabulary doesn’t
appear in the document, then it gets a count of 0. For example, the text “it is a
puppy and it is extremely cute” has the BoW representation shown in Figure 3-1.

Figure 3-1. Turning raw text into a bag-of-words representation

Bag-of-words converts a text document into a flat vector. It is “flat” because it
doesn’t contain any of the original textual structures. The original text is a
sequence of words. But a bag-of-words has no sequence; it just remembers how
many times each word appears in the text. Thus, as Figure 3-2 demonstrates, the
ordering of words in the vector is not important, as long as it is consistent for all
documents in the dataset. Neither does bag-of-words represent any concept of
word hierarchy. For example, the concept of “animal” includes “dog,” “cat,”
“raven,” etc. But in a bag-of-words representation, these words are all equal
elements of the vector.

Figure 3-2. Two equivalent BoW vectors

What is important here is the geometry of data in feature space. In a bag-of-
words vector, each word becomes a dimension of the vector. If there are n words
in the vocabulary, then a document becomes a point in n-dimensional space. It
is difficult to visualize the geometry of anything beyond two or three
dimensions, so we will have to use our imagination. Figure 3-3 shows what our
example sentence looks like in the two-dimensional feature space corresponding
to the words “puppy” and “cute.”

1

Figure 3-3. Illustration of a sample text document in a 2D feature space

Figure 3-4 shows three sentences in a 3D space corresponding to the words
“puppy,” “extremely,” and “cute.”

Figure 3-4. Three sentences in 3D feature space

These figures both depict data vectors in feature space. The axes denote
individual words, which are features in the bag-of-words representation, and the
points in space denote data points (text documents). Sometimes it is also
informative to look at feature vectors in data space. A feature vector contains the
value of the feature in each data point. The axes denote individual data points,
and the points denote feature vectors. Figure 3-5 shows an example. With bag-
of-words featurization for text documents, a feature is a word, and a feature
vector contains the counts of this word in each document. In this way, a word is
represented as a “bag-of-documents.” As we shall see in Chapter 4, these bag-
of-documents vectors come from the matrix transpose of the bag-of-words
vectors.

Figure 3-5. Word vectors in document space

Bag-of-words is not perfect. Breaking down a sentence into single words can
destroy the semantic meaning. For instance, “not bad” semantically means
“decent” or even “good” (especially if you’re British). But “not” and “bad”
constitute a floating negation plus a negative sentiment. “toy dog” and “dog toy”
could be very different things (unless it’s a dog toy of a toy dog), and the
meaning is lost with the singleton words “toy” and “dog.” It’s easy to come up
with many such examples. Bag-of-n-Grams, which we discuss next, alleviates
some of the issue but is not a fundamental fix. It’s good to keep in mind that
bag-of-words is a simple and useful heuristic, but it is far from a correct
semantic understanding of text.

Bag-of-n-Grams
Bag-of-n-Grams, or bag-of-n-grams, is a natural extension of bag-of-words. An
n-gram is a sequence of n tokens. A word is essentially a 1-gram, also known as

a unigram. After tokenization, the counting mechanism can collate individual
tokens into word counts, or count overlapping sequences as n-grams. For
example, the sentence “Emma knocked on the door” generates the n-grams
“Emma knocked,” “knocked on,” “on the,” and “the door.”

n-grams retain more of the original sequence structure of the text, and therefore
the bag-of-n-grams representation can be more informative. However, this
comes at a cost. Theoretically, with k unique words, there could be k unique 2-
grams (also called bigrams). In practice, there are not nearly so many, because
not every word can follow every other word. Nevertheless, there are usually a lot
more distinct n-grams (n > 1) than words. This means that bag-of-n-grams is a
much bigger and sparser feature space. It also means that n-grams are more
expensive to compute, store, and model. The larger n is, the richer the
information, and the greater the cost.

To illustrate how the number of n-grams grows with increasing n (see Figure 3-
6), let’s compute n-grams on the Yelp reviews dataset. In Example 3-1, we
compute the n-grams of the first 10,000 reviews using Pandas and the
CountVectorizer transformer in scikit-learn.

Example 3-1. Computing n-grams
>>> import pandas
>>> import json
>>> from sklearn.feature_extraction.text import CountVectorizer

Load the first 10,000 reviews
>>> f = open('data/yelp/v6/yelp_academic_dataset_review.json')
>>> js = []
>>> for i in range(10000):
... js.append(json.loads(f.readline()))
>>> f.close()
>>> review_df = pd.DataFrame(js)

Create feature transformers for unigrams, bigrams, and trigrams.
The default ignores single-character words, which is useful in practice
because
it trims uninformative words, but we explicitly include them in this example
for
illustration purposes.
>>> bow_converter = CountVectorizer(token_pattern='(?u)\\b\\w+\\b')
>>> bigram_converter = CountVectorizer(ngram_range=(2,2),
... token_pattern='(?u)\\b\\w+\\b')

2

http://www.yelp.com/dataset_challenge

>>> trigram_converter = CountVectorizer(ngram_range=(3,3),
... token_pattern='(?u)\\b\\w+\\b')

Fit the transformers and look at vocabulary size
>>> bow_converter.fit(review_df['text'])
>>> words = bow_converter.get_feature_names()
>>> bigram_converter.fit(review_df['text'])
>>> bigrams = bigram_converter.get_feature_names()
>>> trigram_converter.fit(review_df['text'])
>>> trigrams = trigram_converter.get_feature_names()
>>> print (len(words), len(bigrams), len(trigrams))
26047 346301 847545

Sneak a peek at the n-grams themselves
>>> words[:10]
['0', '00', '000', '0002', '00am', '00ish', '00pm', '01', '01am', '02']

>>> bigrams[-10:]
['zucchinis at',
 'zucchinis took',
 'zucchinis we',
 'zuma over',
 'zuppa di',
 'zuppa toscana',
 'zuppe di',
 'zurich and',
 'zz top',
 'à la']

>>> trigrams[:10]
['0 10 definitely',
 '0 2 also',
 '0 25 per',
 '0 3 miles',
 '0 30 a',
 '0 30 everything',
 '0 30 lb',
 '0 35 tip',
 '0 5 curry',
 '0 5 pork']

Figure 3-6. Number of unique n-grams in the first 10,000 reviews of the Yelp dataset

Filtering for Cleaner Features
With words, how do we cleanly separate the signal from the noise? Through
filtering, techniques that use raw tokenization and counting to generate lists of
simple words or n-grams become more usable. Phrase detection, which we will
discuss next, can be seen as a particular bigram filter. Here are a few more ways
to perform filtering.

Stopwords
Classification and retrieval do not usually require an in-depth understanding of
the text. For instance, in the sentence “Emma knocked on the door,” the words
“on” and “the” don’t change the fact that this sentence is about a person and a
door. For coarse-grained tasks such as classification, the pronouns, articles, and
prepositions may not add much value. The case may be very different in
sentiment analysis, which requires a fine-grained understanding of semantics.

The popular Python NLP package NLTK contains a linguist-defined stopword
list for many languages. (You will need to install NLTK and run
nltk.download() to get all the goodies.) Various stopword lists can also be

http://www.nltk.org/

found on the web. For instance, here are some sample words from the English
stopword list:

a, about, above, am, an, been, didn't, couldn't, i'd, i'll, itself,
let's, myself,
our, they, through, when's, whom, ...

Note that the list contains apostrophes, and the words are uncapitalized. In order
to use it as is, the tokenization process must not eat up apostrophes, and the
words need to be converted to lowercase.

Frequency-Based Filtering
Stopword lists are a way of weeding out common words that make for vacuous
features. There are other, more statistical ways of getting at the concept of
“common words.” In collocation extraction, we see methods that depend on
manual definitions, and those that use statistics. The same idea applies to word
filtering. We can use frequency statistics here as well.

Frequent words
Frequency statistics are great for filtering out corpus-specific common words as
well as general-purpose stopwords. For instance, the phrase “New York Times”
and each of the individual words in it appear frequently in the New York Times
Annotated Corpus dataset. Similarly, the word “house” appears often in the
phrase “House of Commons” in the Hansard corpus of Canadian parliament
debates, a dataset that is popularly used for statistical machine translation
because it contains both an English and a French version of all documents. These
words are meaningful in general, but not within those particular corpora. A
typical stopword list will catch the general stopwords, but not corpus-specific
ones.

Looking at the most frequent words can reveal parsing problems and highlight
normally useful words that happen to appear too many times in the corpus. For
example, Table 3-1 lists the 40 most frequent words in the Yelp reviews dataset.
Here, frequency is based on the number of documents (reviews) they appear in,
not their count within a document. As we can see, the list includes many
stopwords. It also contains some surprises. “s” and “t” are on the list because we

https://catalog.ldc.upenn.edu/LDC2008T19
http://www.hansard-corpus.org/

used the apostrophe as a tokenization delimiter, and words such as “Mary’s” or
“didn’t” got parsed as “Mary s” and “didn t.” Furthermore, the words “good,”
“food,” and “great” each appear in around a third of the reviews, but we might
want to keep them around because they are very useful for tasks such as
sentiment analysis or business categorization.

Table 3-1. Most frequent words in the Yelp reviews dataset

Rank Word Document frequency Rank Word Document frequency

1 the 1416058 21 t 684049

2 and 1381324 22 not 649824

3 a 1263126 23 s 626764

4 i 1230214 24 had 620284

5 to 1196238 25 so 608061

6 it 1027835 26 place 601918

7 of 1025638 27 good 598393

8 for 993430 28 at 596317

9 is 988547 29 are 585548

10 in 961518 30 food 562332

11 was 929703 31 be 543588

12 this 844824 32 we 537133

13 but 822313 33 great 520634

14 my 786595 34 were 516685

15 that 777045 35 there 510897

16 with 775044 36 here 481542

17 on 735419 37 all 478490

18 they 720994 38 if 475175

19 you 701015 39 very 460796

20 have 692749 40 out 460452

In practice, it helps to combine frequency-based filtering with a stopword list.
There is also the tricky question of where to place the cutoff. Unfortunately there
is no universal answer. Most of the time the cutoff needs to be determined

manually, and may need to be reexamined when the dataset changes.

Rare words
Depending on the task, one might also need to filter out rare words. These might
be truly obscure words, or misspellings of common words. To a statistical
model, a word that appears in only one or two documents is more like noise than
useful information. For example, suppose the task is to categorize businesses
based on their Yelp reviews, and a single review contains the word
“gobbledygook.” How would one tell, based on this one word, whether the
business is a restaurant, a beauty salon, or a bar? Even if we knew that the
business in this case happened to be a bar, it would probably be a mistake to
classify as such for other reviews that contain the word “gobbledygook.”

Not only are rare words unreliable as predictors, they also generate
computational overhead. The set of 1.6 million Yelp reviews contains 357,481
unique words (tokenized by space and punctuation characters), 189,915 of which
appear in only one review, and 41,162 in two reviews. Over 60% of the
vocabulary occurs rarely. This is a so-called heavy-tailed distribution, and it is
very common in real-world data. The training time of many statistical machine
learning models scales linearly with the number of features, and some models
are quadratic or worse. Rare words incur a large computation and storage cost
for not much additional gain.

Rare words can be easily identified and trimmed based on word count statistics.
Alternatively, their counts can be aggregated into a special garbage bin, which
can serve as an additional feature. Figure 3-7 demonstrates this representation on
a short document that contains a bunch of usual words and two rare words,
“gobbledygook” and “zylophant.” The usual words retain their own counts,
which can be further filtered by stopword lists or other frequency-based
methods. The rare words lose their identity and get grouped into a garbage bin
feature.

Figure 3-7. Bag-of-words feature vector with a garbage bin

Since one won’t know which words are rare until the whole corpus has been
counted, the garbage bin feature will need to be collected as a post-processing
step.

Since this book is about feature engineering, our focus is on features. But the
concept of rarity also applies to data points. If a text document is very short, then
it likely contains no useful information and should not be used when training a
model. One must use caution when applying this rule, however. The Wikipedia
dump contains many pages that are incomplete stubs, which are probably safe to
filter out. Tweets, on the other hand, are inherently short, and require other
featurization and modeling tricks.

Stemming
One problem with simple parsing is that different variations of the same word
get counted as separate words. For instance, “flower” and “flowers” are
technically different tokens, and so are “swimmer,” “swimming,” and “swim,”
even though they are very close in meaning. It would be nice if all of these

https://dumps.wikimedia.org/

different variations got mapped to the same word.

Stemming is an NLP task that tries to chop each word down to its basic
linguistic word stem form. There are different approaches. Some are based on
linguistic rules, others on observed statistics. A subclass of algorithms
incorporate part-of-speech tagging and linguistic rules in a process known as
lemmatization.

Most stemming tools focus on the English language, though efforts are ongoing
for other languages. The Porter stemmer is the most widely used free stemming
tool for the English language. The original program is written in ANSI C, but
many other packages have since wrapped it to provide access to other languages.

Here is an example of running the Porter stemmer through the NLTK Python
package. As you can see, it handles a large number of cases, but it’s not perfect.
The word “goes” is mapped to “goe,” while “go” is mapped to itself:

>>> import nltk
>>> stemmer = nltk.stem.porter.PorterStemmer()
>>> stemmer.stem('flowers')
u'flower'
>>> stemmer.stem('zeroes')
u'zero'
>>> stemmer.stem('stemmer')
u'stem'
>>> stemmer.stem('sixties')
u'sixti'
>>> stemmer.stem('sixty')
u'sixty'
>>> stemmer.stem('goes')
u'goe'
>>> stemmer.stem('go')
u'go'

Stemming does have a computation cost. Whether the end benefit outweighs the
cost is application-dependent. It is also worth noting that stemming could hurt
more than it helps. The words “new” and “news” have very different meanings,
but both would be stemmed to “new.” Similar examples abound. For this reason,
stemming is not always used.

http://tartarus.org/martin/PorterStemmer/

Atoms of Meaning: From Words to n-Grams to
Phrases
The concept of bag-of-words is straightforward. But how does a computer know
what a word is? A text document is represented digitally as a string, which is
basically a sequence of characters. One might also run into semi-structured text
in the form of JSON blobs or HTML pages. But even with the added tags and
structure, the basic unit is still a string. How does one turn a string into a
sequence of words? This involves the tasks of parsing and tokenization, which
we discuss next.

Parsing and Tokenization
Parsing is necessary when the string contains more than plain text. For instance,
if the raw data is a web page, an email, or a log of some sort, then it contains
additional structure. One needs to decide how to handle the markup, the headers
and footers, or the uninteresting sections of the log. If the document is a web
page, then the parser needs to handle URLs. If it is an email, then fields like
From, To, and Subject may require special handling—otherwise these headers
will end up as normal words in the final count, which may not be useful.

After light parsing, the plain-text portion of the document can go through
tokenization. This turns the string—a sequence of characters—into a sequence of
tokens. Each token can then be counted as a word. The tokenizer needs to know
what characters indicate that one token has ended and another is beginning.
Space characters are usually good separators, as are punctuation characters. If
the text contains tweets, then hash marks (#) should not be used as separators
(also known as delimiters).

Sometimes, the analysis needs to operate on sentences instead of entire
documents. For instance, n-grams, a generalization of the concept of a
word, should not extend beyond sentence boundaries. More complex text
featurization methods like word2vec also work with sentences or paragraphs. In
these cases, one needs to first parse the document into sentences, then further
tokenize each sentence into words.

STRING OBJECTS: MORE THAN MEETS THE EYE

String objects come in various encodings, like ASCII or Unicode. Plain English text
can be encoded in ASCII. Most other languages require Unicode. If the document
contains non-ASCII characters, then make sure that the tokenizer can handle that
particular encoding. Otherwise, the results will be incorrect.

Collocation Extraction for Phrase Detection
A sequence of tokens immediately yields the list of words and n-grams.
Semantically speaking, however, we are more used to understanding phrases, not
n-grams. In computational natural language processing (NLP), the concept of a
useful phrase is called a collocation. In the words of Manning and Schütze
(1999: 151), “A collocation is an expression consisting of two or more words
that correspond to some conventional way of saying things.”

Collocations are more meaningful than the sum of their parts. For instance,
“strong tea” has a different meaning beyond “great physical strength” and “tea”;
therefore, it is considered a collocation. The phrase “cute puppy,” on the other
hand, means exactly the sum of its parts: “cute” and “puppy.” Thus, it is not
considered a collocation.

Collocations do not have to be consecutive sequences. For example, the sentence
“Emma knocked on the door” is considered to contain the collocation “knock
door.” Hence, not every collocation is an n-gram. Conversely, not every n-gram
is deemed a meaningful collocation.

Because collocations are more than the sum of their parts, their meaning cannot
be adequately captured by individual word counts. Bag-of-words falls short as a
representation. Bag-of-n-grams is also problematic because it captures too many
meaningless sequences (consider “this is” in the bag-of-n-grams example) and
not enough of the meaningful ones (i.e., knock door).

Collocations are useful as features. But how does one discover and extract them
from text? One way is to predefine them. If we tried really hard, we could
probably find comprehensive lists of idioms in various languages, and we could
look through the text for any matches. It would be very expensive, but it would
work. If the corpus is very domain specific and contains esoteric lingo, then this
might be the preferred method. But the list would require a lot of manual
curation, and it would need to be constantly updated for evolving corpora. For
example, it probably wouldn’t be very realistic for analyzing tweets, or for blogs

and articles.

Since the advent of statistical NLP in the last two decades, people have opted
more and more for statistical methods for finding phrases. Instead of establishing
a fixed list of phrases and idiomatic sayings, statistical collocation extraction
methods rely on the ever-evolving data to reveal the popular sayings of the day.

Frequency-based methods
A simple hack is to look at the most frequently occurring n-grams. The problem
with this approach is that the most frequently occurring ones may not be the
most useful ones. Table 3-2 shows the most popular bigrams () in the
entire Yelp reviews dataset. As we can see, the top 10 most frequently occurring
bigrams by document count are very generic terms that don’t contain much
meaning.

Table 3-2. Most frequently
occurring 2-grams in the
Yelp reviews dataset

Bigram Document count

of the 450,849

and the 426,346

in the 397,821

it was 396,713

this place 344,800

it s 341,090

and i 332,415

on the 325,044

i was 285,012

for the 276,946

Hypothesis testing for collocation extraction
Raw popularity count is too crude of a measure. We have to find more clever
statistics to be able to pick out meaningful phrases easily. The key idea is to ask
whether two words appear together more often than they would by chance. The

statistical machinery for answering this question is called a hypothesis test.

Hypothesis testing is a way to boil noisy data down to “yes” or “no” answers. It
involves modeling the data as samples drawn from random distributions. The
randomness means that one can never be 100% sure about the answer; there’s
always the chance of an outlier. So, the answers are attached to a probability.

For example, the outcome of a hypothesis test might be “these two datasets come
from the same distribution with 95% probability.” For a gentle introduction to
hypothesis testing, see the Khan Academy’s tutorial on Hypothesis Testing and
p-Values.

In the context of collocation extraction, many hypothesis tests have been
proposed over the years. One of the most successful methods is based on the
likelihood ratio test (Dunning, 1993). For a given pair of words, the method tests
two hypotheses on the observed dataset. Hypothesis 1 (the null hypothesis) says
that word 1 appears independently from word 2. Another way of saying this is
that seeing word 1 has no bearing on whether we also see word 2. Hypothesis 2
(the alternate hypothesis) says that seeing word 1 changes the likelihood of
seeing word 2. We take the alternate hypothesis to imply that the two words
form a common phrase. Hence, the likelihood ratio test for phrase detection
(a.k.a. collocation extraction) asks the following question: are the observed word
occurrences in a given text corpus more likely to have been generated from a
model where the two words occur independently from one another, or a model
where the probabilities of the two words are entangled?

That is a mouthful. Let’s math it up a little. (Math is great at expressing things
very precisely and concisely, but it does require a completely different parser
than natural language.)

We can express the null hypothesis H (independent) as P(w | w) = P(w |
not w), and the alternate hypothesis H (not independent) as P(w | w)
≠ P(w | not w).

The final statistic is the log of the ratio between the two:

The likelihood function L(Data; H) represents the probability of seeing the word

null 2 1 2

1 alternate 2 1

2 1

http://bit.ly/2G3bNIF

frequencies in the dataset under the independent or the not independent model
for the word pair. In order to compute this probability, we have to make another
assumption about how the data is generated. The simplest data generation model
is the binomial model, where for each word in the dataset, we toss a coin, and we
insert our special word if the coin comes up heads, and some other word
otherwise. Under this strategy, the count of the number of occurrences of the
special word follows a binomial distribution. The binomial distribution is
completely determined by the total number of words, the number of occurrences
of the word of interest, and the heads probability.

The algorithm for detecting common phrases through likelihood ratio test
analysis proceeds as follows:

1. Compute occurrence probabilities for all singleton words: P(w).

2. Compute conditional pairwise word occurrence probabilities for all
unique bigrams: P(w | w).

3. Compute the likelihood ratio log λ for all unique bigrams.

4. Sort the bigrams based on their likelihood ratio.

5. Take the bigrams with the smallest likelihood ratio values as features.

GETTING A GRIP ON THE LIKELIHOOD RATIO TEST
The key is that what the test compares is not the probability parameters themselves, but
rather the probability of seeing the observed data under those parameters (and an
assumed data generation model). Likelihood is one of the key principles of statistical
learning, but it is definitely a brain-twister the first few times you see it. Once you
work out the logic, it becomes intuitive.

There is another statistical approach that’s based on pointwise mutual
information, but it is very sensitive to rare words, which are always present in
real-world text corpora. Hence, it is not commonly used and we will not be
demonstrating it here.

Note that all of the statistical methods for collocation extraction, whether using
raw frequency, hypothesis testing, or pointwise mutual information, operate by
filtering a list of candidate phrases. The easiest and cheapest way to generate

2 1

such a list is by counting n-grams. It’s possible to generate nonconsecutive
sequences, but they are expensive to compute. In practice, even for consecutive
n-grams, people rarely go beyond bigrams or trigrams because there are too
many of them, even after filtering. To generate longer phrases, there are other
methods such as chunking or combining with part-of-speech (PoS) tagging.

Chunking and part-of-speech tagging
Chunking is a bit more sophisticated than finding n-grams, in that it forms
sequences of tokens based on parts of speech, using rule-based models.

For example, we might be most interested in finding all of the noun phrases in a
problem where the entity (in this case the subject of a text) is the most interesting
to us. In order to find this, we tokenize each word with a part of speech and then
examine the token’s neighborhood to look for part-of-speech groupings, or
“chunks.” The models that map words to parts of speech are generally language
specific. Several open source Python libraries, such as NLTK, spaCy, and
TextBlob, have multiple language models available.

To illustrate how several libraries in Python make chunking using PoS tagging
fairly straightforward, let’s use the Yelp reviews dataset again. In Example 3-2,
we evaluate the parts of speech to find the noun phrases using both spaCy and
TextBlob.

Example 3-2. PoS tagging and chunking
>>> import pandas as pd
>>> import json

Load the first 10 reviews
>>> f = open('data/yelp/v6/yelp_academic_dataset_review.json')
>>> js = []
>>> for i in range(10):
... js.append(json.loads(f.readline()))
>>> f.close()
>>> review_df = pd.DataFrame(js)

First we'll walk through spaCy's functions
>>> import spacy
preload the language model
>>> nlp = spacy.load('en')

We can create a Pandas Series of spaCy nlp variables

https://spacy.io/
http://textblob.readthedocs.io/en/dev/

>>> doc_df = review_df['text'].apply(nlp)

spaCy gives us fine-grained parts of speech using (.pos_)
and coarse-grained parts of speech using (.tag_)
>>> for doc in doc_df[4]:
... print([doc.text, doc.pos_, doc.tag_])

Got VERB VBP
a DET DT
letter NOUN NN
in ADP IN
the DET DT
mail NOUN NN
last ADJ JJ
week NOUN NN
that ADJ WDT
said VERB VBD
Dr. PROPN NNP
Goldberg PROPN NNP
is VERB VBZ
moving VERB VBG
to ADP IN
Arizona PROPN NNP
to PART TO
take VERB VB
a DET DT
new ADJ JJ
position NOUN NN
there ADV RB
in ADP IN
June PROPN NNP
. PUNCT .
 SPACE SP
He PRON PRP
will VERB MD
be VERB VB
missed VERB VBN
very ADV RB
much ADV RB
. PUNCT .

SPACE SP
I PRON PRP
think VERB VBP

finding VERB VBG
a DET DT
new ADJ JJ
doctor NOUN NN
in ADP IN
NYC PROPN NNP
that ADP IN
you PRON PRP
actually ADV RB
like INTJ UH
might VERB MD
almost ADV RB
be VERB VB
as ADV RB
awful ADJ JJ
as ADP IN
trying VERB VBG
to PART TO
find VERB VB
a DET DT
date NOUN NN
! PUNCT .

spaCy also does some basic noun chunking for us
>>> print([chunk for chunk in doc_df[4].noun_chunks])
[a letter, the mail, Dr. Goldberg, Arizona, a new position, June, He, I,
a new doctor, NYC, you, a date]

#####
We can do the same feature transformations using Textblob
from textblob import TextBlob

The default tagger in TextBlob uses the PatternTagger, which is OK for our
example.
You can also specify the NLTK tagger, which works better for incomplete
sentences.
>>> blob_df = review_df['text'].apply(TextBlob)

>>> blob_df[4].tags
[('Got', 'NNP'),
('a', 'DT'),
('letter', 'NN'),
('in', 'IN'),
('the', 'DT'),
('mail', 'NN'),

('last', 'JJ'),
('week', 'NN'),
('that', 'WDT'),
('said', 'VBD'),
('Dr.', 'NNP'),
('Goldberg', 'NNP'),
('is', 'VBZ'),
('moving', 'VBG'),
('to', 'TO'),
('Arizona', 'NNP'),
('to', 'TO'),
('take', 'VB'),
('a', 'DT'),
('new', 'JJ'),
('position', 'NN'),
('there', 'RB'),
('in', 'IN'),
('June', 'NNP'),
('He', 'PRP'),
('will', 'MD'),
('be', 'VB'),
('missed', 'VBN'),
('very', 'RB'),
('much', 'JJ'),
('I', 'PRP'),
('think', 'VBP'),
('finding', 'VBG'),
('a', 'DT'),
('new', 'JJ'),
('doctor', 'NN'),
('in', 'IN'),
('NYC', 'NNP'),
('that', 'IN'),
('you', 'PRP'),
('actually', 'RB'),
('like', 'IN'),
('might', 'MD'),
('almost', 'RB'),
('be', 'VB'),
('as', 'RB'),
('awful', 'JJ'),
('as', 'IN'),
('trying', 'VBG'),
('to', 'TO'),
('find', 'VB'),

('a', 'DT'),
('date', 'NN')]

>>> print([np for np in blob_df[4].noun_phrases])
['got', 'goldberg', 'arizona', 'new position', 'june', 'new doctor', 'nyc']

You can see that the noun phrases found by each library are a little bit different.
spaCy includes common words in the English language like “a” and “the,” while
TextBlob removes these. This reflects a difference in the rules engines that drive
what each library considers to be a noun phrase. You can also write your part-of-
speech relationships to define the chunks you are seeking. See Bird et al. (2009)
to really dive deep into chunking with Python from scratch.

Summary
The bag-of-words representation is simple to understand, easy to compute, and
useful for classification and search tasks. But sometimes single words are too
simplistic to encapsulate some information in the text. To fix this problem,
people look to longer sequences. Bag-of-n-grams is a natural generalization of
bag-of-words. The concept is still easy to understand, and it’s just as easy to
compute as bag-of-words.

Bag-of-n-grams generates a lot more distinct n-grams. It increases the feature
storage cost, as well as the computation cost of the model training and prediction
stages. The number of data points remains the same, but the dimension of the
feature space is now much larger. Hence, the data is much more sparse. The
higher n is, the higher the storage and computation cost, and the sparser the data.
For these reasons, longer n-grams do not always lead to improvements in model
accuracy (or any other performance measure). People usually stop at n = 2 or 3.
Longer n-grams are rarely used.

One way to combat the increase in sparsity and cost is to filter the n-grams and
retain only the most meaningful phrases. This is the goal of collocation
extraction. In theory, collocations (or phrases) could form nonconsecutive token
sequences in the text. In practice, however, looking for nonconsecutive phrases
has a much higher computation cost for not much gain. So, collocation
extraction usually starts with a candidate list of bigrams and utilizes statistical
methods to filter them.

All of these methods turn a sequence of text tokens into a disconnected set of
counts. Sets have much less structure than sequences; they lead to flat feature
vectors.

In this chapter, we dipped our toes into the water with simple text featurization
techniques. These techniques turn a piece of natural language text—full of rich
semantic structure—into a simple flat vector. We discussed a number of
common filtering techniques to clean up the vector entries. We also introduced
n-grams and collocation extraction as methods that add a little more structure
into the flat vectors. The next chapter goes into a lot more detail about another
common text featurization trick called tf-idf. Subsequent chapters will discuss
more methods for adding structure back into a flat vector.

Bibliography
Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing
with Python. Sebastopol, CA: O’Reilly Media, 2009.

Dunning, Ted. “Accurate Methods for the Statistics of Surprise and
Coincidence.” ACM Journal of Computational Linguistics, special issue on
using large corpora 19:1 (1993): 61–74.

Khan Academy. “Hypothesis Testing and p-Values.” Retrieved
from https://www.khanacademy.org/math/probability/statistics-
inferential/hypothesis-testing/v/hypothesis-testing-and-p-values.

Manning, Christopher D. and Hinrich Schütze. Foundations of Statistical
Natural Language Processing. Cambridge, MA: MIT Press, 1999.

 Sometimes people use the term “document vector.” The vector extends from
the origin and ends at the specified point. For our purposes, “vector” and “point”
are the same thing.

1

http://shop.oreilly.com/product/9780596516499.do
https://www.khanacademy.org/math/probability/statistics-inferential/hypothesis-testing/v/hypothesis-testing-and-p-values

Chapter 4. The Effects of Feature
Scaling: From Bag-of-Words to
Tf-Idf

A bag-of-words representation is simple to generate but far from perfect. If we
count all words equally, then some words end up being emphasized more than
we need. Recall our example of Emma and the raven from Chapter 3. We’d like
a document representation that emphasizes the two main characters. The words
“Emma” and “raven” both appear three times, but “the” appears a whopping
eight times, “and” appears five times, and “it” and “was” both appear four times.
The main characters do not stand out by simple frequency count alone. This is
problematic.

It would also be nice to pick out words such as “magnificently,” “gleamed,”
“intimidated,” “tentatively,” and “reigned,” because they help to set the overall
tone of the paragraph. They indicate sentiment, which can be very valuable
information to a data scientist. So, ideally, we’d like a representation that
highlights meaningful words.

Tf-Idf : A Simple Twist on Bag-of-Words
Tf-idf is a simple twist on the bag-of-words approach. It stands for term
frequency–inverse document frequency. Instead of looking at the raw counts of
each word in each document in a dataset, tf-idf looks at a normalized count
where each word count is divided by the number of documents this word appears
in. That is:

bow(w, d) = # times word w appears in document d

tf-idf(w, d) = bow(w, d) * N / (# documents in which word w appears)

N is the total number of documents in the dataset. The fraction N / (# documents
...) is what’s known as the inverse document frequency. If a word appears in
many documents, then its inverse document frequency is close to 1. If a word

appears in just a few documents, then the inverse document frequency is much
higher.

Alternatively, we can take a log transform instead using the raw inverse
document frequency. Logarithm turns 1 into 0, and makes large numbers (those
much greater than 1) smaller. (More on this later.)

If we define tf-idf as:

tf-idf(w, d) = bow(w, d) * log (N / # documents in which word w appears)

then a word that appears in every single document will be effectively zeroed out,
and a word that appears in very few documents will have an even larger count
than before.

Let’s look at some pictures to understand what it’s all about. Figure 4-1 shows a
simple example that contains four sentences: “it is a puppy,” “it is a cat,” “it is a
kitten,” and “that is a dog and this is a pen.” We plot these sentences in the
feature space of three words: “puppy,” “cat,” and “is.”

Figure 4-1. Four sentences about dogs and cats

Now let’s look at the same four sentences in tf-idf representation using the log
transform for the inverse document frequency. Figure 4-2 shows the documents
in feature space. Notice that the word “is” is effectively eliminated as a feature
since it appears in all sentences in this dataset. Also, because they each appear in
only one sentence out of the total four, the words “puppy” and “cat” are now
counted higher than before (log(4) = 1.38... > 1). Thus, tf-idf makes rare words
more prominent and effectively ignores common words. It is closely related to
the frequency-based filtering methods in Chapter 3, but much more
mathematically elegant than placing hard cutoff thresholds.

INTUITION BEHIND TF-IDF
Tf-idf makes rare words more prominent and effectively ignores common words.

Figure 4-2. Tf-idf representation of the sentences in Figure 4-1

Putting It to the Test
Tf-idf transforms word count features through multiplication with a constant.
Hence, it is an example of feature scaling, a concept introduced in Chapter 2.
How well does feature scaling work in practice? Let’s compare the performance
of scaled and unscaled features in a simple text classification task. Time for
some code!

In Example 4-1, we revisit the Yelp reviews dataset. Round 6 of the Yelp dataset
challenge contains close to 1.6 million reviews of businesses in six US cities.

Example 4-1. Loading and cleaning the Yelp reviews dataset in Python

http://www.yelp.com/dataset_challenge

>>> import json
>>> import pandas as pd

Load Yelp business data
>>> biz_f = open('yelp_academic_dataset_business.json')
>>> biz_df = pd.DataFrame([json.loads(x) for x in biz_f.readlines()])
>>> biz_f.close()

Load Yelp reviews data
>>> review_file = open('yelp_academic_dataset_review.json')
>>> review_df = pd.DataFrame([json.loads(x) for x in review_file.readlines()])
>>> review_file.close()

Pull out only Nightlife and Restaurants businesses
>>> two_biz = biz_df[biz_df.apply(lambda x: 'Nightlife' in x['categories'] or
... 'Restaurants' in x['categories'],
... axis=1)]

Join with the reviews to get all reviews on the two types of business
>>> twobiz_reviews = two_biz.merge(review_df, on='business_id', how='inner')

Trim away the features we won't use
>>> twobiz_reviews = twobiz_reviews[['business_id',
... 'name',
... 'stars_y',
... 'text',
... 'categories']]

Create the target column--True for Nightlife businesses, and False otherwise
>>> two_biz_reviews['target'] = \
... twobiz_reviews.apply(lambda x: 'Nightlife' in x['categories'],
... axis=1)

Creating a Classification Dataset
Let’s see whether we can use the reviews to categorize a business as either a
restaurant or a nightlife venue. To save on training time, we can take a subset of
the reviews. In this case, there is a large difference in review count between the
two categories. This is called a class-imbalanced dataset. Imbalanced datasets
are problematic for modeling because the model will expend most of its effort
fitting to the larger class. Since we have plenty of data in both classes, a good
way to resolve the problem is to downsample the larger class (restaurants) to be

roughly the same size as the smaller class (nightlife). Here is an example
workflow:

1. Take a random sample of 10% of nightlife reviews and 2.1% of
restaurant reviews (percentages chosen so the number of examples in
each class is roughly equal).

2. Create a 70/30 train-test split of this dataset. In this example, the
training set ends up with 29,264 reviews, and the test set with 12,542
reviews.

3. The training data contains 46,924 unique words; this is the number of
features in the bag-of-words representation.

Example 4-2 shows how we do this.

Example 4-2. Creating a balanced classification dataset
Create a class-balanced subsample to play with
>>> nightlife = \
... twobiz_reviews[twobiz_reviews.apply(lambda x: 'Nightlife' in
x['categories'],
... axis=1)]
>>> restaurants = \
... twobiz_reviews[twobiz_reviews.apply(lambda x: 'Restaurants' in
x['categories'],
... axis=1)]
>>> nightlife_subset = nightlife.sample(frac=0.1, random_state=123)
>>> restaurant_subset = restaurants.sample(frac=0.021, random_state=123)
>>> combined = pd.concat([nightlife_subset, restaurant_subset])

Split into training and test datasets
>>> training_data, test_data = modsel.train_test_split(combined,
... train_size=0.7,
... random_state=123)
>>> training_data.shape
(29264, 5)
>>> test_data.shape
(12542, 5)

Scaling Bag-of-Words with Tf-Idf Transformation
The goal of this experiment is to compare the effectiveness of bag-of-words, tf-
idf, and ℓ normalization for linear classification. Note that doing tf-idf then ℓ2 2

2

normalization is the same as doing ℓ normalization alone. So, we only need to
test three sets of features: bag-of-words, tf-idf, and word-wise ℓ normalization
on top of bag-of-words.

In Example 4-3, we use scikit-learn’s CountVectorizer to convert the review
text into a bag-of-words. All text featurization methods implicitly depend on a
tokenizer, which is the module that converts a text string into a list of tokens
(words). In this example, scikit-learn’s default tokenizing pattern looks for
sequences of two or more alphanumeric characters. Punctuation marks are
treated as token separators.

Example 4-3. Transform features
Represent the review text as a bag-of-words
>>> bow_transform = text.CountVectorizer()
>>> X_tr_bow = bow_transform.fit_transform(training_data['text'])
>>> X_te_bow = bow_transform.transform(test_data['text'])
>>> len(bow_transform.vocabulary_)
46924

>>> y_tr = training_data['target']
>>> y_te = test_data['target']

Create the tf-idf representation using the bag-of-words matrix
>>> tfidf_trfm = text.TfidfTransformer(norm=None)
>>> X_tr_tfidf = tfidf_trfm.fit_transform(X_tr_bow)
>>> X_te_tfidf = tfidf_trfm.transform(X_te_bow)

Just for kicks, l2-normalize the bag-of-words representation
>>> X_tr_l2 = preproc.normalize(X_tr_bow, axis=0)
>>> X_te_l2 = preproc.normalize(X_te_bow, axis=0)

FEATURE SCALING ON THE TEST SET
A subtle point about feature scaling is that it requires knowing feature statistics that we
most likely do not know in practice, such as the mean, variance, document frequency,
ℓ norm, etc. In order to compute the tf-idf representation, we have to compute the
inverse document frequencies based on the training data and use these statistics to
scale both the training and test data. In scikit-learn, fitting the feature transformer on
the training data amounts to collecting the relevant statistics. The fitted transformer can
then be applied to the test data.

2

2

2

When we use training statistics to scale test data, the result will look a little
fuzzy. Min-max scaling on the test set no longer neatly maps to 0 and 1. ℓ
norms, mean, and variance statistics will all look a little off. This is less
problematic than missing data. For instance, the test set may contain words that
are not present in the training data, and we would have no document frequency
to use for the new words. The common solution is to simply drop the new words
in the test set. This may seem irresponsible, but the model—trained on the
training set—would not know what to do with these words anyway. A slightly
less hacky option would be to explicitly learn a “garbage” word and map all low-
frequency words to it, even within the training set, as discussed in “Rare words”.

Classification with Logistic Regression
Logistic regression is a simple, linear classifier. Due to its simplicity, it’s often a
good first classifier to try. It takes a weighted combination of the input features,
and passes it through a sigmoid function, which smoothly maps any real number
to a number between 0 and 1. The function transforms a real number input, x,
into a number between 0 and 1. It has one set of parameters, w, which represents
the slope of the increase around the midpoint, 0.5. The intercept term b denotes
the input value where the function output crosses the midpoint. A logistic
classifier would predict the positive class if the sigmoid output is greater than
0.5, and the negative class otherwise. By varying w and b, one can control where
that change in decision occurs, and how fast the decision should respond to
changing input values around that point.

Figure 4-3 illustrates the sigmoid function.

2

Figure 4-3. Illustration of a sigmoid function

Now let’s build some simple logistic regression classifiers on our various feature
sets and see how they do (Example 4-4).

Example 4-4. Training logistic regression classifiers with default parameters
>>> def simple_logistic_classify(X_tr, y_tr, X_test, y_test, description):
... ### Helper function to train a logistic classifier and score on test
data
... m = LogisticRegression().fit(X_tr, y_tr)
... s = m.score(X_test, y_test)
... print ('Test score with', description, 'features:', s)
... return m

>>> m1 = simple_logistic_classify(X_tr_bow, y_tr, X_te_bow, y_te, 'bow')
>>> m2 = simple_logistic_classify(X_tr_l2, y_tr, X_te_l2, y_te, 'l2-
normalized')
>>> m3 = simple_logistic_classify(X_tr_tfidf, y_tr, X_te_tfidf, y_te, 'tf-
idf')
Test score with bow features: 0.775873066497
Test score with l2-normalized features: 0.763514590974
Test score with tf-idf features: 0.743182905438

Paradoxically, the results show that the most accurate classifier is the one using
BoW features. This was unexpected. As it turns out, the reason is that the

classifiers are not well “tuned,” which is a common pitfall when comparing
classifiers.

Tuning Logistic Regression with Regularization
Logistic regression has a few bells and whistles. When the number of features is
greater than the number of data points, the problem of finding the best model is
said to be underdetermined. One way to fix this problem is by placing additional
constraints on the training process. This is known as regularization, and its
technical details are discussed here.

Most implementations of logistic regression allow for regularization. In order to
use this functionality, one must specify a regularization parameter.
Regularization parameters are hyperparameters that are not learned
automatically in the model training process. Rather, they must be tuned on the
problem at hand and given to the training algorithm. This process is known as
hyperparameter tuning. (For details on how to evaluate machine learning
models, see, e.g., Zheng [2015].) One basic method for tuning hyperparameters
is called grid search: you specify a grid of hyperparameter values and the tuner
programmatically searches for the best hyperparameter setting in the grid. After
finding the best hyperparameter setting, you train a model on the entire training
set using that setting, and use its performance on the test set as the final
evaluation of this class of models.

IMPORTANT: TUNE HYPERPARAMETERS WHEN
COMPARING MODELS

It’s essential to tune hyperparameters when comparing models or features. The default
settings of a software package will always return a model. But unless the software
performs automatic tuning under the hood, it is likely to return a suboptimal model
based on suboptimal hyperparameter settings. The sensitivity of classifier performance
to hyperparameter settings depends on the model and the distribution of training data.
Logistic regression is relatively robust (or insensitive) to hyperparameter settings. Even
so, it is necessary to find and use the right range of hyperparameters. Otherwise, the
advantages of one model versus another may be solely due to tuning parameters, and
will not reflect the actual behavior of the model or features.

Even the best autotuning packages still require specifying the upper and lower limits of
search, and finding those limits can take a few manual tries.

In the following example, we manually set the search grid of the logistic
regularization parameter to {1e-5, 0.001, 0.1, 1, 10, 100}. The upper and lower
bounds took a couple of tries to narrow down. The optimal hyperparameter
settings for each feature set are given in Table 4-1.

Table 4-1. Best
hyperparameter settings for
logistic regression on a
sample of Yelp reviews of
nightlife venues and
restaurants

 ℓ regularization

BoW 0.1

ℓ -normalized 10

Tf-idf 0.001

We also want to test whether the difference in accuracy between tf-idf and BoW
is due to noise. To this end, we use k-fold cross validation to simulate having
multiple statistically independent datasets. It divides the dataset into k folds. The
cross validation process iterates through the folds, using all but one fold for
training, and validating the results on the fold that is held out.

ESTIMATING VARIANCE VIA RESAMPLING
Modern statistical methods assume that the underlying data comes from a
random distribution. The performance measurements of models derived from
data are also subject to random noise. In this situation, it is always a good
idea to take the measurement not just once, but multiple times, based on
datasets of comparable statistics. This gives us a confidence interval for the
measurement.

k-fold cross validation is one such strategy. Resampling is another technique
that generates multiple small samples from the same underlying dataset. See
Zheng (2015) for more details on resampling.

The GridSearchCV function in scikit-learn runs a grid search with cross

2

2

validation (see Example 4-5). Figure 4-4 shows a box-and-whiskers plot of the
distribution of accuracy measurements for models trained on each of the feature
sets. The middle line in the box marks the median accuracy, the box itself marks
the region between the first and third quartiles, and the whiskers extend to the
rest of the distribution.

Example 4-5. Tuning logistic regression hyperparameters with grid search
>>> import sklearn.model_selection as modsel

Specify a search grid, then do a 5-fold grid search for each of the feature
sets
>>> param_grid_ = {'C': [1e-5, 1e-3, 1e-1, 1e0, 1e1, 1e2]}

Tune classifier for bag-of-words representation
>>> bow_search = modsel.GridSearchCV(LogisticRegression(), cv=5,
... param_grid=param_grid_)
>>> bow_search.fit(X_tr_bow, y_tr)

Tune classifier for L2-normalized word vector
>>> l2_search = modsel.GridSearchCV(LogisticRegression(), cv=5,
... param_grid=param_grid_)
>>> l2_search.fit(X_tr_l2, y_tr)

Tune classifier for tf-idf
>>> tfidf_search = modsel.GridSearchCV(LogisticRegression(), cv=5,
... param_grid=param_grid_)
>>> tfidf_search.fit(X_tr_tfidf, y_tr)

Let's check out one of the grid search outputs to see how it went
>>> bow_search.cv_results_
{'mean_fit_time': array([0.43648252, 0.94630651,
 5.64090128, 15.31248307, 31.47010217, 42.44257565]),
'mean_score_time': array([0.00080056, 0.00392466, 0.00864897, 0 .00784755,
 0.01192751, 0.0072515]),
'mean_test_score': array([0.57897075, 0.7518111 , 0.78283898, 0.77381766,
 0.75515992, 0.73937261]),
'mean_train_score': array([0.5792185 , 0.76731652, 0.87697341, 0.94629064,
 0.98357195, 0.99441294]),
'param_C': masked_array(data = [1e-05 0.001 0.1 1.0 10.0 100.0],
 mask = [False False False False False False],
 fill_value = ?),
'params': ({'C': 1e-05},
 {'C': 0.001},

 {'C': 0.1},
 {'C': 1.0},
 {'C': 10.0},
 {'C': 100.0}),
'rank_test_score': array([6, 4, 1, 2, 3, 5]),
'split0_test_score': array([0.58028698, 0.75025624, 0.7799795 , 0.7726341
,
 0.75247694, 0.74086095]),
'split0_train_score': array([0.57923964, 0.76860316, 0.87560871,
0.94434003,
 0.9819308 , 0.99470312]),
'split1_test_score': array([0.5786776 , 0.74628396, 0.77669571,
0.76627371,
 0 .74867589, 0.73176149]),
'split1_train_score': array([0.57917218, 0.7684849 , 0.87945837,
0.94822946,
 0.98504976, 0.99538678]),
'split2_test_score': array([0.57816504, 0.75533914, 0.78472578,
0.76832394,
 0.74799248, 0.7356911]),
'split2_train_score': array([0.57977019, 0.76613558, 0.87689548,
0.94566657,
 0.98368288, 0.99397719]),
'split3_test_score': array([0.57894737, 0.75051265, 0.78332194,
0.77682843,
 0.75768968, 0.73855092]),
'split3_train_score': array([0.57914745, 0.76678626, 0.87634546,
0.94558346,
 0.98385443, 0.99474628]),
'split4_test_score': array([0.57877649, 0.75666439, 0.78947368,
0.78503076,
 0.76896787, 0.75]),
'split4_train_score': array([0.57876303, 0.7665727 , 0.87655903,
0.94763369,
 0.98334188, 0.99325132]),
'std_fit_time': array([0.03874582, 0.02297261, 1.18862097, 1.83901079,
 4.21516797, 2.93444269]),
'std_score_time': array([0.00160112, 0.00605009, 0.00623053, 0.00698687,
 0.00713112, 0.00570195]),
'std_test_score': array([0.00070799, 0.00375907, 0.00432957, 0.00668246,
 0.00612049]),
'std_train_score': array([0.00032232, 0.00102466, 0.00131222, 0.00143229,
 0.00100223, 0.00073252])}

Plot the cross validation results in a box-and-whiskers plot to

visualize and compare classifier performance
>>> search_results = pd.DataFrame.from_dict({
... 'bow':
bow_search.cv_results_['mean_test_score'],
... 'tfidf':
tfidf_search.cv_results_['mean_test_score'],
... 'l2':
l2_search.cv_results_['mean_test_score']
... })

Our usual matplotlib incantations. Seaborn is used here to make
the plot pretty.
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> sns.set_style("whitegrid")

>>> ax = sns.boxplot(data=search_results, width=0.4)
>>> ax.set_ylabel('Accuracy', size=14)
>>> ax.tick_params(labelsize=14)

Figure 4-4. Distribution of classifier accuracy under each feature set and regularization setting
—the accuracy is measured as the average accuracy from 5-fold cross validation

Table 4-2 shows the average cross validation classifier accuracy for each
hyperparameter setting. The asterisk in each column denotes the highest
achieved accuracy for that feature set.

Table 4-2. Average cross validation classifier accuracy
scores

Regularization parameter BoW ℓ -normalized Tf-idf

0.00001 0.578971 0.575724 0.721638

0.001 0.751811 0.575724 0.788648 *

2

0.1 0.782839 * 0.589120 0.763566

1 0.773818 0.734247 0.741150

10 0.755160 0.776756 * 0.721467

100 0.739373 0.761106 0.712309

The result for ℓ normalized features looks alarmingly bad in Figure 4-4. But
don’t be fooled. The low accuracy numbers are due to very bad regularization
parameter settings—concrete proof that suboptimal hyperparameters can lead to
very wrong conclusions. If we train a model using the best hyperparameter
setting for each feature set, as in Example 4-6, the accuracy scores of the
different feature sets are very close.

Example 4-6. Final training and testing step to compare the different feature sets
Train a final model on the entire training set, using the best
hyperparameter
settings found previously. Measure accuracy on the test set.
>>> m1 = simple_logistic_classify(X_tr_bow, y_tr, X_te_bow, y_te, 'bow',
... _C=bow_search.best_params_['C'])
>>> m2 = simple_logistic_classify(X_tr_l2, y_tr, X_te_l2, y_te, 'l2-
normalized',
... _C=l2_search.best_params_['C'])
>>> m3 = simple_logistic_classify(X_tr_tfidf, y_tr, X_te_tfidf, y_te, 'tf-
idf',
... _C=tfidf_search.best_params_['C'])
Test score with bow features: 0.78360708021
Test score with l2-normalized features: 0.780178599904
Test score with tf-idf features: 0.788470738319

Proper tuning improved the accuracy of all the feature sets, and all three now
yield similar classification accuracy under regularized logistic regression. The
accuracy score for the tf-idf model is slightly higher, but the difference is likely
not statistically significant. These results are completely mystifying. If feature
scaling doesn’t work better than vanilla bag-of-words, then why do it at all?
Why all the hoopla if tf-idf doesn’t do anything? We’ll explore the answers to
those questions in the next section.

Deep Dive: What Is Happening?
In order to understand the “why” behind the results, we have to look at how the

2

features are being used by the model. For linear models like logistic regression,
this happens through an intermediary object called the data matrix.

The data matrix contains data points represented as fixed-length flat vectors.
With bag-of-words vectors, the data matrix is also known as the document-term
matrix. Figure 3-1 shows a bag-of-words vector in vector form, and Figure 4-1
illustrates four bag-of-words vectors in feature space. To form a document-term
matrix, simply take the document vectors, lay them out flat, and stack them on
top of one another. The columns represent all possible words in the vocabulary
(see Figure 4-5). Since most documents contain only a small subset of all
possible words, most of the entries in this matrix are zeros; it is a sparse matrix.

Figure 4-5. An example document-term matrix of five documents and seven words

Feature scaling methods are essentially column operations on the data matrix. In
particular, tf-idf and ℓ normalization both multiply the entire column (an n-gram
feature, for example) by a constant.

TF-IDF = COLUMN SCALING
Tf-idf and ℓ normalization are both column operations on the data matrix.

As discussed in Appendix A, training a linear classifier boils down to finding the
best linear combination of features, which are column vectors of the data matrix.
The solution space is characterized by the column space and the null space of the
data matrix. The quality of the trained linear classifier directly depends upon the
null space and the column space of the data matrix. A large column space means

2

2

that there is little linear dependency between the features, which is generally
good. The null space contains “novel” data points that cannot be formulated as
linear combinations of existing data; a large null space could be problematic. (A
perusal of Appendix A is highly recommended for readers who would appreciate
a review on concepts such as the linear decision surface, eigen decomposition,
and the fundamental subspaces of a matrix.)

How do column scaling operations affect the column space and null space of the
data matrix? The answer is “Not very much.” But there is a small chance that tf-
idf and ℓ normalization could be different. We’ll look at why now.

The null space of the data matrix can be large for a couple of reasons. First,
many datasets contain data points that are very similar to one another. This
means the effective row space is small compared to the number of data points in
the dataset. Second, the number of features can be much larger than the number
of data points. Bag-of-words is particularly good at creating giant feature spaces.
In our Yelp example, there are 47K features in 29K reviews in the training set.
Moreover, the number of distinct words usually grows with the number of
documents in the dataset, so adding more documents would not necessarily
decrease the feature-to-data ratio or reduce the null space.

With bag-of-words, the column space is relatively small compared to the number
of features. There could be words that appear roughly the same number of times
in the same documents. This would lead to the corresponding column vectors
being nearly linearly dependent, which leads to the column space being not as
full rank as it could be (see Appendix A for the definition of full rank). This is
called a rank deficiency. (Much like how animals can be deficient in vitamins
and minerals, matrices can be deficient in rank, and the output space will not be
as fluffy as it should.)

Rank-deficient row space and column space lead to the model being overly
provisioned for the problem. The linear model outfits a weight parameter for
each feature in the dataset. If the row and column spaces were full rank, then
the model would allow us to generate any target vector in the output space.
When they are rank deficient, the model has more degrees of freedom than it
needs. This makes it harder to pin down a solution.

Can feature scaling solve the rank deficiency problem of the data matrix? Let’s
take a look.

2

1

The column space is defined as the linear combination of all column vectors
(boldface indicates a vector): a v + a v + ... + a v . Feature scaling replaces a
column vector with a constant multiple, say . But we can still
generate the original linear combination by just replacing a with . It
appears that feature scaling does not change the rank of the column space.
Similarly, feature scaling does not affect the rank of the null space, because one
can counteract the scaled feature column by reverse scaling the corresponding
entry in the weight vector.

However, as usual, there is one catch. If the scalar is 0, then there is no way to
recover the original linear combination; v is gone. If that vector is linearly
independent from all the other columns, then we’ve effectively shrunk the
column space and enlarged the null space.

If that vector is not correlated with the target output, then this is effectively
pruning away noisy signals, which is a good thing. This turns out to be the key
difference between tf-idf and ℓ normalization. ℓ normalization would never
compute a norm of zero, unless the vector contains all zeros. If the vector is
close to zero, then its norm is also close to zero. Dividing by the small norm
would accentuate the vector and make it longer.

Tf-idf, on the other hand, can generate scaling factors that are close to zero, as
shown in Figure 4-2. This happens when the word is present in a large number of
documents in the training set. Such a word is likely not strongly correlated with
the target vector. Pruning it away allows the solver to focus on the other
directions in the column space and find better solutions (although the
improvement in accuracy will probably not be huge, because there are typically
few noisy directions that are prunable in this way).

Where feature scaling—both ℓ and tf-idf—does have a telling effect is on the
convergence speed of the solver. This is a sign that the data matrix now has a
much smaller condition number (the ratio between the largest and smallest
singular values—see Appendix A for a full discussion of these terms). In fact, ℓ
normalization makes the condition number nearly 1. But it’s not the case that the
better the condition number, the better the solution. During this experiment, ℓ
normalization converged much faster than either BoW or tf-idf. But it is also
more sensitive to overfitting: it requires much more regularization and is more
sensitive to the number of iterations during optimization.

1 1 2 2 n n

1

1

2 2

2

2

2

Summary
In this chapter, we used tf-idf as an entry point into a detailed analysis of how
feature transformations can affect the model (or not). Tf-idf is an example of
feature scaling, so we contrasted its performance with that of another feature
scaling method—ℓ normalization.

The results were not as one might have expected. Tf-idf and ℓ normalization do
not improve the final classifier’s accuracy above plain bag-of-words. After
acquiring some statistical modeling and linear algebra chops, we realize why:
neither of them changes the column space of the data matrix.

One small difference between the two is that tf-idf can “stretch” the word count
as well as “compress” it. In other words, it makes some counts bigger, and others
close to zero. Therefore, tf-idf could altogether eliminate uninformative words.

Along the way, we also discovered another effect of feature scaling: it improves
the condition number of the data matrix, making linear models much faster to
train. Both ℓ normalization and tf-idf have this effect.

To summarize, the lesson is: the right feature scaling can be helpful for
classification. The right scaling accentuates the informative words and
downweights the common words. It can also improve the condition number of
the data matrix. The right scaling is not necessarily uniform column scaling.

This story is a wonderful illustration of the difficulty of analyzing the effects of
feature engineering in the general case. Changing the features affects the training
process and the models that ensue. Linear models are the simplest models to
understand, yet it still takes very careful experimentation methodology and a lot
of deep mathematical knowledge to tease apart the theoretical and practical
impacts. This would be mostly impossible with more complicated models or
feature transformations.

Bibliography
Zheng, Alice. Evaluating Machine Learning Models. Sebastopol, CA: O’Reilly
Media, 2015.

 Strictly speaking, the row space and column space for a rectangular matrix

2

2

2

1

http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp

cannot both be full rank. The maximum rank for both subspaces is the smaller of
m (the number of rows) and n (the number of columns).

Chapter 5. Categorical Variables:
Counting Eggs in the Age of
Robotic Chickens

A categorical variable, as the name suggests, is used to represent categories or
labels. For instance, a categorical variable could represent major cities in the
world, the four seasons in a year, or the industry (oil, travel, technology) of a
company. The number of category values is always finite in a real-world dataset.
The values may be represented numerically. However, unlike other numeric
variables, the values of a categorical variable cannot be ordered with respect to
one another. (Oil is neither greater than nor less than travel as an industry type.)
They are called nonordinal.

A simple question can serve as litmus test for whether something should be a
categorical variable: “Does it matter how different two values are, or only that
they are different?” A stock price of $500 is five times higher than a price of
$100. So, stock price should be represented by a continuous numeric variable.
The industry of the company (oil, travel, tech, etc.), on the other hand, should
probably be categorical.

Large categorical variables are particularly common in transactional records. For
instance, many web services track users using an ID, which is a categorical
variable with hundreds to hundreds of millions of values, depending on the
number of unique users of the service. The IP address of an internet transaction
is another example of a large categorical variable. They are categorical variables
because, even though user IDs and IP addresses are numeric, their magnitude is
usually not relevant to the task at hand. For instance, the IP address might be
relevant when doing fraud detection on individual transactions—some IP
addresses or subnets may generate more fraudulent transactions than others. But
a subnet of 164.203.x.x is not inherently more fraudulent than 164.202.x.x; the
numeric value of the subnet does not matter.

The vocabulary of a document corpus can be interpreted as a large categorical
variable, with the categories being unique words. It can be computationally

expensive to represent so many distinct categories. If a category (e.g., word)
appears multiple times in a data point (document), then we can represent it as a
count, and represent all of the categories through their count statistics. This is
called bin counting. We start this discussion with common representations of
categorical variables, and eventually meander our way to a discussion of bin
counting for large categorical variables, which are very common in modern
datasets.

Encoding Categorical Variables
The categories of a categorical variable are usually not numeric. For example,
eye color can be “black,” “blue,” “brown,” etc. Thus, an encoding method is
needed to turn these nonnumeric categories into numbers. It is tempting to
simply assign an integer, say from 1 to k, to each of k possible categories—but
the resulting values would be orderable against each other, which should not be
permissible for categories. So, let’s look at some alternatives.

One-Hot Encoding
A better method is to use a group of bits. Each bit represents a possible category.
If the variable cannot belong to multiple categories at once, then only one bit in
the group can be “on.” This is called one-hot encoding, and it is implemented in
scikit-learn as sklearn.preprocessing.OneHotEncoder. Each of the bits is a
feature. Thus, a categorical variable with k possible categories is encoded as a
feature vector of length k. Table 5-1 shows an example.

Table 5-1. One-hot
encoding of a
category of three
cities

 e e e

San Francisco 1 0 0

New York 0 1 0

Seattle 0 0 1

1

1 2 3

http://bit.ly/2tmlzTn

One-hot encoding is very simple to understand, but it uses one more bit than is
strictly necessary. If we see that k–1 of the bits are 0, then the last bit must be 1
because the variable must take on one of the k values. Mathematically, one can
write this constraint as “the sum of all bits must be equal to 1”:

Thus, we have a linear dependency on our hands. Linear dependent features, as
we discovered in Chapter 4, are slightly annoying because they mean that the
trained linear models will not be unique. Different linear combinations of the
features can make the same predictions, so we would need to jump through extra
hoops to understand the effect of a feature on the prediction.

Dummy Coding
The problem with one-hot encoding is that it allows for k degrees of freedom,
while the variable itself needs only k–1. Dummy coding removes the extra
degree of freedom by using only k–1 features in the representation (see Table 5-
2). One feature is thrown under the bus and represented by the vector of all
zeros. This is known as the reference category. Dummy coding and one-hot
encoding are both implemented in Pandas as pandas.get_dummies.

Table 5-2. Dummy
coding of a
category of three
cities

 e e

San Francisco 1 0

New York 0 1

Seattle 0 0

The outcome of modeling with dummy coding is more interpretable than with
one-hot encoding. This is easy to see in a simple linear regression problem.
Suppose we have some data about apartment rental prices in three cities: San
Francisco, New York, and Seattle (see Table 5-3).

Table 5-3. Toy

2

1 2

http://bit.ly/2mBNeJx

Table 5-3. Toy
dataset of
apartment
prices in three
cities

 City Rent

0 SF 3999

1 SF 4000

2 SF 4001

3 NYC 3499

4 NYC 3500

5 NYC 3501

6 Seattle 2499

7 Seattle 2500

8 Seattle 2501

We can train a linear regressor to predict rental price based solely on the identity
of the city (see Example 5-1).

The linear regression model can be written as:

It is customary to fit an extra constant term called the intercept, so that y can be a
nonzero value when the x’s are zeros:

Example 5-1. Linear regression on a categorical variable using one-hot and
dummy codes
>>> import pandas
>>> from sklearn import linear_model

Define a toy dataset of apartment rental prices in
New York, San Francisco, and Seattle
>>> df = pd.DataFrame({
... 'City': ['SF', 'SF', 'SF', 'NYC', 'NYC', 'NYC',
... 'Seattle', 'Seattle', 'Seattle'],

... 'Rent': [3999, 4000, 4001, 3499, 3500, 3501, 2499, 2500, 2501]

... })
>>> df['Rent'].mean()
3333.3333333333335

Convert the categorical variables in the DataFrame to one-hot encoding
and fit a linear regression model
>>> one_hot_df = pd.get_dummies(df, prefix=['city'])
>>> one_hot_df
 Rent city_NYC city_SF city_Seattle
0 3999 0.0 1.0 0.0
1 4000 0.0 1.0 0.0
2 4001 0.0 1.0 0.0
3 3499 1.0 0.0 0.0
4 3500 1.0 0.0 0.0
5 3501 1.0 0.0 0.0
6 2499 0.0 0.0 1.0
7 2500 0.0 0.0 1.0
8 2501 0.0 0.0 1.0

>>> model = linear_regression.LinearRegression()
>>> model.fit(one_hot_df[['city_NYC', 'city_SF', 'city_Seattle']],
... one_hot_df['Rent'])
>>> model.coef_
array([166.66666667, 666.66666667, -833.33333333])
>>> model.intercept_
3333.3333333333335

Train a linear regression model on dummy code
Specify the 'drop_first' flag to get dummy coding
>>> dummy_df = pd.get_dummies(df, prefix=['city'], drop_first=True)
>>> dummy_df
 Rent city_SF city_Seattle
0 3999 1.0 0.0
1 4000 1.0 0.0
2 4001 1.0 0.0
3 3499 0.0 0.0
4 3500 0.0 0.0
5 3501 0.0 0.0
6 2499 0.0 1.0
7 2500 0.0 1.0
8 2501 0.0 1.0

>>> model.fit(dummy_df[['city_SF', 'city_Seattle']], dummy_df['Rent'])
>>> model.coef_

array([500., -1000.])
>>> model.intercept_
3500.0

With one-hot encoding, the intercept term represents the global mean of the
target variable, Rent, and each of the linear coefficients represents how much
that city’s average rent differs from the global mean.

With dummy coding, the bias coefficient represents the mean value of the
response variable y for the reference category, which in the example is the city
NYC. The coefficient for the ith feature is equal to the difference between the
mean response value for the ith category and the mean of the reference category.

You can see pretty clearly in Table 5-4 how these methods produce very
different coefficients for linear models.

Table 5-4. Linear regression learned
coefficients

 x x x b

One-hot encoding 166.67 666.67 –833.33 3333.33

Dummy coding 0 500 –1000 3500

Effect Coding
Yet another variant of categorical variable encoding is effect coding. Effect
coding is very similar to dummy coding, with the difference that the reference
category is now represented by the vector of all –1’s.

Table 5-5. Effect
coding of a
categorical
variable
representing three
cities

 e e

San Francisco 1 0

New York 0 1

1 2 3

1 2

Seattle –1 –1

Effect coding is very similar to dummy coding, but results in linear regression
models that are even simpler to interpret. Example 5-2 demonstrates what
happens with effect coding as input. The intercept term represents the global
mean of the target variable, and the individual coefficients indicate how much
the means of the individual categories differ from the global mean. (This is
called the main effect of the category or level, hence the name “effect coding.”)
One-hot encoding actually came up with the same intercept and coefficients, but
in that case there are linear coefficients for each city. In effect coding, no single
feature represents the reference category, so the effect of the reference category
needs to be separately computed as the negative sum of the coefficients of all
other categories. (See “FAQ: What is effect coding?” on the UCLA IDRE
website for more details.)

Example 5-2. Linear regression with effect coding
>>> effect_df = dummy_df.copy()
>>> effect_df.ix[3:5, ['city_SF', 'city_Seattle']] = -1.0
>>> effect_df
 Rent city_SF city_Seattle
0 3999 1.0 0.0
1 4000 1.0 0.0
2 4001 1.0 0.0
3 3499 -1.0 -1.0
4 3500 -1.0 -1.0
5 3501 -1.0 -1.0
6 2499 0.0 1.0
7 2500 0.0 1.0
8 2501 0.0 1.0

>>> model.fit(effect_df[['city_SF', 'city_Seattle']], effect_df['Rent'])
>>> model.coef_
array([666.66666667, -833.33333333])
>>> model.intercept_
3333.3333333333335

Pros and Cons of Categorical Variable Encodings
One-hot, dummy, and effect coding are very similar to one another. They each
have pros and cons. One-hot encoding is redundant, which allows for multiple

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/effect.htm

valid models for the same problem. The nonuniqueness is sometimes
problematic for interpretation, but the advantage is that each feature clearly
corresponds to a category. Moreover, missing data can be encoded as the all-
zeros vector, and the output should be the overall mean of the target variable.

Dummy coding and effect coding are not redundant. They give rise to unique
and interpretable models. The downside of dummy coding is that it cannot easily
handle missing data, since the all-zeros vector is already mapped to the reference
category. It also encodes the effect of each category relative to the reference
category, which may look strange.

Effect coding avoids this problem by using a different code for the reference
category, but the vector of all –1’s is a dense vector, which is expensive for both
storage and computation. For this reason, popular ML software packages such as
Pandas and scikit-learn have opted for dummy coding or one-hot encoding
instead of effect coding.

All three encoding techniques break down when the number of categories
becomes very large. Different strategies are needed to handle extremely large
categorical variables.

Dealing with Large Categorical Variables
Automated data collection on the internet can generate large categorical
variables. This is common in applications such as targeted advertising and fraud
detection.

In targeted advertising, the task is to match a user with a set of ads. Features
include the user ID, the website domain for the ad, the search query, the current
page, and all possible pairwise conjunctions of those features. (The query is a
text string that can be chopped up and turned into the usual text features.
However, queries are generally short and are often composed of phrases, so the
best course of action in this case is usually to keep them intact, or pass them
through a hash function to make storage and comparisons easier. We will discuss
hashing in more detail later.) Each of these is a very large categorical variable.
The challenge is to find a good feature representation that is memory efficient,
yet produces accurate models that are fast to train.

Existing solutions can be categorized (haha) thus:

1. Do nothing fancy with the encoding. Use a simple model that is cheap
to train. Feed one-hot encoding into a linear model (logistic regression
or linear support vector machine) on lots of machines.

2. Compress the features. There are two choices:

a. Feature hashing, popular with linear models

b. Bin counting, popular with linear models as well as trees

Using the vanilla one-hot encoding is a valid option. For Microsoft’s search
advertising engine, Graepel et al. (2010) report using such binary-valued features
in a Bayesian probit regression model that can be trained online using simple
updates. Meanwhile, other groups argue for the compression approach.
Researchers from Yahoo! swear by feature hashing (Weinberger et al., 2009),
though McMahan et al. (2013) experimented with feature hashing on Google’s
advertising engine and did not find significant improvements. Yet other folks at
Microsoft are taken with the idea of bin counting (Bilenko, 2015).

As we shall see, all of these ideas have pros and cons. We will first describe the
solutions themselves, then discuss their trade-offs.

Feature Hashing
A hash function is a deterministic function that maps a potentially unbounded
integer to a finite integer range [1, m]. Since the input domain is potentially
larger than the output range, multiple numbers may get mapped to the same
output. This is called a collision. A uniform hash function ensures that roughly
the same number of numbers are mapped into each of the m bins.

Visually, we can think of a hash function as a machine that intakes numbered
balls (keys) and routes them to one of m bins. Balls with the same number will
always get routed to the same bin (see Figure 5-1). This maintains the feature
space while reducing the storage and processing time during machine learning
training and evaluation cycles.

Hash functions can be constructed for any object that can be represented
numerically (which is true for any data that can be stored on a computer):
numbers, strings, complex structures, etc.

Figure 5-1. Hash functions map keys to bins

When there are very many features, storing the feature vector could take up a lot
of space. Feature hashing compresses the original feature vector into an m-
dimensional vector by applying a hash function to the feature ID, as shown in
Example 5-3. For instance, if the original features were words in a document,
then the hashed version would have a fixed vocabulary size of m, no matter how
many unique words there are in the input.

Example 5-3. Feature hashing for word features

>>> def hash_features(word_list, m):
... output = [0] * m
... for word in word_list:
... index = hash_fcn(word) % m
... output[index] += 1
... return output

Another variation of feature hashing adds a sign component, so that counts are
either added to or subtracted from the hashed bin (see Example 5-4). Statistically
speaking, this ensures that the inner products between hashed features are equal
in expectation to those of the original features.

Example 5-4. Signed feature hashing
>>> def hash_features(word_list, m):
... output = [0] * m
... for word in word_list:
... index = hash_fcn(word) % m
... sign_bit = sign_hash(word) % 2
... if (sign_bit == 0):
... output[index] -= 1
... else:
... output[index] += 1
... return output

The value of the inner product after hashing is within of the original

inner product, so the size of the hash table m can be selected based on acceptable
errors. In practice, picking the right m could take some trial and error.

Feature hashing can be used for models that involve the inner product of feature
vectors and coefficients, such as linear models and kernel methods. It has been
demonstrated to be successful in the task of spam filtering (Weinberger et al.,
2009). In the case of targeted advertising, McMahan et al. (2013) report not
being able to get the prediction errors down to an acceptable level unless m is on
the order of billions, which does not constitute enough saving in space.

One downside to feature hashing is that the hashed features, being aggregates of
original features, are no longer interpretable.

In Example 5-5, we use the Yelp reviews dataset to demonstrate storage and
interpretability trade-offs using scikit-learn’s FeatureHasher.

Example 5-5. Feature hashing (a.k.a. “the hashing trick”)

>>> import pandas as pd
>>> import json

Load the first 10,000 reviews
>>> f = open('yelp_academic_dataset_review.json')
>>> js = []
>>> for i in range(10000):
... js.append(json.loads(f.readline()))
>>> f.close()
>>> review_df = pd.DataFrame(js)

Define m as equal to the unique number of business_ids
>>> m = len(review_df.business_id.unique())
>>> m
528

>>> from sklearn.feature_extraction import FeatureHasher
>>> h = FeatureHasher(n_features=m, input_type='string')
>>> f = h.transform(review_df['business_id'])

How does this affect feature interpretability?
>>> review_df['business_id'].unique().tolist()[0:5]
['vcNAWiLM4dR7D2nwwJ7nCA',
 'UsFtqoBl7naz8AVUBZMjQQ',
 'cE27W9VPgO88Qxe4ol6y_g',
 'HZdLhv6COCleJMo7nPl-RA',
 'mVHrayjG3uZ_RLHkLj-AMg']

>>> f.toarray()
array([[0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 ...,
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.],
 [0., 0., 0., ..., 0., 0., 0.]])

Not great. BUT, let's see the storage size of our features.
>>> from sys import getsizeof
>>> print('Our pandas Series, in bytes: ',
getsizeof(review_df['business_id']))
>>> print('Our hashed numpy array, in bytes: ', getsizeof(f))
Our pandas Series, in bytes: 790104
Our hashed numpy array, in bytes: 56

We can clearly see how using feature hashing will benefit us computationally,
sacrificing immediate user interpretability. This is an easy trade-off to accept
when progressing from data exploration and visualization into a machine
learning pipeline for large datasets.

Bin Counting
Bin counting is one of the perennial rediscoveries in machine learning. It has
been reinvented and used in a variety of applications, from ad click-through rate
prediction to hardware branch prediction (Yeh and Patt, 1991; Lee et al., 1998;
Chen et al., 2009; Li et al., 2010). Yet because it is a feature engineering
technique and not a modeling or optimization method, there is no research paper
on the topic. The most detailed description of the technique can be found in
Misha Bilenko’s (2015) blog post “Big Learning Made Easy—with Counts!”
and the associated slides.

The idea of bin counting is deviously simple: rather than using the value of the
categorical variable as the feature, instead use the conditional probability of the
target under that value. In other words, instead of encoding the identity of the
categorical value, we compute the association statistics between that value and
the target that we wish to predict. For those familiar with naive Bayes classifiers,
this statistic should ring a bell, because it is the conditional probability of the
class under the assumption that all features are independent. It is best illustrated
with an example (see Table 5-6).

Table 5-6. Example of bin-counting features (reproduced from “Big
Learning Made Easy—with Counts!” with permission)

User
Number
of
clicks

Number
of
nonclicks

Probability
of click

QueryHash,
AdDomain

Number
of
clicks

Number
of
nonclicks

Probability
of click

Alice 5 120 0.0400 0x598fd4fe,
foo.com 5,000 30,000 0.167

Bob 20 230 0.0800 0x50fa3cc0,
bar.org 100 900 0.100

… … …

Joe 2 3 0.400 0x437a45e1,
qux.net 6 18 0.250

http://bit.ly/2tnICgH
http://bit.ly/2FiuRW6

Bin counting assumes that historical data is available for computing the
statistics. Table 5-6 contains aggregated historical counts for each possible value
of the categorical variables. Based on the number of times the user “Alice” has
clicked on any ad and the number of times she has not clicked, we can calculate
the probability of her clicking on any ad. Similarly, we can compute the
probability of a click for any query–ad domain combination. At training time,
every time we see “Alice,” we can use her probability of click as the input
feature to the model. The same goes for QueryHash–AdDomain pairs like
“0x437a45e1, qux.net.”

Suppose there were 10,000 users. One-hot encoding would generate a sparse
vector of length 10,000, with a single 1 in the column that corresponds to the
value of the current data point. Bin counting would encode all 10,000 binary
columns as a single feature with a real value between 0 and 1.

We can include other features in addition to the historical click-through
probability: the raw counts themselves (number of clicks and nonclicks), the log-
odds ratio, or any other derivatives of probability. Our example here is for
predicting ad click-through rates, but the technique readily applies to general
binary classification. It can also be readily extended to multiclass classification
using the usual techniques to extend binary classifiers to multiclass; i.e., via one-
against-many odds ratios or other multiclass label encodings.

ODDS RATIO AND LOG ODDS RATIO FOR BIN COUNTING
The odds ratio is usually defined between two binary variables. It looks at
their strength of association by asking the question, “How much more likely
is it for Y to be true when X is true?” For instance, we might ask, “How much
more likely is Alice to click on an ad than the general population?” Here, X is
the binary variable “Alice is the current user,” and Y is the variable “click on
ad or not.” The computation uses what’s called the two-way contingency
table (basically, four numbers that correspond to the four possible
combinations of X and Y), as seen in Table 5-7.

Table 5-7. Contingency table
for ad click and user

 Click Nonclick Total

Alice 5 120 125

Not Alice 995 18,880 19,875

Total 1,000 19,000 20,000

Given an input variable X and a target variable Y, the odds ratio is defined as:

In our example, this translates as the ratio between “how much more likely is
it that Alice clicks on an ad rather than does not click” and “how much more
likely is it that other people click rather than not click.” The number, in this
case, is:

More simply, we can just look at the numerator, which examines how much
more likely it is that a single user (Alice) clicks on an ad versus not clicking.
This is suitable for large categorical variables with many values, not just two:

Probability ratios can easily become very small or very large. (For instance,
there will be users who almost never click on ads, and perhaps users who
click on ads much more frequently than not.) The log transform again comes
to our rescue. Another useful property of the logarithm is that it turns a
division into a subtraction:

In short, bin counting converts a categorical variable into statistics about the

value. It turns a large, sparse, binary representation of the categorical variable,
such as that produced by one-hot encoding, into a very small, dense, real-valued
numeric representation (Figure 5-2).

Figure 5-2. An illustration of one-hot encoding versus bin-counting statistics for categorical
variables

In terms of implementation, bin counting requires storing a map between each
category and its associated counts. (The rest of the statistics can be derived on
the fly from the raw counts.) Hence it requires O(k) space, where k is the number
of unique values of the categorical variable.

To illustrate bin counting in practice, we’ll use data from a Kaggle competition
hosted by Avazu. Here are some relevant statistics about the dataset:

There are 24 variables, including click, a binary click/no click counter,
and device_id, which tracks which device an ad was displayed on.

The full dataset contains 40,428,967 observations, with 2,686,408
unique devices.

The aim of the Avazu competition was to predict click-through rate using ad
data, but we will use the dataset to demonstrate how bin counting can greatly
reduce the feature space for large amounts of streaming data (see Example 5-6).

Example 5-6. Bin-counting example
>>> import pandas as pd

train_subset data is first 10K rows of 6+GB set
>>> df = pd.read_csv('data/train_subset.csv')

https://www.kaggle.com/c/avazu-ctr-prediction

How many unique features should we have after?
>>> len(df['device_id'].unique())
7201

For each category, we want to calculate:
Theta = [counts, p(click), p(no click), p(click)/p(no click)]

>>> def click_counting(x, bin_column):
... clicks = pd.Series(x[x['click'] > 0][bin_column].value_counts(),
... name='clicks')
... no_clicks = pd.Series(x[x['click'] < 1][bin_column].value_counts(),
... name='no_clicks')

... counts = pd.DataFrame([clicks,no_clicks]).T.fillna('0')
... counts['total_clicks'] = counts['clicks'].astype('int64') +
... counts['no_clicks'].astype('int64')
... return counts

>>> def bin_counting(counts):
... counts['N+'] = counts['clicks']
... .astype('int64')
... .divide(counts['total_clicks'].astype('int64'))
... counts['N-'] = counts['no_clicks']
... .astype('int64')
... .divide(counts['total_clicks'].astype('int64'))
... counts['log_N+'] = counts['N+'].divide(counts['N-'])
... # If we wanted to only return bin-counting properties,
... # we would filter here
... bin_counts = counts.filter(items= ['N+', 'N-', 'log_N+'])
... return counts, bin_counts

Bin counts example: device_id
>>> bin_column = 'device_id'
>>> device_clicks = click_counting(df.filter(items=[bin_column, 'click']),
... bin_column)
>>> device_all, device_bin_counts = bin_counting(device_clicks)

Check to make sure we have all the devices
>>> len(device_bin_counts)
7201

>>> device_all.sort_values(by = 'total_clicks', ascending=False).head(4)

 clicks no_clicks total N+ N- log_N+

a99f214a 15729 71206 86935 0.180928 0.819072 0.220894
c357dbff 33 134 167 0.197605 0.802395 0.246269
31da1bd0 0 62 62 0.000000 1.000000 0.000000
936e92fb 5 54 59 0.084746 0.915254 0.092593

What about rare categories?
Just like rare words, rare categories require special treatment. Think about a user
who logs in once a year: there will be very little data to reliably estimate that
user’s click-through rate for ads. Moreover, rare categories waste space in the
counts table.

One way to deal with this is through back-off, a simple technique that
accumulates the counts of all rare categories in a special bin (see Figure 5-3). If
the count is greater than a certain threshold, then the category gets its own count
statistics. Otherwise, we use the statistics from the back-off bin. This essentially
reverts the statistics for a single rare category to the statistics computed on all
rare categories. When using the back-off method, it helps to also add a binary
indicator for whether or not the statistics come from the back-off bin.

Figure 5-3. If a rare category gains counts, it can move above the threshold for the back-off bin,

using its own count statistics for modeling

There is another way to deal with this problem, called the count-min sketch
(Cormode and Muthukrishnan, 2005). In this method, all the categories, rare or
frequent alike, are mapped through multiple hash functions with an output range,
m, much smaller than the number of categories, k. When retrieving a statistic,
recompute all the hashes of the category and return the smallest statistic. Having
multiple hash functions mitigates the probability of collision within a single hash
function. The scheme works because the number of hash functions times m, the
size of the hash table, can be made smaller than k, the number of categories, and
still retain low overall collision probability.

Figure 5-4 illustrates. Each item i is mapped to one cell in each row of the array
of counts. When an update of c to item i arrives, c is added to each of these
cells, hashed using functions h …h .

Figure 5-4. The count-min sketch

Guarding against data leakage
Since bin counting relies on historical data to generate the necessary statistics, it
requires waiting through a data collection period, incurring a slight delay in the
learning pipeline. Also, when the data distribution changes, the counts need to be
updated. The faster the data changes, the more frequently the counts need to be
recomputed. This is particularly important for applications like targeted
advertising, where user preferences and popular queries change very quickly,
and lack of adaptation to the current distribution could mean huge losses for the
advertising platform.

One might ask, why not use the same dataset to compute the relevant statistics
and train the model? The idea seems innocent enough. The big problem here is

t t t

1 d

that the statistics involve the target variable, which is what the model tries to
predict. Using the output to compute the input features leads to a pernicious
problem known as leakage. In short, leakage means that information is revealed
to the model that gives it an unrealistic advantage to make better predictions.
This could happen when test data is leaked into the training set, or when data
from the future is leaked to the past. Any time that a model is given information
that it shouldn’t have access to when it is making predictions in real time in
production, there is leakage. Kaggle’s wiki gives more examples of leakage and
why it is bad for machine learning applications.

If the bin-counting procedure used the current data point’s label to compute part
of the input statistic, that would constitute direct leakage. One way to prevent
that is by instituting strict separation between count collection (for computing
bin-count statistics) and training, as illustrated in Figure 5-5—i.e., use an earlier
batch of data points for counting, use the current data points for training
(mapping categorical variables to historical statistics we just collected), and use
future data points for testing. This fixes the problem of leakage, but introduces
the aforementioned delay (the input statistics and therefore the model will trail
behind current data).

Figure 5-5. Using time windows can prevent data leakage during bin counting

It turns out that there is another solution, based on differential privacy. A statistic
is approximately leakage-proof if its distribution stays roughly the same with or
without any one data point. In practice, adding a small random noise with
distribution Laplace(0,1) is sufficient to cover up any potential leakage from a

https://www.kaggle.com/wiki/Leakage

single data point. This idea can be combined with leaving-one-out counting to
formulate statistics on current data (Zhang, 2015).

Counts without bounds
If the statistics are updated continuously given more and more historical data, the
raw counts will grow without bounds. This could be a problem for the model. A
trained model “knows” the input data up to the observed scale. A trained
decision tree might say, “When x is greater than 3, predict 1.” A trained linear
model might say, “Multiply x by 0.7 and see if the result is greater than the
global average.” These might be the correct decisions when x lies between 0 and
5. But what happens beyond that? No one knows.

When the input counts increase, the model will need to be retrained to adapt to
the current scale. If the counts accumulate rather slowly, then the effective scale
won’t change too fast, and the model will not need to be retrained too frequently.
But when counts increment very quickly, frequent retraining will be a nuisance.

For this reason, it is often better to use normalized counts that are guaranteed to
be bounded in a known interval. For instance, the estimated click-through
probability is bounded between [0, 1]. Another method is to take the log
transform, which imposes a strict bound, but the rate of increase will be very
slow when the count is very large.

Neither method will guard against shifting input distributions (e.g., last year’s
Barbie dolls are now out of style and people will no longer click on those ads).
The model will need to be retrained to accommodate these more fundamental
changes in input data distribution, or the whole pipeline will need to move to an
online learning setting where the model is continuously adapting to the input.

Summary
Each of the approaches detailed in this chapter has its pros and cons. Here is a
rundown of the trade-offs.

Plain one-hot encoding

Space requirement O(n) using the sparse vector format, where n is the number of data
points

Computation

requirement O(nk) under a linear model, where k is the number of categories

Pros

Easiest to implement

Potentially most accurate

Feasible for online learning

Cons

Computationally inefficient

Does not adapt to growing categories

Not feasible for anything other than linear models

Requires large-scale distributed optimization with truly
large datasets

Feature hashing

Space requirement O(n) using the sparse matrix format, where n is the number of data
points

Computation
requirement

O(nm) under a linear or kernel model, where m is the number of
hash bins

Pros

Easy to implement

Makes model training cheaper

Easily adaptable to new categories

Easily handles rare categories

Feasible for online learning

Cons

Only suitable for linear or kernelized models

Hashed features not interpretable

Mixed reports of accuracy

Bin-counting

Space
requirement

O(n+k) for small, dense representation of each data point, plus the count
statistics that must be kept for each category

Computation
requirement

O(n) for linear models; also usable for nonlinear models such as trees

Pros

Smallest computational burden at training time

Enables tree-based models

Relatively easy to adapt to new categories

Handles rare categories with back-off or count-min sketch

Interpretable

Cons

Requires historical data

Delayed updates required, not completely suitable for online
learning

Higher potential for leakage

As we can see, none of the methods are perfect. Which one to use depends on
the desired model. Linear models are cheaper to train and therefore can handle
noncompressed representations such as one-hot encoding. Tree-based models, on
the other hand, need to do repeated searches over all features for the right split,
and are thus limited to small representations such as bin counting. Feature
hashing sits in between those two extremes, but with mixed reports on the
resulting accuracy.

Bibliography
Agarwal, Alekh, Oliveier Chapelle, Miroslav Dudík, and John Langford. “A
Reliable Effective Terascale Linear Learning System.” Journal of Machine
Learning Research 15 (2015): 1111−1133.

Bilenko, Misha. “Big Learning Made Easy—with Counts!” Cortana Intelligence
and Machine Learning Blog, February 17, 2015.
https://blogs.technet.microsoft.com/machinelearning/2015/02/17/big-learning-
made-easy-with-counts/.

Chen, Ye, Dmitry Pavlov, and John F. Canny. “Large-Scale Behavioral
Targeting.” Proceedings of the 15th ACM SIGKDD International Conference on

https://blogs.technet.microsoft.com/machinelearning/2015/02/17/big-learning-made-easy-with-counts/

Knowledge Discovery and Data Mining (2009): 209–218.

Cormode, Graham, and S. Muthukrishnan. “An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications.” Algorithms 55 (2005):
29–38.

Graepel, Thore, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf
Herbrich. “Web-Scale Bayesian Click-Through Rate Prediction for Sponsored
Search Advertising in Microsoft’s Bing Search Engine.” Proceedings of the 27th
International Conference on Machine Learning (2010): 13–20.

He, Xinran, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi,
Antoine Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela.
“Practical Lessons from Predicting Clicks on Ads at Facebook.” Proceedings of
the 8th International Workshop on Data Mining for Online Advertising (2014):
1–9.

Lee, Wenke, Salvatore J. Stolfo, and Kui W. Mok. 1998. “Mining Audit Data to
Build Intrusion Detection Models.” Proceedings of the 4th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (1998):
66–72.

Li, Wei, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin.
“Exploitation and Exploration in a Performance Based Contextual Advertising
System.” Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2010): 27–36.

McMahan, H. Brendan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat
Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,
and Jeremy Kubica. “Ad Click Prediction: A View from the Trenches.”
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2013): 1222–1230.

Weinberger, Kilian, Anirban Dasgupta, Josh Attenberg, John Langford, and
Alex Smola. 2009. “Feature Hashing for Large Scale Multitask Learning.”
Proceedings of the 26th International Conference on Machine Learning (2009):
1113–1120.

Yeh, Tse-Yu, and Yale N. Patt. “Two-Level Adaptive Training Branch
Prediction.” Proceedings of the 24th Annual International Symposium on

Microarchitecture (1991): 51–61.

Zhang, Owen. 2015. “Tips for data science competitions.” SlideShare
presentation. Retrieved from http://bit.ly/2DjuhBD.

 In standard statistics literature, the technical term for the categories is levels. A
categorical variable with two distinct categories has two levels. But there are a
number of other things in statistics that are also called levels, so we do not use
that terminology here; instead we use the more colloquial and unambiguous term
“categories.”

 Curious readers might wonder why one is called coding and the other
encoding. This is largely convention. My guess is that one-hot encoding first
became popular in electrical engineering, where information is encoded and
decoded all the time. Dummy coding and effect coding, on the other hand, were
invented in the statistics community. Somehow the “en” didn’t make its way
over the academic divide.

1

2

http://bit.ly/2DjuhBD

Chapter 6. Dimensionality
Reduction: Squashing the Data
Pancake with PCA

With automatic data collection and feature generation techniques, one can
quickly obtain a large number of features. But not all of them are useful. In
Chapters 3 and 4, we discussed frequency-based filtering and feature scaling as
ways of pruning away uninformative features. Now we will take a close look at
the topic of feature dimensionality reduction using principal component analysis
(PCA).

This chapter marks an entry into model-based feature engineering techniques.
Prior to this point, most of the techniques can be defined without referencing the
data. For instance, frequency-based filtering might say, “Get rid of all counts that
are smaller than n,” a procedure that can be carried out without further input
from the data itself.

Model-based techniques, on the other hand, require information from the data.
For example, PCA is defined around the principal axes of the data. In previous
chapters, there was always a clear-cut line between data, features, and models.
From this point forward, the difference gets increasingly blurry. This is exactly
where the excitement lies in current research on feature learning.

Intuition
Dimensionality reduction is about getting rid of “uninformative information”
while retaining the crucial bits. There are many ways to define “uninformative.”
PCA focuses on the notion of linear dependency. In “The Anatomy of a Matrix”,
we describe the column space of a data matrix as the span of all feature vectors.
If the column space is small compared to the total number of features, then most
of the features are linear combinations of a few key features. Linearly dependent
features are a waste of space and computation power because the information
could have been encoded in much fewer features. To avoid this situation,

principal component analysis tries to reduce such “fluff” by squashing the data
into a much lower-dimensional linear subspace.

Picture the set of data points in feature space. Each data point is a dot, and the
whole set of data points forms a blob. In Figure 6-1(a), the data points spread out
evenly across both feature dimensions, and the blob fills the space. In this
example, the column space has full rank. However, if some of those features are
linear combinations of others, then the blob won’t look so plump; it will look
more like Figure 6-1(b), a flat blob where feature 1 is a duplicate (or a scalar
multiple) of feature 2. In this case, we say that the intrinsic dimensionality of the
blob is 1, even though it lies in a two-dimensional feature space.

In practice, things are rarely exactly equal to one another. It is more likely that
we see features that are very close to being equal, but not quite. In such a case,
the data blob might look something like Figure 6-1(c). It’s an emaciated blob. If
we wanted to reduce the number of features to pass to the model, then we could
replace feature 1 and feature 2 with a new feature, maybe called feature 1.5,
which lies on the diagonal line between the original two features. The original
dataset could then be adequately represented by one number—the position along
the direction of feature 1.5—instead of two numbers, f1 and f2.

Figure 6-1. Data blobs in feature space: (a) full-rank data blob, (b) low-dimensional data blob,
and (c) approximately low-dimensional data blob

The key idea here is to replace redundant features with a few new features that
adequately summarize information contained in the original feature space. It’s
easy to tell what the new feature should be when there are only two features. It’s
much harder when the original feature space has hundreds or thousands of
dimensions. We need a way to mathematically describe the new features we are
looking for. Then we can use optimization techniques to find them.

One way to mathematically define “adequately summarize information” is to say
that the new data blob should retain as much of the original volume as possible.
We are squashing the data blob into a flat pancake, but we want the pancake to
be as big as possible in the right directions. This means we need a way to
measure volume.

Volume has to do with distance. But the notion of distance in a blob of data
points is somewhat fuzzy. One could measure the maximum distance between
any two pairs of points, but that turns out to be a very difficult function to
mathematically optimize. An alternative is to measure the average distance
between pairs of points, or equivalently, the average distance between each point
and its mean, which is the variance. This turns out to be much easier to optimize.
(Life is hard. Statisticians have learned to take convenient shortcuts.)
Mathematically, this translates into maximizing the variance of the data points in
the new feature space.

TIPS FOR NAVIGATING LINEAR ALGEBRA FORMULAS
To stay oriented in the world of linear algebra, keep track of which quantities are
scalars, which are vectors, and which way the vectors are oriented—vertically or
horizontally. Know the dimensions of your matrices, because they often tell you
whether the vectors of interest are in the rows or columns. Draw the matrices and
vectors as rectangles on a page and make sure the shapes match. Just as one can get far
in algebra by noting the units of measurement (distance is in miles, speed is in miles
per hour), in linear algebra all one needs are the dimensions.

Derivation
As before, let X denote the n × d data matrix, where n is the number of data
points and d the number of features. Let x be a column vector containing a single
data point. (So x is the transpose of one of the rows in X.) Let v denote one of

the new feature vectors, or principal components, that we are trying to find.

SINGULAR VALUE DECOMPOSITION (SVD) OF A MATRIX
Any rectangular matrix can be decomposed into three matrices of particular
shapes and characteristics:

X = UΣV

Here, U and V are orthogonal matrices (i.e., U U = I and V V = I). Σ is a
diagonal matrix containing the singular values of X, which can be positive,
zero, or negative. Suppose X has n rows and d columns and n ≥ d. Then U
has shape n × d, and Σ and V have shape d × d. (See “Singular Value
Decomposition (SVD)” for a full review of SVD and eigen decomposition of
a matrix.)

Linear Projection
Let’s break down the derivation of PCA step by step. Figure 6-2 illustrates the
whole process.

Figure 6-2. Illustration of PCA: (a) original data in feature space; (b) centered data; (c)
projecting a data vector x onto another vector v; (d) direction of maximum variance of the

projected coordinates (equal to the principal eigenvector of X X)

T

T T

T

PCA uses linear projection to transform data into the new feature space.
Figure 6-2(c) illustrates what a linear projection looks like. When we project x
onto v, the length of the projection is proportional to the inner product between
the two, normalized by the norm of v (its inner product with itself). Later on, we
will constrain v to have unit norm. So, the only relevant part is the numerator—
let’s call it v (see Equation 6-1).

Equation 6-1. Projection coordinate

z = x v

Note that z is a scalar, whereas x and v are column vectors. Since there are a
bunch of data points, we can formulate the vector z of all of their projection
coordinates on the new feature v (Equation 6-2). Here, X is the familiar data
matrix where each row is a data point. The resulting z is a column vector.

Equation 6-2. Vector of projection coordinates

z = Xv

Variance and Empirical Variance
The next step is to compute the variance of the projections. Variance is defined
as the expectation of the squared distance to the mean (Equation 6-3).

Equation 6-3. Variance of a random variable Z

Var(Z) = E[Z – E(Z)]

There is one tiny problem: our formulation of the problem says nothing about
the mean, E(Z); it is a free variable. One solution is to remove it from the
equation by subtracting the mean from every data point. The resulting dataset
has mean zero, which means that the variance is simply the expectation of Z .
Geometrically, subtracting the mean has the effect of centering the data. (See
Figure 6-2(a-b).)

A closely related quantity is the covariance between two random variables Z
and Z (Equation 6-4). Think of this as the extension of the idea of variance (of a
single random variable) to two random variables.

Equation 6-4. Covariance between two random variables Z and Z

T

2

2

1

2

1 2

1 2 1 1 2 2

Cov(Z , Z) = E[(Z – E(Z)(Z – E(Z)]

When the random variables have mean zero, their covariance coincides with
their linear correlation, E[Z Z]. We will discuss this concept more later on.

Statistical quantities like variance and expectation are defined on a data
distribution. In practice, we don’t have the true distribution, but only a bunch of
observed data points, z , ..., z . This is called an empirical distribution, and it
gives us an empirical estimate of the variance (Equation 6-5).

Equation 6-5. Empirical variance of Z based on observations z

Principal Components: First Formulation
Combined with the definition of z in Equation 6-1, we have the formulation for
maximizing the variance of the projected data given in Equation 6-6. (We drop
the denominator n–1 from the definition of empirical variance, because it is a
global constant and does not affect where the maximizing value occurs.)

Equation 6-6. Objective function of principal components

The constraint here forces the inner product of w with itself to be 1, which is
equivalent to saying that the vector must have unit length. This is because we
only care about the direction and not the magnitude of w. The magnitude of w is
an unnecessary degree of freedom, so we get rid of it by setting it to an arbitrary
value.

Principal Components: Matrix-Vector Formulation
Next comes the tricky step. The sum of squares term in Equation 6-6 is rather
cumbersome. It’d be much cleaner in a matrix-vector format. Can we do it? The
answer is yes. The key lies in the sum-of-squares identity: the sum of a bunch of

1 2 1 1 2 2

1 2

1 n

i

squared terms is equal to the squared norm of a vector whose elements are those
terms, which is equivalent to the vector’s inner product with itself. With this
identity in hand, we can rewrite Equation 6-6 in matrix-vector notation, as
shown in Equation 6-7.

Equation 6-7. Objective function for principal components, matrix-vector formulation

max w w, where w w = 1

This formulation of PCA presents the target more clearly: we look for an input
direction that maximizes the norm of the output. Does this sound familiar? The
answer lies in the singular value decomposition (SVD) of X. The optimal w, as it
turns out, is the principal left singular vector of X, which is also the principal
eigenvector of X X. The projected data is called a principal component of the
original data.

General Solution of the Principal Components
This process can be repeated. Once we find the first principal component, we can
rerun Equation 6-7 with the added constraint that the new vector be orthogonal
to the previously found vectors (see Equation 6-8).

Equation 6-8. Objective function for k+1st principal components

max w w, where w w = 1 and w w = ... = w w = 0

The solution is the k+1st left singular vectors of X, ordered by descending
singular values. Thus, the first k principal components correspond to the first k
left singular vectors of X.

Transforming Features
Once the principal components are found, we can transform the features using
linear projection. Let X = UΣV be the SVD of X, and V the matrix whose
columns contain the first k left singular vectors. X has dimensions n × d, where d
is the number of original features, and V has dimensions d × k. Instead of a
single projection vector as in Equation 6-2, we can simultaneously project onto
multiple vectors in a projection matrix (Equation 6-9).

Equation 6-9. PCA projection matrix

w
T T

T

w
T T T

1
T

k

T
k

k

W = V

The matrix of projected coordinates is easy to compute, and can be further
simplified using the fact that the singular vectors are orthogonal to each other
(see Equation 6-10).

Equation 6-10. Simple PCA transform

Z = XW = XV = UΣV V = U Σ

The projected values are simply the first k right singular vectors scaled by the
first k singular values. Thus, the entire PCA solution, components and
projections alike, can be conveniently obtained through the SVD of X.

Implementing PCA
Many derivations of PCA involve first centering the data, then taking the eigen
decomposition of the covariance matrix. But the easiest way to implement PCA
is by taking the singular value decomposition of the centered data matrix.

PCA IMPLEMENTATION STEPS

1. Center the data matrix:

C = X – 1μ

where 1 is a column vector containing all 1s, and μ is a column
vector containing the average of the rows of X.

2. Compute the SVD:

C = UΣV

3. Find the principal components. The first k principal components are
the first k columns of V; i.e., the right singular vectors corresponding
to the k largest singular values.

4. Transform the data. The transformed data is simply the first k
columns of U. (If whitening is desired, then scale the vectors by the
inverse singular values. This requires that the selected singular
values are nonzero. See “Whitening and ZCA”.)

k

k
T

k k k

T

T

PCA in Action
Let’s get a better sense for how PCA works by applying it to some image data.
The MNIST dataset contains images of handwritten digits from 0 to 9. The
original images are 28 × 28 pixels. A lower-resolution subset of the images is
distributed with scikit-learn, where each image is downsampled into 8 × 8 pixels.
The original data in scikit-learn has 64 dimensions. In Example 6-1, we apply
PCA and visualize the dataset using the first three principal components.

Example 6-1. Principal component analysis of the scikit-learn digits dataset (a
subset of the MNIST dataset)
>>> from sklearn import datasets
>>> from sklearn.decomposition import PCA

Load the data
>>> digits_data = datasets.load_digits()
>>> n = len(digits_data.images)

Each image is represented as an 8-by-8 array.
Flatten this array as input to PCA.
>>> image_data = digits_data.images.reshape((n, -1))
>>> image_data.shape
(1797, 64)

Groundtruth label of the number appearing in each image
>>> labels = digits_data.target
>>> labels
array([0, 1, 2, ..., 8, 9, 8])

Fit a PCA transformer to the dataset.
The number of components is automatically chosen to account for
at least 80% of the total variance.
>>> pca_transformer = PCA(n_components=0.8)
>>> pca_images = pca_transformer.fit_transform(image_data)
>>> pca_transformer.explained_variance_ratio_
array([0.14890594, 0.13618771, 0.11794594, 0.08409979, 0.05782415,
 0.0491691 , 0.04315987, 0.03661373, 0.03353248, 0.03078806,
 0.02372341, 0.02272697, 0.01821863])
>>> pca_transformer.explained_variance_ratio_[:3].sum()
0.40303958587675121

Visualize the results
>>> import matplotlib.pyplot as plt

http://yann.lecun.com/exdb/mnist/
http://bit.ly/2G3A3dA

>>> from mpl_toolkits.mplot3d import Axes3D
>>> %matplotlib notebook
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')
>>> for i in range(100):
... ax.scatter(pca_images[i,0], pca_images[i,1], pca_images[i,2],
... marker=r'${}$'.format(labels[i]), s=64)

>>> ax.set_xlabel('Principal component 1')
>>> ax.set_ylabel('Principal component 2')
>>> ax.set_zlabel('Principal component 3')

The first 100 projected images are shown in a 3D plot in Figure 6-3. The
markers correspond to the labels. The first three principal components account
for roughly 40% of the total variance in the dataset. This is by no means perfect,
but it allows for a handy low-dimensional visualization. We see that PCA groups
similar numbers close to each other. The numbers 0 and 6 lie in the same region,
as do 1 and 7, and 3 and 9. The space is roughly divided between 0, 4, and 6 on
one side, and the rest of the numbers on the other.

Figure 6-3. PCA projections of subset of MNIST data—markers correspond to image labels

Since there is a fair amount of overlap between numbers, it would be difficult to
tell them apart using a linear classifier in the projected space. Hence, if the task
is to classify the handwritten digits and the chosen model is a linear classifier,
then the first three principal components are not sufficient as features.
Nevertheless, it is interesting to see how much of a 64-dimensional dataset can

be captured in just 3 dimensions.

Whitening and ZCA
Due to the orthogonality constraint in the objective function, PCA
transformation produces a nice side effect: the transformed features are no longer
correlated. In other words, the inner products between pairs of feature vectors
are zero. It’s easy to prove this using the orthogonality property of the singular
vectors:

Z Z = Σ U U Σ = Σ

The result is a diagonal matrix containing squares of the singular values
representing the correlation of each feature vector with itself, also known as its
ℓ norm.

Sometimes, it is useful to also normalize the scale of the features to 1. In signal
processing terms, this is known as whitening. It results in a set of features that
have unit correlation with themselves and zero correlation with each other.
Mathematically, whitening can done by multiplying the PCA transformation
with the inverse singular values (see Equation 6-11).

Equation 6-11. PCA + whitening

W = V Σ

Z = XV Σ = UΣV V Σ = U

Whitening is independent from dimensionality reduction; one can perform one
without the other. For example, zero-phase component analysis (ZCA) (Bell and
Sejnowski, 1996) is a whitening transformation that is closely related to PCA,
but that does not reduce the number of features. ZCA whitening uses the full set
of principal components V without reduction, and includes an extra
multiplication back onto V (Equation 6-12).

Equation 6-12. ZCA whitening

W = VΣ V

Z = XVΣ V = UΣV VΣ = U

Simple PCA projection (Equation 6-10) produces coordinates in the new feature

T
k k

T
k k k

2

2

white k k
-1

white k k
-1 T

k k
-1

k

T

ZCA
-1 T

zca
-1 T T -1

space, where the principal components serve as the basis. These coordinates
represent only the length of the projected vector, not the direction. Multiplication
with the principal components gives us the length and the orientation. Another
valid interpretation is that the extra multiplication rotates the coordinates back
into the original feature space. (V is an orthogonal matrix, and orthogonal
matrices rotate their input without stretching or compression.) So, ZCA produces
whitened data that is as close (in Euclidean distance) to the original data as
possible.

Considerations and Limitations of PCA
When using PCA for dimensionality reduction, one must address the question of
how many principal components (k) to use. Like all hyperparameters, this
number can be tuned based on the quality of the resulting model. But there are
also heuristics that do not involve expensive computational methods.

One possibility is to pick k to account for a desired proportion of total variance.
(This option is available in the scikit-learn package PCA.) The variance of the
projection onto the kth component is:

║Xv ║ =║u σ ║ = σ

which is the square of the kth-largest singular value of X. The ordered list of
singular values of a matrix is called its spectrum. Thus, to determine how many
components to use, one can perform a simple spectral analysis of the data matrix
and pick the threshold that retains enough variance.

SELECTING K BASED ON ACCOUNTED VARIANCE
To retain enough components to cover 80% of the total variance in the data, pick k
such that

Another method for picking k involves the intrinsic dimensionality of a dataset.
This is a hazier concept, but can also be determined from the spectrum.

k
2

k k
2

k
2

Basically, if the spectrum contains a few large singular values and a number of
tiny ones, then one can probably just harvest the largest singular values and
discard the rest. Sometimes the rest of the spectrum is not tiny, but there’s a
large gap between the head and the tail values. That would also be a reasonable
cutoff. This method is requires visual inspection of the spectrum and hence
cannot be performed as part of an automated pipeline.

One key criticism of PCA is that the transformation is fairly complex, and the
results are therefore hard to interpret. The principal components and the
projected vectors are real-valued and could be positive or negative. The principal
components are essentially linear combinations of the (centered) rows, and the
projection values are linear combinations of the columns. In a stock returns
application, for instance, each factor is a linear combination of time slices of
stock returns. What does that mean? It is hard to express a human-
understandable reason for the learned factors. Therefore, it is hard for analysts to
trust the results. If you can’t explain why you should be putting billions of other
people’s money into particular stocks, you probably won’t choose to use that
model.

PCA is computationally expensive. It relies on SVD, which is an expensive
procedure. To compute the full SVD of a matrix takes O(nd + d) operations
(Golub and Van Loan, 2012), assuming n ≥ d—i.e., there are more data points
than features. Even if we only want k principal components, computing the
truncated SVD (the k largest singular values and vectors) still takes O((n+d) k)
= O(n k) operations. This is prohibitive when there are a large number of data
points or features.

It is difficult to perform PCA in a streaming fashion, in batch updates, or from a
sample of the full data. Streaming computation of the SVD, updating the SVD,
and computing the SVD from a subsample are all difficult research problems.
Algorithms exist, but at the cost of reduced accuracy. One implication is that one
should expect lower representational accuracy when projecting test data onto
principal components found in the training set. As the distribution of the data
changes, one would have to recompute the principal components in the current
dataset.

Lastly, it is best not to apply PCA to raw counts (word counts, music play
counts, movie viewing counts, etc.). The reason for this is that such counts often

2 3

2

2

contain large outliers. (The probability is pretty high that there is a fan out there
who watched The Lord of the Rings 314,582 times, which dwarfs the rest of the
counts.) As we know, PCA looks for linear correlations within the features.
Correlation and variance statistics are very sensitive to large outliers; a single
large number could change the statistics a lot. So, it is a good idea to first trim
the data of large values (“Frequency-Based Filtering”), or apply a scaling
transform like tf-idf (Chapter 4) or the log transform (“Log Transformation”).

Use Cases
PCA reduces feature space dimensionality by looking for linear correlation
patterns between features. Since it involves the SVD, PCA is expensive to
compute for more than a few thousand features. But for small numbers of real-
valued features, it is very much worth trying.

PCA transformation discards information from the data. Thus, the downstream
model may be cheaper to train, but less accurate. On the MNIST dataset, some
have observed that using reduced-dimensionality data from PCA results in less
accurate classification models. In these cases, there is both an upside and a
downside to using PCA.

One of the coolest applications of PCA is in anomaly detection of time series.
Lakhina et al. (2004) used PCA to detect and diagnose anomalies in internet
traffic. They focused on volume anomalies, i.e., when there is a surge or a dip in
the amount of traffic going from one network region to another. These sudden
changes may be indicative of a misconfigured network or coordinated denial-of-
service attacks. Either way, knowing when and where such changes occur is
valuable to internet operators.

Since there is so much total traffic over the internet, isolated surges in small
regions are hard to detect. A relatively small set of backbone links handle much
of the traffic. Their key insight is that volume anomalies affect multiple links at
the same time (because network packets need to hop through multiple nodes to
reach their destination). Treat each of the links as a feature, and the amount of
traffic at each time step as the measurement. A data point is a time slice of traffic
measurements across all links on the network. The principal components of this
matrix indicate the overall traffic trends on the network. The rest of the
components represent the residual signal, which contains the anomalies.

PCA is also often used in financial modeling. In those use cases, it works as a
type of factor analysis, a term that describes a family of statistical methods that
aim to describe observed variability in data using a small number of unobserved
factors. In factor analysis applications, the goal is to find the explanatory
components, not the transformed data.

Financial quantities like stock returns are often correlated with each other.
Stocks may move up and down at the same time (positive correlation), or move
in opposite directions (negative correlation). In order to balance volatility and
reduce risk, an investment portfolio needs a diverse set of stocks that are not
correlated with each other. (Don’t put all your eggs in one basket if that basket is
going to sink.) Finding strong correlation patterns is helpful for deciding on an
investment strategy.

Stock correlation patterns can be industry-wide. For example, tech stocks may
go up and down together, while airline stocks tend to go down when oil prices
are high. But industry may not be the best way to explain the outcome. Analysts
also look for unexpected correlations in observed statistics. In particular, the
statistical factor model (Connor, 1995) runs PCA on the matrix of time series of
individual stock returns to find commonly covarying stocks. In this use case, the
end goal is the principal components themselves, not the transformed data.

ZCA is useful as a preprocessing step when learning from images. In natural
images, adjacent pixels often have similar colors. ZCA whitening can remove
this correlation, which allows subsequent modeling efforts to focus on more
interesting image structures. Krizhevsky’s (2009) thesis on “Learning Multiple
Layers of Features from Images” contains nice examples that illustrate the effect
of ZCA whitening on natural images.

Many deep learning models use PCA or ZCA as a preprocessing step, though it
is not always necessary. In “Factored 3-Way Restricted Boltzmann Machines for
Modeling Natural Images”, Ranzato et al. (2010) remark, “Whitening is not
necessary but speeds up the convergence of the algorithm.” In “An Analysis of
Single-Layer Networks in Unsupervised Feature Learning”, Coates et al. (2011)
find that ZCA whitening is helpful for some models, but not all. (Note the
models in this paper are unsupervised feature learning models, so ZCA is used as
a feature engineering method for other feature engineering methods. Stacking
and chaining of methods is common in machine learning pipelines.)

http://bit.ly/2ts42tc
http://bit.ly/2D7hKkK
http://stanford.io/2oVhBvu

Summary
This concludes the discussion of PCA. The two main things to remember about
PCA are its mechanism (linear projection) and objective (to maximize the
variance of projected data). The solution involves the eigen decomposition of the
covariance matrix, which is closely related to the SVD of the data matrix. One
can also remember PCA with the mental picture of squashing the data into a
pancake that is as fluffy as possible.

PCA is an example of model-driven feature engineering. (One should
immediately suspect that a model is lurking in the background whenever an
objective function enters the scene.) The modeling assumption here is that
variance adequately represents the information contained in the data.
Equivalently, the model looks for linear correlations between features. This is
used in several applications to reduce the correlation or find common factors in
the input.

PCA is a well-known dimensionality reduction method. But it has its limitations,
such as high computational cost and uninterpretable outcome. It is useful as a
preprocessing step, especially when there are linear correlations between
features.

When seen as a method for eliminating linear correlation, PCA is related to the
concept of whitening. Its cousin, ZCA, whitens the data in an interpretable way,
but does not reduce dimensionality.

Bibliography
Bell, Anthony J. and Terrence J. Sejnowski. “Edges Are the ‘Independent
Components’ of Natural Scenes.” Advances in Neural Information Processing
Systems 9 (1996): 831–837.

Coates, Adam, Andrew Y. Ng, and Honglak Lee. “An Analysis of Single-Layer
Networks in Unsupervised Feature Learning.” Proceedings of the 14th
International conference on Artificial Intelligence and Statistics (2011): 215–
223.

Connor, Gregory. “The Three Types of Factor Models: A Comparison of Their
Explanatory Power.” Financial Analysts Journal 51:3 (1995) 42–46.

Golub, Gene H., and Charles F. Van Loan. Matrix Computations. 4th ed.
Baltimore, MD: Johns Hopkins University Press, 2012.

Krizhevsky, Alex. “Learning Multiple Layers of Features from Tiny Images.”
MSc thesis, University of Toronto, 2009.

Lakhina, Anukool, Mark Crovella, and Christophe Diot. “Diagnosing Network-
wide Traffic Anomalies.” Proceedings of the 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(2004): 219–230.

Ranzato, Marc’Aurelio, Alex Krizhevsky, and Geoffrey E. Hinton. “Factored 3-
Way Restricted Boltzmann Machines for Modeling Natural Images.”
Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (2010): 621–628.

Chapter 7. Nonlinear
Featurization via K-Means Model
Stacking

PCA is very useful when the data lies in a linear subspace like a flat pancake.
But what if the data forms a more complicated shape? A flat plane (linear
subspace) can be generalized to a manifold (nonlinear subspace), which can be
thought of as a surface that gets stretched and rolled in various ways.

If a linear subspace is a flat sheet of paper, then a rolled up sheet of paper is a
simple example of a nonlinear manifold. Informally, this is called a Swiss roll
(see Figure 7-1). Once rolled, a 2D plane occupies 3D space. Yet it is essentially
still a 2D object. In other words, it has low intrinsic dimensionality, a concept
we’ve already touched upon in “Intuition”. If we could somehow unroll the
Swiss roll, we’d recover the 2D plane. This is the goal of nonlinear
dimensionality reduction, which assumes that the manifold is simpler than the
full dimension it occupies and attempts to unfold it.

Figure 7-1. The Swiss roll, a nonlinear manifold

The key observation is that even when a big manifold looks complicated, the
local neighborhood around each point can often be well approximated with a
patch of flat surface. In other words, the patches to encode global structure using

1

2

3

local structure. Nonlinear dimensionality reduction is also called nonlinear
embedding or manifold learning. Nonlinear embeddings are useful for
aggressively compressing high-dimensional data into low-dimensional data.
They are often used for visualization in two or three dimensions.

The goal of feature engineering, however, isn’t so much to make the feature
dimensions as low as possible, but to arrive at the right features for the task. In
this chapter, the right features are those that represent the spatial characteristics
of the data.

Clustering algorithms are usually not presented as techniques for local structure
learning. But they in fact enable just that. Points that are close to each other
(where “closeness” can be defined by a chosen metric) belong to the same
cluster. Given a clustering, a data point can be represented by its cluster
membership vector. If the number of clusters is smaller than the original number
of features, then the new representation will have fewer dimensions than the
original; the original data is compressed into a lower dimension. We will unpack
this idea in this chapter.

Compared to nonlinear embedding techniques, clustering may produce more
features. But if the end goal is feature engineering instead of visualization, this is
not a problem.

We will illustrate the idea of local structure learning with a common clustering
algorithm called k-means. It is simple to understand and implement. Instead of
nonlinear manifold reduction, it is more apt to say that k-means performs
nonlinear manifold feature extraction. Used correctly, it can be a powerful tool
in our feature engineering repertoire.

k-Means Clustering
k-means is a clustering algorithm. Clustering algorithms group data depending
on how they are laid out in space. They are unsupervised in that they do not
require any sort of label—it’s the algorithm’s job to infer cluster labels based
solely on the geometry of the data itself.

A clustering algorithm depends on a metric—a measurement of closeness
between data points. The most popular metric is the Euclidean distance or
Euclidean metric. It comes from Euclidean geometry and measures the straight-

3

line distance between two points. It should feel very normal to us because this is
the distance we see in everyday physical reality.

The Euclidean distance between two vectors x and y is the ℓ norm of x – y. (See
“ℓ Normalization” for more on the ℓ norm.) In math speak, it is usually written
as ǁx – yǁ or just ǁx – yǁ.

k-means establishes a hard clustering, meaning that each data point is assigned to
one and only one cluster. The algorithm learns to position the cluster centers
such that the total sum of the Euclidean distance between each data point and its
cluster center is minimized. For those who like to read math instead of words,
here is the objective function:

Each cluster C contains a subset of data points. The center of cluster i is equal to
the average of all the data points in the cluster:

where n denotes the number of data points in cluster i.

Figure 7-2 shows k-means at work on two different, randomly generated
datasets. The data in (a) is generated from random Gaussian distributions with
the same variance but different means. The data in (c) is generated uniformly at
random. These toy problems are very simple to solve, and k-means does a good
job. (The results could be sensitive to the number of clusters, which must be
given to the algorithm.)

2

2 2

2

i

i

Figure 7-2. k-means examples demonstrating how the clustering algorithm partitions space

The code for this example is found in Example 7-1.

Example 7-1. Code to generate k-means examples
>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> from sklearn.datasets import make_blobs

>>> import matplotlib.pyplot as plt

>>> n_data = 1000
>>> seed = 1
>>> n_clusters = 4

Generate random Gaussian blobs and run k-means
>>> blobs, blob_labels = make_blobs(n_samples=n_data, n_features=2,
... centers=n_centers, random_state=seed)
>>> clusters_blob = KMeans(n_clusters=n_centers,
random_state=seed).fit_predict(blobs)

Generate data uniformly at random and run k-means
>>> uniform = np.random.rand(n_data, 2)
>>> clusters_uniform = KMeans(n_clusters=n_clusters,
... random_state=seed).fit_predict(uniform)

Matplotlib incantations for visualizing results
>>> figure = plt.figure()

>>> plt.subplot(221)
>>> plt.scatter(blobs[:, 0], blobs[:, 1], c=blob_labels, cmap='gist_rainbow')
>>> plt.title("(a) Four randomly generated blobs", fontsize=14)
>>> plt.axis('off')

>>> plt.subplot(222)
>>> plt.scatter(blobs[:, 0], blobs[:, 1], c=clusters_blob,
cmap='gist_rainbow')
>>> plt.title("(b) Clusters found via K-means", fontsize=14)
>>> plt.axis('off')

>>> plt.subplot(223)
>>> plt.scatter(uniform[:, 0], uniform[:, 1])
>>> plt.title("(c) 1000 randomly generated points", fontsize=14)
>>> plt.axis('off')

>>> plt.subplot(224)
>>> plt.scatter(uniform[:, 0], uniform[:, 1], c=clusters_uniform,
cmap='gist_rainbow')
>>> plt.title("(d) Clusters found via K-means", fontsize=14)
>>> plt.axis('off')

Clustering as Surface Tiling
Common applications of clustering assume that there are natural clusters to be
found; i.e., there are regions of dense data scattered in an otherwise empty space.
 In these situations, there is a notion of the correct number of clusters, and people
have invented clustering indices that measure the quality of data groupings in
order to select for k.

However, when data is spread out fairly uniformly like in Figure 7-2(c), there is
no longer a correct number of clusters. In this case, the role of a clustering
algorithm is vector quantization, i.e., partitioning the data into a finite number of
chunks. The number of clusters can be selected based on acceptable
approximation error when using quantized vectors instead of the original ones.

Visually, this usage of k-means can be thought of as covering the data surface
with patches, like in Figure 7-3. This is indeed what we get if we run k-means on
a Swiss roll dataset.

Figure 7-3. Conceptual local patches on the Swiss roll from a clustering algorithm

Example 7-2 uses scikit-learn to generate a noisy dataset on the Swiss roll,
cluster it with k-means, and visualize the clustering results using Matplotlib. The
data points are colored according to their cluster IDs.

Example 7-2. k-means on the Swiss roll
>>> from mpl_toolkits.mplot3d import Axes3D
>>> from sklearn import manifold, datasets

Generate a noisy Swiss roll dataset
>>> X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500)

Approximate the data with 100 k-means clusters
>>> clusters_swiss_roll = KMeans(n_clusters=100,
random_state=1).fit_predict(X)

Plot the dataset with k-means cluster IDs as the color
>>> fig2 = plt.figure()
>>> ax = fig2.add_subplot(111, projection='3d')
>>> ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=clusters_swiss_roll,
cmap='Spectral')

In this example, we generated 1,500 points at random on the Swiss roll surface,
and asked k-means to approximate it with 100 clusters. We pulled the number
100 out of a hat because it seems like a fairly large number to cover a fairly
small space. The result (Figure 7-4) looks nice; the clusters are indeed very local
and different sections of the manifold are mapped to different clusters. Great!
Are we done?

Figure 7-4. Approximating a Swiss roll dataset using k-means with 100 clusters

The problem is that if we pick a k that is too small, then the results won’t be so
nice from a manifold learning perspective. Figure 7-5 shows the output of k-
means on the Swiss roll with 10 clusters. We can clearly see data from very
different sections of the manifold being mapped to the same clusters (e.g., the
yellow, purple, green, and magenta clusters—see, we told you the illustrations
are best viewed in color!).

Figure 7-5. k-means on the Swiss roll with 10 clusters

If the data is distributed uniformly throughout the space, then picking the right k

boils down to a sphere-packing problem. In d dimensions, one could fit roughly
1/r spheres of radius r. Each k-means cluster is a sphere, and the radius is the
maximum error of representing points in that sphere with the centroid. So, if we
are willing to tolerate a maximum approximation error of r per data point, then
the number of clusters is O(1/r), where d is the dimension of the original feature
space of the data.

Uniform distribution is the worst-case scenario for k-means. If data density is not
uniform, then we will be able to represent more data with fewer clusters. In
general, it is difficult to tell how data is distributed in high-dimensional space.
One can be conservative and pick a larger k, but it can’t be too large, because k
will become the number of features for the next modeling step.

k-Means Featurization for Classification
When using k-means as a featurization procedure, a data point can be
represented by its cluster membership (a sparse one-hot encoding of the cluster
membership categorical variable; see “One-Hot Encoding”), which we now
illustrate.

If a target variable is also available, then we have the choice of giving that
information as a hint to the clustering procedure. One way to incorporate target
information is to simply include the target variable as an additional input feature
to the k-means algorithm. Since the objective is to minimize the total Euclidean
distance over all input dimensions, the clustering procedure will attempt to
balance similarity in the target value as well as in the original feature space. The
target values can be scaled to get more or less attention from the clustering
algorithm. Larger differences in the target will produce clusters that pay more
attention to the classification boundary.

K-MEANS FEATURIZATION
Clustering algorithms analyze the spatial distribution of data. Therefore, k-means
featurization creates a compressed spatial index of the data which can be fed into the
model in the next stage. This is an example of model stacking.

Example 7-3 shows a simple k-means featurizer. It is defined as a class object

d

d

that can be fitted to training data and transform any new data.

Example 7-3. k-means featurizer
>>> import numpy as np
>>> from sklearn.cluster import KMeans

>>> class KMeansFeaturizer:
... """Transforms numeric data into k-means cluster memberships.
...
... This transformer runs k-means on the input data and converts each data
point
... into the ID of the closest cluster. If a target variable is present,
it is
... scaled and included as input to k-means in order to derive clusters
that
... obey the classification boundary as well as group similar points
together.
... """
...
... def __init__(self, k=100, target_scale=5.0, random_state=None):
... self.k = k
... self.target_scale = target_scale
... self.random_state = random_state
...
... def fit(self, X, y=None):
... """Runs k-means on the input data and finds centroids.
... """
... if y is None:
... # No target variable, just do plain k-means
... km_model = KMeans(n_clusters=self.k,
... n_init=20,
... random_state=self.random_state)
... km_model.fit(X)
...
... self.km_model_ = km_model
... self.cluster_centers_ = km_model.cluster_centers_
... return self
...
... # There is target information. Apply appropriate scaling and
include
... # it in the input data to k-means.
... data_with_target = np.hstack((X,
y[:,np.newaxis]*self.target_scale))
...

... # Build a pre-training k-means model on data and target

... km_model_pretrain = KMeans(n_clusters=self.k,

... n_init=20,

... random_state=self.random_state)

... km_model_pretrain.fit(data_with_target)

...

... # Run k-means a second time to get the clusters in the original
space
... # without target info. Initialize using centroids found in pre-
training.
... # Go through a single iteration of cluster assignment and centroid
... # recomputation.
... km_model = KMeans(n_clusters=self.k,
... init=km_model_pretrain.cluster_centers_[:,:2],
... n_init=1,
... max_iter=1)
... km_model.fit(X)
...
... self.km_model = km_model
... self.cluster_centers_ = km_model.cluster_centers_
... return self
...
... def transform(self, X, y=None):
... """Outputs the closest cluster ID for each input data point.
... """
... clusters = self.km_model.predict(X)
... return clusters[:,np.newaxis]
...
... def fit_transform(self, X, y=None):
... self.fit(X, y)
... return self.transform(X, y)

To illustrate the difference between using and not using target information when
clustering in Example 7-4, we apply the featurizer to a synthetic dataset
generated using scikit-learn’s make_moons function and plot the Voronoi
diagram of the cluster boundaries.

Example 7-4. k-means featurization with and without target hints
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
>>> from sklearn.datasets import make_moons

>>> training_data, training_labels = make_moons(n_samples=2000, noise=0.2)
>>> kmf_hint = KMeansFeaturizer(k=100, target_scale=10).fit(training_data,
... training_labels)

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

>>> kmf_no_hint = KMeansFeaturizer(k=100, target_scale=0).fit(training_data,
... training_labels)

>>> def kmeans_voronoi_plot(X, y, cluster_centers, ax):
... """Plots the Voronoi diagram of the k-means clusters overlaid with the
data"""
... ax.scatter(X[:, 0], X[:, 1], c=y, cmap='Set1', alpha=0.2)
... vor = Voronoi(cluster_centers)
... voronoi_plot_2d(vor, ax=ax, show_vertices=False, alpha=0.5)

Figure 7-6 shows a comparison of the results. The two moons of the dataset are
colored according to their class labels. The bottom panel shows the clusters
trained without target information. Notice that a number of clusters span the
empty space between the two classes. The top panel shows that when the
clustering algorithm is given target information, the cluster boundaries align
much better along class boundaries.

Let’s test the effectiveness of k-means features for classification. Example 7-5
applies logistic regression on the input data augmented with k-means cluster
features. It compares the results against the support vector machine with radial
basis function kernel (RBF SVM), k-nearest neighbors (kNN), random forest
(RF), and gradient boosting tree (GBT) classifiers. RF and GBT are popular
nonlinear classifiers with state-of-the-art performance. RBF SVM is a reasonable
nonlinear classifier for Euclidean space. kNN classifies data according to the
average of its k nearest neighbors.

Figure 7-6. k-means clusters with (top panel) and without (bottom panel) using target class
information

The default input data to the classifiers consists of the 2D coordinates of each
data point. Logistic regression is also given the cluster membership features
(labeled “LR with k-means” in Figure 7-7). As a baseline, we also try logistic
regression on just the 2D coordinates (labeled “LR”).

Example 7-5. Classification with k-means cluster features
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.svm import SVC
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.ensemble import RandomForestClassifier,
GradientBoostingClassifier

Generate some test data from the same distribution as training data
>>> test_data, test_labels = make_moons(n_samples=2000, noise=0.3)

Use the k-means featurizer to generate cluster features
>>> training_cluster_features = kmf_hint.transform(training_data)

>>> test_cluster_features = kmf_hint.transform(test_data)

Form new input features with cluster features
>>> training_with_cluster = scipy.sparse.hstack((training_data,
... training_cluster_features))
>>> test_with_cluster = scipy.sparse.hstack((test_data,
test_cluster_features))

Build the classifiers
>>> lr_cluster =
LogisticRegression(random_state=seed).fit(training_with_cluster,
... training_labels)
>>> classifier_names = ['LR',
... 'kNN',
... 'RBF SVM',
... 'Random Forest',
... 'Boosted Trees']
>>> classifiers = [LogisticRegression(random_state=seed),
... KNeighborsClassifier(5),
... SVC(gamma=2, C=1),
... RandomForestClassifier(max_depth=5, n_estimators=10,
max_features=1),
... GradientBoostingClassifier(n_estimators=10,
learning_rate=1.0,
... max_depth=5)]
>>> for model in classifiers:
... model.fit(training_data, training_labels)

Helper function to evaluate classifier performance using ROC
>>> def test_roc(model, data, labels):
... if hasattr(model, "decision_function"):
... predictions = model.decision_function(data)
... else:
... predictions = model.predict_proba(data)[:,1]
... fpr, tpr, _ = sklearn.metrics.roc_curve(labels, predictions)
... return fpr, tpr

Plot results
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> fpr_cluster, tpr_cluster = test_roc(lr_cluster, test_with_cluster,
test_labels)
>>> plt.plot(fpr_cluster, tpr_cluster, 'r-', label='LR with k-means')

>>> for i, model in enumerate(classifiers):

... fpr, tpr = test_roc(model, test_data, test_labels)

... plt.plot(fpr, tpr, label=classifier_names[i])

>>> plt.plot([0, 1], [0, 1], 'k--')
>>> plt.legend()

Figure 7-7 shows the receiver operating characteristic (ROC) curves of each of
the classifiers when evaluated on the test set. A ROC curve shows the trade-off
between true positives and false positives as we vary the classification decision
boundary. (See Zheng [2015] for more details.) A good classifier should quickly
reach a high true positive rate and a low false positive rate, so curves that rise
sharply toward the upper-left corner are good.

Figure 7-7. ROCs of k-means + logistic regression versus nonlinear classifiers and plain logistic
regression on the synthetic two-moons dataset

Our plot shows that logistic regression performs much better with cluster
features than without. In fact, with cluster features, the linear classifier performs
just as well as nonlinear classifiers. One minor caveat is that in this toy example,
we did not tune the hyperparameters for any of the models. There may be
performance differences once the models are fully tuned, but at least this shows
that it is possible for LR with k-means to be on a par with nonlinear classifiers.
This is a nice result because linear classifiers are much cheaper to train than
nonlinear classifiers. Lower computation cost allows us to try more models with

different features in the same period of time, which increases the chance of
ending up with a much better model.

Alternative Dense Featurization
Instead of one-hot cluster membership, a data point can also be represented by a
dense vector of its inverse distance to each cluster center. This retains more
information than simple binary cluster assignment, but the representation is now
dense. There is a trade-off here. One-hot cluster membership results in a very
lightweight, sparse representation, but one might need a larger k to represent data
of complex shapes. Inverse distance representation is dense, which could be
more expensive for the modeling step, but one might be able to get away with a
smaller k.

A compromise between sparse and dense is to retain inverse distances for only p
of the closest clusters. But now p is an extra hyperparameter to tune. (Can you
understand why feature engineering requires so much fiddling?) There is no free
lunch.

Pros, Cons, and Gotchas
Using k-means to turn spatial data into features is an example of model stacking,
where the input to one model is the output of another. Another example of
stacking is to use the output of a decision tree–type model (random forest or
gradient boosting tree) as input to a linear classifier. Stacking has become an
increasingly popular technique in recent years. Nonlinear classifiers are
expensive to train and maintain. The key intuition with stacking is to push the
nonlinearities into the features and use a very simple, usually linear model as the
last layer. The featurizer can be trained offline, which means that one can use
expensive models that require more computation power or memory but generate
useful features. The simple model at the top level can be quickly adapted to the
changing distributions of online data. This is a great trade-off between accuracy
and speed, and this strategy is often used in applications like targeted advertising
that require fast adaptation to changing data distributions.

KEY INTUITION FOR MODEL STACKING

Use sophisticated base layers (often with expensive models) to generate good (often
nonlinear) features, combined with a simple and fast top-layer model. This often strikes
the right balance between model accuracy and speed.

Compared to using a nonlinear classifier, k-means stacked with logistic
regression is cheaper to train and store. Table 7-1 is a chart detailing the training
and prediction complexity in both computation and memory for a number of
machine learning models. n denotes the number of data points, d the number of
(original) features.

Table 7-1. Complexity of ML models

Model Time Space

k-means training O(nkd) O(kd)

k-means predict O(kd) O(kd)

LR + cluster features training O(n(d+k)) O(d+k)

LR + cluster features predict O(d+k) O(d+k)

RBF SVM training O(n d) O(n)

RBF SVM predict O(sd) O(sd)

GBT training O(nd2 t) O(nd + 2 t)

GBT predict O(2 t) O(2 t)

kNN training O(1) O(nd)

kNN predict O(nd + k log n) O(nd)

 Streaming k-means can be done in time O(nd (log k + log log n)), which is much faster
than O(nkd) for large k.

For k-means, the training time is O(nkd) because each iteration involves
computing the d-dimensional distance between every data point and every
centroid (k). We optimistically assume that the number of iterations is not a
function of n, though this may not be true in all cases. Prediction requires
computing the distance between the new data point and each of the k centroids,
which is O(kd). The storage space requirement is O(kd), for the coordinates of
the k centroids.

Logistic regression training and prediction are linear in both the number of data

a

2 2

m m

m m

a

points and feature dimensions. RBF SVM training is expensive because it
involves computing the kernel matrix for every pair of input data. RBF SVM
prediction is less expensive than training; it is linear in the number of support
vectors s and the feature dimension d. GBT training and prediction are linear in
data size and the size of the model (t trees, each with at most 2 leaves, where m
is the maximum depth of the tree). A naive implementation of kNN requires no
training time at all because the training data itself is essentially the model. The
cost is paid at prediction time, where the input must be evaluated against each of
the original training points and partially sorted to retrieve the k closest neighbors.

Overall, k-means + LR is the only combination that is linear (with respect to the
size of training data, O(nd), and model size, O(kd)) at both training and
prediction time. The complexity is most similar to that of GBT, which has costs
that are linear in the number of data points, the feature dimension, and the size of
the model (O(2 t)). It is hard to say whether k-means + LR or GBT will result in
a smaller model—it depends on the spatial characteristics of the data.

POTENTIAL FOR DATA LEAKAGE
Those who remember our caution regarding data leakage (see “Guarding against data
leakage”) might ask whether including the target variable in the k-means featurization
step would cause such a problem. The answer is “yes,” but not as much in the case of
bin counting. If we use the same dataset for learning the clusters and building the
classification model, then information about the target will have leaked into the input
variables. As a result, accuracy evaluations on the training data will probably be overly
optimistic, but the bias will go away when evaluating on a hold-out validation set or
test set. Furthermore, the leakage will not be as bad as in the case of bin-counting
statistics (see “Bin Counting”), because the lossy compression of the clustering
algorithm will have abstracted away some of that information. To be extra careful
about preventing leakage, hold out a separate dataset for deriving the clusters, just like
in the case of bin counting.

k-means featurization is useful for real-valued, bounded numeric features that
form clumps of dense regions in space. The clumps can be of any shape, because
we can just increase the number of clusters to approximate them. (Unlike in the
classic clustering setup, we are not concerned with discovering the “true”
number of clusters; we only need to cover them.)

m

m

k-means cannot handle feature spaces where the Euclidean distance does not
make sense—i.e., weirdly distributed numeric variables or categorical variables.
If the feature set contains those variables, then there are several ways to handle
them:

1. Apply k-means featurization only on the real-valued, bounded numeric
features.

2. Define a custom metric to handle multiple data types and use the k-
medoids algorithms. (k-medoids is analogous to k-means but allows for
arbitrary distance metrics.)

3. Convert categorical variables to binning statistics (see “Bin Counting”),
then featurize them using k-means.

Combined with techniques for handling categorical variables and time series, k-
means featurization can be adapted to handle the kind of rich data that often
appears in customer marketing and sales analytics. The resulting clusters can be
thought of as user segments, which are very useful features for the next
modeling step.

Summary
This chapter illustrated the concept of model stacking using a somewhat
unconventional approach: combining supervised k-means with a simple linear
classifier. k-means is usually used as an unsupervised modeling method to find
dense clusters of data points in feature space. Here, however, k-means is
optionally given the class labels as input. This helps k-means to find clusters that
better align with the boundary between classes.

Deep learning, which we will discuss in the next chapter, takes model stacking to
a whole new level by layering neural networks on top of one another. Two
recent winners of the ImageNet Large Scale Visual Recognition Challenge
involved 13 and 22 layers of neural networks. They take advantage of the
availability of lots of unlabeled training images and look for combinations of
pixels that yield good image features. The technique in this chapter separately
trains the k-means featurizer from the linear classifier. But it’s possible to jointly
optimize the featurizer and the classier. As we shall see, deep learning training

takes the latter route.

Bibliography
Dunning, Ted. The man is a walking encyclopedia of data science. He is a
frequent speaker at industry events, and likes beer and nice people. Buy him a
beer and talk to him. You won’t regret it.

Zheng, Alice. Evaluating Machine Learning Models. Sebastopol, CA: O’Reilly
Media, 2015.

 This chapter is inspired by a conversation with Ted Dunning, active Apache
contributor and noted author. The stacking example came directly from Ted, and
he provided many helpful comments in the course of writing. If one could have
coauthors for individual chapters, Ted would be a coauthor for this one.

 We use the words “surface” and “manifold” interchangeably in this chapter.
The analogy works well for two-dimensional manifolds embedded in a three-
dimensional space, but it breaks down beyond three dimensions. A high-
dimensional manifold does not conform to our usual notion of a “surface.” Some
of the more outlandish manifolds have holes, and some loop back onto
themselves in a way that would never happen in the real physical world (e.g.,
M.C. Escher’s endless waterfall). Most data models assume nice manifolds, not
the crazy ones.

 This is a tried-and-true idea in mathematics. For instance, the derivative of a
function measures the speed of change at each point. Globally, the function may
do all sorts of weird things. But locally, it can be approximated by a linear
function of the derivative. If we know the derivative at each point, then calculus
allows us to more or less recover the entire original function.

1

2

3

http://www.oreilly.com/data/free/evaluating-machine-learning-models.csp
http://www.oreilly.com/pub/au/5873

Chapter 8. Automating the
Featurizer: Image Feature
Extraction and Deep Learning

Sight and sound are innate sensory inputs for humans. Our brains are hardwired
to rapidly evolve our abilities to process visual and auditory signals, with some
systems developing to respond to stimulus even before birth (Eliot, 2000).
Language skills, on the other hand, are learned. They take months to develop and
years to master. Many people take the development of their vision and hearing
for granted, but all of us have had to intentionally train our brains to understand
and use language.

Interestingly, the situation is the reverse for machine learning. We have made
much more headway with text analysis applications than image or audio. Take
the problem of search, for example. People have enjoyed years of relative
success in information retrieval and text search, whereas image and audio search
are still being perfected (though the breakthrough in deep learning models in the
last five years may finally herald the long-awaited revolution in image and
speech analysis).

The difficulty of progress is directly related to the difficulty of extracting
meaningful features from the respective types of data. Machine learning models
require semantically meaningful features to make semantically meaningful
predictions. In text analysis, particularly for languages such as English where a
basic unit of semantic meaning (a word) is easily extractable, progress can be
made very fast. Images and audio, on the other hand, are recorded as digital
pixels or waveforms. A single “atom” in an image is a pixel. In audio data, it is a
single measurement of waveform intensity. These contain much less semantic
information than an atom—a word—of text data. Therefore, the job of feature
extraction and engineering is much more challenging on image and audio than
on text.

In the last 20 years, computer vision research has focused on manually defined
pipelines for extracting good image features. For a while, image feature

extractors such as SIFT and HOG (described in the following sections) were the
standard. Recent developments in deep learning research have extended the
reach of traditional machine learning models by incorporating automatic feature
extraction in the base layers. They essentially replace manually defined feature
image extractors with manually defined models that automatically learn and
extract features. The manual work is still there, just abstracted further into the
belly of the modeling beast.

In this chapter, we will start with the most popular image feature extractors and
then dive into the most complicated modeling machinery covered in this book:
deep learning for feature learning.

The Simplest Image Features (and Why They Don’t
Work)
What are the right features to extract from an image? The answer of course
depends on what we are trying to do with those features. Let’s say our task is
image retrieval: we are given a picture and asked to find similar pictures from a
database of images. We need to decide how to represent each image, and how to
measure the differences between them. Can we just look at the percentage of
different colors in an image? Figure 8-1 shows two pictures having roughly the
same color profile but very different meanings; one looks like white cloud in a
blue sky, and the other is the flag of Greece. So, color information is probably
not enough to characterize an image.

Figure 8-1. Blue and white pictures—same color profile, very different meanings

Another simple idea is to measure the pixel value differences between images.
First, resize the images to have the same width and height. Each image is

represented by a matrix of pixel values. The matrix can be stacked into one long
vector, either by row or by column. The color of each pixel (e.g., the RGB
encoding of the color) is now a feature of the image. Finally, measure the
Euclidean distance between the long pixel vectors. This would definitely allow
us to tell apart the Greek flag and the white clouds, but it is too stringent as a
similarity measure. A cloud could take on a thousand different shapes and still
be a cloud. It could be shifted to the side of the image, or half of it might lie in
shadow. All of these transformations would increase the Euclidean distance, but
they shouldn’t change the fact that the picture is still of a cloud.

The problem is that individual pixels do not carry enough semantic information
about the image. Therefore, they are bad atomic units for analysis.

Manual Feature Extraction: SIFT and HOG
In 1999, computer vision researchers figured out a better way to represent
images using statistics of image patches: the Scale Invariant Feature Transform
(SIFT) [Lowe, 1999].

SIFT was originally developed for the task of object recognition, which involves
not only correctly tagging the image as containing an object, but pinpointing its
location in the image. The process involves analyzing the image at a pyramid of
possible scales, detecting interest points that could indicate the presence of the
object, extracting features (commonly called image descriptors in computer
vision) about the interest points, and determining the pose of the object.

Over the years, the usage of SIFT expanded to extract features not only for
interest points but across the entire image. The SIFT feature extraction procedure
is very similar to another technique, called the Histogram of Oriented Gradients
(HOG) [Dalal and Triggs, 2005]. Both of them essentially compute histograms
of gradient orientations. We now describe this process in detail.

Image Gradients
To do better than raw pixel values, we have to somehow “organize” the pixels
into more informative units. Differences between neighboring pixels are often
very useful. Pixel values usually differ at the boundary of objects, when there is
a shadow, within a pattern, or on a textured surface. The difference in value

between neighboring pixels is called an image gradient.

The simplest way to compute the image gradient is to separately calculate the
differences along the horizontal (x) and vertical (y) axes of the image, then
compose them into a 2D vector. This involves two 1D difference operations that
can be handily represented by a vector mask or filter. The mask [1, 0, –1] takes
the difference between the left neighbor and the right neighbor or the up-
neighbor and the down-neighbor, depending on which direction we apply the
mask. There are 2D gradient filters as well, but for the purpose of this example,
the 1D filter suffices.

To apply a filter to an image, we perform a convolution. It involves flipping the
filter and taking the inner product with a small patch of the image, then moving
to the next patch. Convolutions are very common in signal processing. We’ll use
∗ to denote the operation:

[a b c] ∗ [1 2 3] = c*1 + b*2 + a*3

The x and y gradients at pixel (i,j) are:

g (i,j) = [1 0 –1] ∗ [I(i – 1,j) I(i,j) I(i + 1,j)] = –1 * I(i – 1,j) + 1 * I(i + 1,j)

g (i,j) = [1 0 –1] ∗ [I(i,j – 1) I(i,j) I(i,j + 1)] = –1 * I(i,j – 1) + 1 * I(i,j + 1)

Together, they form the gradient:

A vector can be completely described by its direction and magnitude. The
magnitude of the gradient is equal to the Euclidean norm of the gradient

, which indicates how much the pixel values change around the

pixel. The direction or orientation of the gradient depends on the relative size of
the change in the horizontal and vertical directions; it can be computed as

. Figure 8-2 illustrates these mathematical concepts.

Figure 8-3 illustrates examples of the simple image gradient that is composed of
the vertical and horizontal gradients. Each example is an image of nine pixels.
Each pixel is labeled with a grayscale value. (Smaller numbers correspond to a

x

y

darker color.) The gradient for the center pixel is shown below each image. The
image on the left contains horizontal stripes, where the color only changes
vertically. Therefore, the horizontal gradient is zero and the gradient is nonzero
vertically. The center image contains vertical stripes; therefore, the horizontal
gradient is zero. The image on the right contains diagonal stripes and the
gradient is also diagonal.

Figure 8-2. Illustration of the definition of an image gradient

Figure 8-3. Simple examples of the image gradient

The definition works on synthetic toy examples. But would it work well on a
real image? In Example 8-1, we examine this using a picture of a cat from
scikit-image, shown in Figure 8-4 with its horizontal and vertical gradients.
Since the gradients are computed at every pixel location of the original image,
we end up with two new matrices, each of which can be visualized as an image.

Example 8-1. Calculating simple image gradients using Python
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> from skimage import data, color

Load the example image and turn it into grayscale
>>> image = color.rgb2gray(data.chelsea())

Compute the horizontal gradient using the centered 1D filter.
This is equivalent to replacing each non-border pixel with the
difference between its right and left neighbors. The leftmost
and rightmost edges have a gradient of 0.
>>> gx = np.empty(image.shape, dtype=np.double)
>>> gx[:, 0] = 0
>>> gx[:, -1] = 0
>>> gx[:, 1:-1] = image[:, :-2] - image[:, 2:]

Same deal for the vertical gradient
>>> gy = np.empty(image.shape, dtype=np.double)
>>> gy[0, :] = 0
>>> gy[-1, :] = 0
>>> gy[1:-1, :] = image[:-2, :] - image[2:, :]

http://scikit-image.org/

Matplotlib incantations
>>> fig, (ax1, ax2, ax3) = plt.subplots(3, 1,
... figsize=(5, 9),
... sharex=True,
... sharey=True)

>>> ax1.axis('off')
>>> ax1.imshow(image, cmap=plt.cm.gray)
>>> ax1.set_title('Original image')
>>> ax1.set_adjustable('box-forced')

>>> ax2.axis('off')
>>> ax2.imshow(gx, cmap=plt.cm.gray)
>>> ax2.set_title('Horizontal gradients')
>>> ax2.set_adjustable('box-forced')

>>> ax3.axis('off')
>>> ax3.imshow(gy, cmap=plt.cm.gray)
>>> ax3.set_title('Vertical gradients')
>>> ax3.set_adjustable('box-forced')

Figure 8-4. Gradients of an image of a cat

Note that the horizontal gradient picks out strong vertical patterns such as the
inner edges of the cat’s eyes, while the vertical gradient picks out strong
horizontal patterns such as the whiskers and the upper and lower lids of the eyes.

This might seem a little paradoxical at first, but it makes sense once we think
about it a bit more. The horizontal (x) gradient identifies changes in the
horizontal direction. A strong vertical pattern spans multiple y pixels at roughly
the same x position. Hence, vertical patterns result in horizontal differences in
pixel values. This is what our eyes detect as well.

Gradient Orientation Histograms
Individual image gradients can pick out minute differences in an image
neighborhood. But our eyes see bigger patterns than that. For instance, we see an
entire cat’s whisker, not just a small section. The human vision system identifies
contiguous patterns in a region, so we still have more work to do to summarize
the image gradients in a neighborhood.

How exactly might we summarize vectors? A statistician would answer, “Look
at the distribution!” SIFT and HOG both take this path. In particular, they
compute (normalized) histograms of the gradient vectors as image features. A
histogram divides data into bins and counts how many data points are in each
bin; this is an (unnormalized) empirical distribution. Normalization ensures that
the counts sum to 1. The mathematical language is that it has unit norm.

An image gradient is a vector, and vectors can be represented by two
components: the orientation and magnitude. So, we still need to decide how to
design the histogram to take both components into account. SIFT and HOG
settled on a scheme where the image gradients are binned by their orientation
angle θ, weighted by the magnitude of each gradient. Here is the procedure:

1. Divide 0°–360° into equal-sized bins.

2. For each pixel in the neighborhood, add a weight w to the bin
corresponding to its orientation θ. w is a function of the magnitude of
the gradient and other relevant information. For instance, that
information might be the inverse distance of the pixel to the center of
the image patch. The idea is that the weight should be large if the
gradient is large, and pixels near the center of the image neighborhood
matter more than pixels that are farther away.

3. Normalize the histogram.

Figure 8-5 provides an illustration of a gradient orientation histogram of 8 bins
composed from an image neighborhood of 4 × 4 pixels.

Figure 8-5. Illustration of a gradient orientation histogram of 8 bins based on gradients from a 4
× 4 square cell of pixels

There are, of course, a number of knobs to tweak in the basic gradient
orientation histogram algorithm, as well as some optional bells and whistles. As
usual, the right settings are probably highly dependent on the particular images
one wants to analyze.

Let’s examine next some of the decisions to make and the effects these can have
on your model.

How many bins should there be? Should they span from 0°–360°
(signed gradients) or 0°–180° (unsigned gradients)?
Having more bins leads to finer-grained quantization of gradient orientation, and
thus retains more information about the original gradients. But having too many
bins is unnecessary and could lead to overfitting to the training data. For
example, recognizing a cat in an image probably does not depend on the cat’s
whisker being oriented exactly at 3°.

There is also the question of whether the bins should span from 0°–360°, which
would retain the sign of the gradient along the y-axis, or from 0°–180°, which
would not retain the sign of the vertical gradient. The authors of the original
HOG paper (Dalal and Triggs, 2005) experimentally determined that 9 bins
spanning from 0°–180° is best, whereas the SIFT paper (Lowe, 2004)
recommended 8 bins spanning from 0°–360°.

What weight functions should be used?
The HOG paper compares various gradient magnitude weighting schemes: the
magnitude itself, its square or square root, binarized, or clipped at the high or
low ends. The plain magnitude, without adornments, performed the best in the
authors’ experiments.

SIFT also uses the plain magnitude of the gradient. Additionally, it wants to
avoid sudden changes in the feature descriptor resulting from small changes in
the position of the image window, so it downweights gradients that come from
the edges of the neighborhood using a Gaussian distance function measured
from the window center. In other words, the gradient magnitude is multiplied by

, where p is the location of the pixel that generated the
gradient, p is the location of the center of the image neighborhood, and σ, the
width of the Gaussian, is set to one-half the radius of the neighborhood.

SIFT also wants to avoid large changes in the orientation histogram resulting
from small changes in the orientation of individual image gradients. So, it uses
an interpolation trick that spreads the weight from a single gradient into adjacent
orientation bins. In particular, the root bin (the bin that the gradient is assigned
to) gets a vote of 1 times the weighted magnitude. Each of the adjacent bins get a
vote of 1 – d, where d is the difference in histogram bin unit from the root bin.

Overall, the vote from a single image gradient for SIFT is:

where is the gradient of pixel p in bin b, is the interpolation weight of b,
and σ is the Gaussian distance to the center from p.

How are neighborhoods defined? How should they cover the
image?
HOG and SIFT both settled on a two-level representation of image
neighborhoods: first adjacent pixels are organized into cells, and neighboring
cells are then organized into blocks. An orientation histogram is computed for
each cell, and the cell histogram vectors are concatenated to form the final
feature descriptor for the whole block.

SIFT uses cells of 16 × 16 pixels, organized into 8 orientation bins, then grouped

0

by blocks of 4 × 4 cells, making for 4 × 4 × 8 = 128 features for the image
neighborhood.

The HOG paper experimented with rectangular and circular shapes for the cells
and blocks. Rectangular cells are called R-HOG blocks. The best R-HOG setting
was found to be 8 × 8 pixels with 9 orientation bins each, grouped into blocks of
2 × 2 cells. Circular cells are called C-HOG blocks, with variants determined by
the radius of the central cell, whether or not the cells are radially divided, the
width of the outer cells, etc.

No matter how the neighborhoods are organized, they typically overlap to form
the feature vector for the whole image. In other words, cells and blocks shift
across the image horizontally and vertically, a few pixels at a time, to cover the
entire image.

The main ingredients of neighborhood architecture are multilevel organization
and overlapping windows that shift across the image. The same ingredients are
utilized in the design of deep learning networks.

What kind of normalization should be done?
Normalization evens out the feature descriptors so that they have comparable
magnitude. It is synonymous with scaling, which we discussed in Chapter 4. We
found that feature scaling on text features (in the form of tf-idf) did not have a
large effect on classification accuracy. The story is quite different for image
features, which can be quite sensitive to changes in lighting and contrast that
appear in natural images. For instance, consider images of an apple under a
strong spotlight versus a soft diffused light coming through a window. The
image gradients would have very different magnitudes, even though the object is
the same. For this reason, image featurization in computer vision usually starts
with global color normalization to remove illumination and contrast variance.
For SIFT and HOG, it turns out that such preprocessing is unnecessary so long
as we normalize the features.

SIFT follows a normalize–threshold–normalize scheme. First, the block feature
vector is normalized to unit length (normalization). Then, the features are
clipped to a maximum value in order to get rid of extreme lighting effects such
as color saturation from the camera. Finally, the clipped features are again
normalized to unit length.

The HOG paper experimented with different normalization schemes involving
 and norms, including the normalize–threshold–normalize scheme used in

the SIFT paper. The authors found pure normalization to be slightly less
reliable than the other methods (which performed comparably).

SIFT Architecture
The SIFT pipeline requires quite a number of steps. HOG is slightly simpler but
follows many of the same basic steps, such as creating a gradient histogram and
normalization. Figure 8-6 illustrates the SIFT architecture. Starting from a region
of interest in the original image, we first divide the region into a grid. Each grid
cell is then further divided into subgrids. Each subgrid element contains a
number of pixels, and each pixel produces a gradient. Each subgrid element
produces a weighted gradient estimate, where the weights are chosen so that
gradients outside of the subgrid element can contribute. These gradient estimates
are then aggregated into an orientation histogram for the subgrid, where
gradients can have weighted votes as described previously. The orientation
histograms for each subgrid are then concatenated to form a long gradient
orientation histogram for the entire grid. (If the grid is divided into 2 × 2
subgrids, then there will be 4 gradient orientation histograms to concatenate into
1.) This is the feature vector for the grid, which then goes through a normalize–
threshold–normalize process. First, the vector is normalized to have unit norm.
Then, individual values are clipped to a maximum threshold. Finally, the
thresholded vector is normalized again. This is the final SIFT feature descriptor
for the image patch.

Figure 8-6. SIFT architecture—steps to produce a feature vector for a region of interest in the
original image

Learning Image Features with Deep Neural Networks
SIFT and HOG went a long way toward defining good image features. However,
the latest gains in computer vision have come from a very different direction:
deep neural network models. The breakthrough happened at the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012, where a group of
researchers from the University of Toronto nearly halved the error rate of the
previous year’s winner. They branded their method “deep learning” to
emphasize that, unlike previous architecture neural network models, the latest
generation contains many layers of neural networks and transformations stacked
on top of each other. The winning model of ILSVRC 2012—subsequently
dubbed AlexNet, after the name of the lead author—has 13 layers (Krizhevsky et
al., 2012). The winner of ILSVRC 2014, GoogLeNet, has 22 layers (Szegedy et
al., 2014).

On the surface, the mechanism of stacked neural networks appears very different
from the image gradient histograms of SIFT and HOG. But a visualization of
AlexNet shows that the first few layers are essentially computing edge gradients
and other simple patterns, much like SIFT and HOG. Subsequent layers combine

local patterns into more global patterns. The end result is a feature extractor that
is much more powerful than what came before.

The infrastructure of stacked layers of neural networks (or any other
classification model) is not new. But training such complex models requires a lot
of data and a lot of computing power, which was not available until recently.
The ImageNet dataset contains a labeled set of 1.2 million images from 1,000
classes. Modern GPUs have sped up matrix-vector computations, which lie at the
inner core of many machine learning models (including neural networks). The
success of deep learning methods rests upon the availability of lots of data and
lots of GPU hours.

Deep learning architectures can be composed of several types of layers. AlexNet,
for instance, contains fully connected, convolutional response normalization, and
max-pooling layers. We’ll now look at each of these in turn.

Fully Connected Layers
At the core of all neural networks are linear functions of the input. Logistic
regression, which we encountered in Chapter 4, is an example of a neural
network. A fully connected neural network is simply a set of linear functions of
all of the input features. Recall that a linear function can be written as an inner
product between the input feature vector and a weight vector, plus a possible
constant term. A collection of linear functions can be represented as a matrix-
vector product, where the weight vector becomes a weight matrix (W).

The mathematical definition of a fully connected layer is:

z = Wx + b

where each row of W is a weight vector that maps the entire input vector x into a
single output in z. b is a vector of scalars representing the constant offset (or
bias) for each neuron.

The fully connected layer is so named because every input can be used in every
output. Mathematically, this means that there are no restrictions on the values in
the matrix W. (As we will soon see, a convolutional layer makes use of only a
small subset of inputs for each output.) Pictorially, a fully connected neural net
can be represented by a complete bipartite graph where every node in the input is
connected to every node in the output (see Figure 8-7).

Figure 8-7. A fully connected neural network, represented as a graph

Fully connected layers contain the maximum possible number of parameters
(#input × #output)—hence, they are considered expensive. Such dense
connection allows the network to detect global patterns that could involve all
inputs. The last two layers of AlexNet are fully connected for this reason. The
outputs are still independent from each other, conditioned on the inputs.

Convolutional Layers
In contrast to fully connected layers, a convolutional layer uses only a subset of
inputs for each output. The transformation “moves” across the input, producing
outputs using a few features at a time. For simplicity, one can use the same
weights for different sets of input, instead of learning new weights for each set of
input.

Mathematically, the convolution operator takes two functions as input and
produces one function as output. It flips one of the input functions, moves it
across the other function, and outputs the total area under the multiplied curves
at each point:

The way to compute total area under a curve is to take its integral. The operator
is symmetric in the inputs, meaning that it does not matter whether we flip the
first input or the second; the output is the same.

We’ve already seen an example of simple convolution, when we looked at image
gradients (“Image Gradients”). But the mathematical definition of convolution
may still appear to be somewhat convoluted. There is reason to its madness. It’s
easiest to explain the intuition behind convolution using an example from signal
processing.

Imagine that we have a little black box. To see what the black box does, we pass
a single unit of stimulus through it. We record whatever the output looks like on
a little sheet of paper. We wait until there is no more response to the original
stimulus. The resulting function over time is the response function; let’s call it
g(t).

Imagine now that we have some crazy wild signal f(t), which we proceed to feed
through the black box. At time t = 0, f(0) interacts with the black box and
produces f(0) multiplied by g(0). At time t = 1, f(1) enters the black box and gets
multiplied by g(0). At the same time, the black box continues to respond to the
previous signal f(0), which is now multiplied by g(1). So, the total output at time
t = 1 is (f(0) * g(1)) + (f(1) * g(0)). At time t = 2, the situation gets even more
complicated, with f(2) entering the picture, and f(0) and f(1) continuing to
generate their responses. The total output at time t = 2 is (f(0) * g(2)) + (f(1) *
g(1)) + (f(2) * g(0)). In this way, the response function effectively gets flipped in
time, with τ = 0 always interacting with whatever is currently entering the black
box, and the tail of the response function interacting with whatever came before.

Figure 8-8 illustrates the quantities at play at each time step (note that we’ve
made time discrete for convenience of description—in reality, time is
continuous, so the summation is really an integral). When computing the value
of the convolution at a particular time step, you multiply the overlapping signals
together and sum them.

Figure 8-8. Convolution of two discrete signals, f and g

This black box is called a linear system because it doesn’t do anything more
crazy than scalar multiplication and summation. The convolution operator
cleanly captures the effect of a linear system.

INTUITION BEHIND CONVOLUTION
The convolution operator captures the effect of a linear system, which multiplies the
incoming signal with its response function, summing over current responses to all past
input.

In our example, g(t) is used to denote the response function, and f(t) the input.
But since convolution is symmetric, it doesn’t really matter which is the
response and which the input. The output is simply a combination of both. g(t) is
also known as a filter.

Images are two-dimensional signals, so we need a 2D filter. A 2D convolutional
filter extends the 1D case by taking the integral over two variables:

1

Since digital images have discrete pixels, the convolution integrals become
discrete sums. Furthermore, since the number of pixels is finite, the filter
function only needs a finite number of elements. In image processing, a 2D
convolutional filter is also known as a kernel or a mask.

When applying a convolutional filter to an image, one does not necessarily
define a giant filter that covers the entire image. Rather, one formulates a small
filter covering just a few pixels by a few pixels and applies the same filter across
the image, shifting over the horizontal and vertical pixel directions (see Figure 8-
9).

Figure 8-9. Structure of a 1D convolutional neural net

Because the same filter is used across the image, one only needs to define a
small set of parameters. The trade-off is that the filter can absorb information
only within a small pixel neighborhood at a time. In other words, a convolutional
neural net identifies local patterns instead of global ones.

CONVOLUTIONAL FILTER EXAMPLE
In this example, we apply a Gaussian filter to an image. The Gaussian
function forms a smooth and symmetric mound around zero. The filter

produces a weighted average of nearby function values. When applied to an
image, it has the effect of blurring nearby pixel values. The 2D Gaussian
filter is defined by:

where σ is the standard deviation of the Gaussian function, which controls the
width of the “mound.”

In Example 8-2, we’ll first create a 2D Gaussian filter, then convolve it with
our favorite cat image to produce a blurred cat (see Figure 8-10). Note that
this is not the most accurate way to compute a Gaussian filter, but it is the
easiest to understand. A better implementation would take the weighted
average value at each discrete point rather than the simple point estimate.

Example 8-2. Applying a simple Gaussian filter on an image
>>> import numpy as np

First create X,Y meshgrids of size 5x5 on which we compute the Gaussian
>>> ind = [-1., -0.5, 0., 0.5, 1.]
>>> X,Y = np.meshgrid(ind, ind)
>>> X
array([[-1. , -0.5, 0. , 0.5, 1.],
 [-1. , -0.5, 0. , 0.5, 1.],
 [-1. , -0.5, 0. , 0.5, 1.],
 [-1. , -0.5, 0. , 0.5, 1.],
 [-1. , -0.5, 0. , 0.5, 1.]])

G is a simple, unnormalized Gaussian kernel where the value at (0,0) is
1.0
>>> G = np.exp(-(np.multiply(X,X) + np.multiply(Y,Y))/2)
>>> G
array([[0.36787944, 0.53526143, 0.60653066, 0.53526143, 0.36787944],
 [0.53526143, 0.77880078, 0.8824969 , 0.77880078, 0.53526143],
 [0.60653066, 0.8824969 , 1. , 0.8824969 , 0.60653066],
 [0.53526143, 0.77880078, 0.8824969 , 0.77880078, 0.53526143],
 [0.36787944, 0.53526143, 0.60653066, 0.53526143, 0.36787944]])

>>> from skimage import data, color
>>> cat = color.rgb2gray(data.chelsea())

>>> from scipy import signal
>>> blurred_cat = signal.convolve2d(cat, G, mode='valid')

>>> import matplotlib.pyplot as plt
>>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,4),
... sharex=True, sharey=True)

>>> ax1.axis('off')
>>> ax1.imshow(cat, cmap=plt.cm.gray)
>>> ax1.set_title('Input image')
>>> ax1.set_adjustable('box-forced')

>>> ax2.axis('off')
>>> ax2.imshow(blurred_cat, cmap=plt.cm.gray)
>>> ax2.set_title('After convolving with a Gaussian filter')
>>> ax2.set_adjustable('box-forced')

Figure 8-10. An image of a cat, before and after applying a 2D Gaussian filter

The convolutional layers in AlexNet are three-dimensional. In other words they
operate on voxels (values in the array representing the 3D space of the image)
from the previous layer. The first convolutional neural net takes raw RGB
images and learns convolution filters for a local image neighborhood across all
three color channels. Subsequent layers take as input voxels across space and
kernel dimensions. See Figure 8-14 for more details.

Rectified Linear Unit (ReLU) Transformation
The output of a neural net is often passed through another nonlinear
transformation, also known as an activation function. Common choices are the
tanh function (a smooth nonlinear function bounded between –1 and 1), the
sigmoid function (a smooth nonlinear function bounded between 0 and 1,

introduced in “Classification with Logistic Regression”), or what’s known as a
rectified linear unit. A ReLU is a simple variation of a linear function where the
negative part is zeroed out. In other words, it trims away the negative values, but
leaves the positive part unbounded. The range of ReLU extends from 0 to ∞.

COMMON ACTIVATION FUNCTIONS
A ReLU is a linear function with the negative part zeroed out:

ReLU(x) = max(0, x)

The tanh function is a trigonometric function that smoothly increases from –1
to 1:

The sigmoid function increases smoothly from 0 to 1:

The three functions are illustrated in Figure 8-11.

Figure 8-11. Illustration of three common activation functions: ReLU, tanh, and sigmoid

The ReLU transformation has no effect on nonnegative functions such as the raw
image or the Gaussian filter. However, a trained neural net, whether fully
connected or convolutional, will likely output negative values. AlexNet uses

ReLU instead of other transformations, citing faster convergence during training
(Krizhevsky et al., 2012). It applies ReLU to every convolutional and fully
connected layer.

Response Normalization Layers
After the discussions in Chapter 4 and earlier in this chapter, normalization
should by now be a familiar concept. Normalization divides an individual output
by a function of the collective total response. Hence, another way of
understanding normalization is that it creates competition amongst neighbors
because the strength of each output is now measured relative to its neighbors
(see Figure 8-12). AlexNet normalizes the output at each location across
different kernels.

Figure 8-12. Structure of response normalization over convolution kernel outputs from the
previous layer—the normalization constants are computed based on a neighborhood from the

previous layer

LOCAL RESPONSE NORMALIZATION BREEDS
COMPETITION AMONG NEIGHBORING KERNELS

As the name suggests, local response normalization divides a value by a
combination of its neighbors. Here is the formula:

Here, x is the output of the kth kernel, and y is the normalized response
relative to other kernels in the neighborhood. The normalization is performed
separately for each output location. That is, for each output location (i,j), we
normalize across the nearby convolution kernel outputs. Note that this isn’t
the same as normalizing over the image neighborhood or output locations.
The size of the kernel neighborhood, c, α, and β are all hyperparameters that
are tuned via a validation set of images.

Pooling Layers
A pooling layer combines multiple inputs into a single output. As the
convolutional filter moves across an image, it generates an output for every
neighborhood under its lens. Pooling forces a local image neighborhood to
produce one value instead of many. This reduces the number of outputs in the
intermediate layers of the deep learning network, which effectively reduces the
probability of overfitting the network to training data.

There are multiple ways to pool inputs: averaging, summing (or computing a
generalized norm), or taking the maximum value. Pooling moves across the
image or intermediate output layers. AlexNet uses overlapping max pooling,
moving across the image in strides of two pixels (or outputs) and pooling across
three neighbors.

k k

Figure 8-13. Max pooling outputs the maximum number of nonoverlapping rectangles per
subregion using nonlinear downsampling

Structure of AlexNet
All together, AlexNet involves five convolution layers, two response
normalization layers, three max pooling layers, and two fully connected layers.
Combined with the final classification output layer, there are a total of 13 neural
network layers in the model, forming 8 layer groups. See Figure 8-14 for details.

Figure 8-14. Architecture diagram of AlexNet—the different shades of gray (or magenta and
blue, if you’re viewing the illustrations in color) denote layers that reside on GPU 1 and GPU 2

The input image is first scaled to 256 × 256 pixels. The input is actually random
crops of size 224 × 224, with 3 color channels. The first two convolution layers
are each followed by a response normalization layer and a max pooling layer,
and the last convolution layer is followed by max pooling. The original paper
splits training data and computation across two GPUs. Communications between
layers are mostly limited to within the same GPU. The exceptions are between
layer groups 2 and 3, and after layer group 5. At those boundary points, the next
layer takes as input a voxel of kernels from the previous layer across both GPUs.
ReLU transformation follows every intermediate layer.

Figure 8-15 shows a detailed view of convolution+response normalization+max
pooling. Note that the normalization constant is computed across kernels,
whereas pooling happens across image regions. Also, pooling reduces the
dimension of the layer.

Figure 8-15. Detailed view of convolution+response normalization+max pooling

Note that AlexNet’s architecture is reminiscent of the gradient histogram–
normalize–threshold–normalize architecture of SIFT/HOG feature extractors
(see Figure 8-6), but with many more layers. (Hence the “deep” in “deep
learning.”) Unlike in SIFT/HOG, however, the convolution kernels and full
connection weights are learned from data, not predefined. Also, the
normalization steps in SIFT are performed across the feature vector over the
entire image region, whereas the response normalization layer in AlexNet
normalizes across the convolution kernels.

At a high level, the model starts by extracting patterns out of local image
neighborhoods. Each subsequent layer builds upon the output of the previous
layers, effectively covering successively larger areas of the original image.
Hence, even though the first five convolution layers all have fairly small kernel
widths, the later layers are able to formulate more global patterns. The fully
connected layers at the end are the most global.

Although the gist of patterns is conceptually clear, it is a hard problem to
visualize the actual patterns each layer picks out. Figures 8-16 and 8-17 show
visualizations of the first two layers of convolution kernels learned by the model.
The first layer consists of detectors of grayscale edges and textures at different
orientations, and color blobs and textures. The second layer appears to contain
detectors of various smooth patterns.

Figure 8-16. Visualization of the first layer of convolution kernels in a trained AlexNet: the first
half of the kernels are learned on GPU 1 and appear to detect grayscale edges and textures at

different orientations; the second half, trained on a second GPU, focus on color blobs and
patterns

Figure 8-17. Visualization of the second layer of convolution kernels of a trained AlexNet

Despite huge advances in the area, image featurization is still more of an art than
a science. Ten years ago, people handcrafted feature extraction steps using a
combination of image gradients, edge detection, orientation, spatial cues,
smoothing, and normalization. Nowadays, deep learning architects build models
that encapsulate much the same ideas, but the parameters are automatically
learned from training images. The magic voodoo is still there, just hidden one
abstraction deeper in the model!

Summary
Nearing the end, we can build on the intuition gained to better understand why
the most straightforward and simple image features will not always be the most
useful for performing tasks such as image classification. Instead of representing
each pixel as an atomic unit, it is more important to consider the relationships
pixels have with other pixels near them. We can adapt techniques developed for

other tasks, such as SIFT and HOG, to better extract features across entire
images by analyzing gradients in neighborhoods.

The next leap forward in recent years applies deep neural networks to computer
vision to push feature extraction of images even further. The important thing to
remember here is that deep learning stacks many layers of neural networks and
transformations on top of each other. Some of these layers, when examined
individually, begin to tease out similar features that can be identified as building
blocks for human vision: defining lines, gradients, color maps.

Bibliography
“CS231n: Convolutional Neural Networks for Visual Recognition.” Retrieved
from http://cs231n.github.io/convolutional-networks/.

Dalal, Navneet, and Bill Triggs. “Histograms of Oriented Gradients for Human
Detection.” Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (2005): 886–893.

Eliot, Lise. What’s Going On in There? How the Brain and Mind Develop in the
First Five Years of Life. New York: Bantam Books, 2000.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks.” Advances in Neural
Information Processing Systems 25 (2012): 1097–1105.

Lowe, David G. “Object Recognition from Local Scale-Invariant Features.”
Proceedings of the International Conference on Computer Vision (1999): 1150–
1157.

Lowe, David G. “Distinctive Image Features from Scale-Invariant Keypoints.”
International Journal of Computer Vision 60:2 (2004): 91–110.

Malisiewicz, Tomasz. “From Feature Descriptors to Deep Learning: 20 Years of
Computer Vision.” Tombone’s Computer Vision Blog, January 20, 2015.
http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-
deep.html.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. “Going Deeper with Convolutions.” Proceedings of the 2015 IEEE

http://cs231n.github.io/convolutional-networks/
http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html

Conference on Computer Vision and Pattern Recognition (2015): 1–9.

Zeiler, Matthew D., and Rob Fergus. “Visualizing and Understanding
Convolutional Networks,” Proceedings of the 13th European Conference on
Computer Vision (2014): 818–833.

 Technically, a filter is a transformation that eliminates certain parts of the
Fourier spectrum. But it is increasingly common to use “filter” as a generic term.

1

Chapter 9. Back to the Feature:
Building an Academic Paper
Recommender

“In mathematics you don’t understand things. You just get used to them.”
—John von Neumann

When the path from data to results was first introduced in Figure 1-1, it may not
have been clear how there would ever be a way forward. Throughout this book,
we have focused on introducing basic principles of feature engineering using toy
models and clean, simple datasets. These examples were intended to be
illustrative and enlightening.

Machine learning examples generally show the best-case scenario and results.
This masks the path we have described thus far in the book. Now that the
foundation is set, we are leaving the world of simple, toy data and diving into the
process of feature engineering with a real-world, structured dataset. As we move
through each step, we will be examining the raw data forming each feature, what
the transformed feature becomes, and what trade-offs we make along the way.

To be clear, our goal for this example is not to build the best model for this
dataset. Rather, it is to demonstrate the practical application of a handful of our
techniques, as well as how to more deeply examine and understand whether each
technique is providing value to the model one is building.

Item-Based Collaborative Filtering
Our task will be to build a recommender for academic papers using a subsample
of the Microsoft Academic Graph dataset. This should come in extremely handy
for all of you who are searching for citations but have not yet discovered Google
Scholar. Here are some relevant statistics about the dataset:

MICROSOFT ACADEMIC GRAPH DATASET

It contains 166,192,182 unique papers, available via Open Academic
Graph. It is intended to be used for research purposes only.

The total size of the dataset is 104 GB.

Each observation has 18 variables to identify each paper, including
the paper’s title, abstract, authors, keywords, and fields of study.

The dataset is designed to be easy to store and access in a database. It is not tidy
for machine learning models out of the box, but requires some initial wrangling.
Some teachers like to spare you this step, boosting your ego by getting directly
to the models and results. None of that here. We are starting together from the
very beginning.

Our initial approach will be to wrangle a few variables into the right shape to
push through an item-based collaborative filter. We will see if reasonably similar
papers can be found in a timely and efficient manner.

THE ORIGINS OF ITEM-BASED COLLABORATIVE
FILTERING

This approach was first developed at Amazon as an improvement to user-based
algorithms for recommending products. Sarawar et al. (2001) walk through the
challenges and benefits of switching the perspective in recommenders from the user to
the item.

Item-based collaborative filtering provides recommendations based on the
similarity between items. This works in two stages: first finding the similarity
scores between items, then ranking all scores to find the top-N similar item
recommendations.

BUILDING AN ITEM-BASED RECOMMENDER
An item-based recommender performs three tasks:

1. Generalize information about a “thing” or item.

2. Score all other items to find ones “like” this one.

3. Return ranked scores + items.

https://www.openacademic.ai/oag/

First Pass: Data Import, Cleaning, and Feature
Parsing
Like all good science experiments, we will start off with a hypothesis. In this
case, we assume that papers published at about the same time and in similar
fields of study will be the most useful to users. We will take a naive approach of
parsing out these fields from a subsample of the overall dataset. After generating
simple sparse arrays, we’ll run the entire item array through an item-based
collaborative filter to see if we get good results.

The item-based collaborative filter depends on a similarity score to compare
items. In this case, the cosine similarity provides a reasonable comparison
between two non-zero vectors. The following example actually uses the cosine
distance, which is the complement of the cosine similarity in the positive space,
or:

D (A,B) = 1 – S (A,B)

where D is the cosine distance and S is the cosine similarity.

Academic Paper Recommender: Naive Approach
The first step in our journey is to import and examine the dataset. In Example 9-
1, we scope our experiment by limiting the fields available after the initial
import. These fields are still rich in possibility, as shown in Figure 9-1.

Example 9-1. Import + filter data
>>> import pandas as pd

>>> model_df = pd.read_json('data/mag_papers_0/mag_subset20K.txt', lines=True)
>>> model_df.shape
(20000, 19)
>>> model_df.columns
Index(['abstract', 'authors', 'doc_type', 'doi', 'fos', 'id', 'issue',
 'keywords', 'lang', 'n_citation', 'page_end', 'page_start',
'publisher',
 'references', 'title', 'url', 'venue', 'volume', 'year'],
 dtype='object')

C C

C C

filter out non-English articles and focus on a few variables
>>> model_df = model_df[model_df.lang == 'en']
... .drop_duplicates(subset='title', keep='first')
... .drop(['doc_type', 'doi', 'id', 'issue', 'lang', 'n_citation',
... 'page_end', 'page_start', 'publisher', 'references',
... 'url', 'venue', 'volume'],
... axis=1)
>>> model_df.shape
(10399, 6)

Figure 9-1. First two rows of the Microsoft Academic Graph dataset

Table 9-1 summarizes best how further wrangling is needed to get the raw data
into a better shape for a model. Lists and dictionaries are good for data storage,
but are not tidy or well suited for machine learning without some unpacking
(Wickham, 2014).

Table 9-1. Data schema for model_df

Field name Description Field type # NaN

abstract paper abstract string 4393

authors author names and affiliations list of dict, keys = name, org 1

fos fields of study list of strings 1733

keywords keywords list of strings 4294

title paper title string 0

year published year int 0

We focus first on two fields in Example 9-2, transforming them from lists and
integers into a feature array, as shown in Figure 9-2.

Example 9-2. Collaborative filtering stage 1: Build item feature matrix
>>> unique_fos = sorted(list({feature
... for paper_row in model_df.fos.fillna('0')
... for feature in paper_row }))

>>> unique_year = sorted(model_df['year'].astype('str').unique())
>>> def feature_array(x, var, unique_array):
... row_dict = {}

... for i in x.index:

... var_dict = {}

... for j in range(len(unique_array)):

... if type(x[i]) is list:

... if unique_array[j] in x[i]:

... var_dict.update({var + '_' + unique_array[j]: 1})

... else:

... var_dict.update({var + '_' + unique_array[j]: 0})

... else:

... if unique_array[j] == str(x[i]):

... var_dict.update({var + '_' + unique_array[j]: 1})

... else:

... var_dict.update({var + '_' + unique_array[j]: 0})

... row_dict.update({i : var_dict})

... feature_df = pd.DataFrame.from_dict(row_dict, dtype='str').T

... return feature_df

>>> year_features = feature_array(model_df['year'], unique_year)
>>> fos_features = feature_array(model_df['fos'], unique_fos)

>>> first_features = fos_features.join(year_features).T

>>> from sys import getsizeof
>>> print('Size of first feature array: ', getsizeof(first_features))
Size of first feature array: 2583077234

Figure 9-2. Head of first_features—observations’ (papers') indices from the original data set are
columns, features are rows

We have now successfully turned a relatively small dataset, ~10K rows of raw
data, into 2.5 GB of features. But this path is too sluggish for quick, iterative
exploration. We need methods that will be faster and result in features that will
consume less computational resources and experimentation time.

For now, though, let’s see how our current features perform at giving us a good
recommendation in the next stage (Example 9-3). We’ll define a “good”
recommendation as a paper that looks similar to the input.

Example 9-3. Collaborative filtering stage 2: Search for similar items
>>> from scipy.spatial.distance import cosine

>>> def item_collab_filter(features_df):
... item_similarities = pd.DataFrame(index = features_df.columns,
... columns = features_df.columns)
... for i in features_df.columns:
... for j in features_df.columns:
... item_similarities.loc[i][j] = 1 - cosine(features_df[i],
... features_df[j])
... return item_similarities

>>> first_items = item_collab_filter(first_features.loc[:, 0:1000])

Why does it take so long for us to calculate the item similarities using only two
features? We are taking the dot product of a 10,399 × 1,000 matrix using a
nested for loop. The time per loop increases as we increase the number of
observations we add to the model. Remember, this is a subset of the total
available dataset, filtered for English-only papers. As we move closer to a
“good” result, we’ll need to go back and test on the larger set for our best results.

How can we make this faster? Since we only need one result at a time, we can
change our function so that we only calculate one item at a time, specifying the
number of top results we want. We’ll do this later, as we continue to move
through our experiment. For now, it is useful to see the full feature space to get
an understanding of the impact of iterative work on brute-forcing our way
through a real-world dataset.

We need to get a better idea of how these features will translate to us getting a
good recommendation. Do we have enough observations to move forward? Let’s
plot a heatmap (Example 9-4) to see if we have any papers that are similar to
each other. Figure 9-3 shows the result.

Example 9-4. Heatmap of paper recommendations
>>> import matplotlib.pyplot as plt
>>> import seaborn as sns
>>> import numpy as np
>>> %matplotlib inline
>>> sns.set()
>>> ax = sns.heatmap(first_items.fillna(0),
... vmin=0, vmax=1,
... cmap="YlGnBu",

... xticklabels=250, yticklabels=250)
>>> ax.tick_params(labelsize=12)

Darker pixels signal items that are similar to one another. The dark diagonal line
shows that the cosine similarity is correctly indicating that each paper is most
similar to itself. However, because there are a lot of NaNs for one of our
features, the line is broken along the diagonal. We can see that while most of the
items are not similar to one another—i.e., our dataset is fairly diverse—there are
some other high-scoring candidates. These may or may not be good
recommendations qualitatively, but at least we can see that our methods are not
so mad.

Figure 9-3. Heatmap of similar papers based on two raw features: year and fields of study

Example 9-5 shows how to translate these item similarities into a
recommendation. The good news is that we have a wide variety of features still
available, with lots of room for improvement.

Example 9-5. Item-based collaborative filtering recommendations
>>> def paper_recommender(paper_ix, items_df):
... print('Based on the paper: \nindex = ', paper_ix)

... print(model_df.iloc[paper_ix])

... top_results =
items_df.loc[paper_ix].sort_values(ascending=False).head(4)
... print('\nTop three results: ')
... order = 1
... for i in top_results.index.tolist()[-3:]:
... print(order,'. Paper index = ', i)
... print('Similarity score: ', top_results[i])
... print(model_df.iloc[i], '\n')
... if order < 5: order += 1

>>> paper_recommender(2, first_items)

Based on the paper:
index = 2
abstract NaN
authors [{'name': 'Jovana P. Lekovich', 'org': 'Weill ...
fos NaN
keywords NaN
title Should endometriosis be an indication for intr...
year 2015
Name: 2, dtype: object

Top three results:
1 . Paper index = 2
Similarity score: 1.0
abstract NaN
authors [{'name': 'Jovana P. Lekovich', 'org': 'Weill ...
fos NaN
keywords NaN
title Should endometriosis be an indication for intr...
year 2015
Name: 2, dtype: object

2 . Paper index = 292
Similarity score: 1.0
abstract NaN
authors [{'name': 'John C. Newton'}, {'name': 'Beers M...
fos [Wide area multilateration, Maneuvering speed,...
keywords NaN
title Automatic speed control for aircraft
year 1955
Name: 561, dtype: object

3 . Paper index = 593

Similarity score: 1.0
abstract This paper demonstrates that on‐site greywater...
authors [{'name': 'Eran Friedler', 'org': 'Division of...
fos [Public opinion, Environmental Engineering, Wa...
keywords [economic analysis, tratamiento desperdicios, ...
title The water saving potential and the socio-econo...
year 2008
Name: 1152, dtype: object

Yikes. The good news is that the most similar paper returned is the one we are
looking for. The bad news is that the next two papers don’t seem to be very close
to our initial search, even for the features we have chosen.

“Yes, yes,” you may say, “but this is the era of Big Data! That will solve our
problems! Can’t we just push more data through for better results?” Potentially.
But even Big Data cannot compensate for poor data and engineering choices.

Figure 9-4. Machine learning (https://xkcd.com/1838/)

Our current brute-force methods are too slow for smart, iterative engineering.
Let’s try some of our new feature engineering tricks to see if we can speed up
the computation time and find better features and a better way to search for
results.

https://xkcd.com/1838/

Second Pass: More Engineering and a Smarter
Model
The initial approach of creating a large, sparse array and shoving it through a
filter can be improved in many ways. The next steps will focus specifically on
applying better techniques to the two initial features and altering the item-based
collaborative filter method for faster iteration.

First, it is time to try out some of those great feature engineering tricks for the
two variables in our hypothesis. Looking deeper into the features already
developed, we can choose techniques that will address each type of variable and
convert it to a “better” feature for our recommendation system.

Academic Paper Recommender: Take 2
Let’s focus on the year first. In “Quantization or Binning”, we reviewed how
using raw counts for features can be problematic for methods using similarity
metrics. Example 9-6 (and Figure 9-5) will examine how we can transform
'year' to better fit the model we have selected.

Example 9-6. Fixed-width binning + dummy coding (part 1)
>>> print("Year spread: ", model_df['year'].min()," - ",
model_df['year'].max())
>>> print("Quantile spread:\n", model_df['year'].quantile([0.25, 0.5, 0.75]))
Year spread: 1831 - 2017
Quantile spread:
0.25 1990.0
0.50 2005.0
0.75 2012.0
Name: year, dtype: float64

plot years to see the distribution
>>> fig, ax = plt.subplots()
>>> model_df['year'].hist(ax=ax,
... bins= model_df['year'].max() -
model_df['year'].min())
>>> ax.tick_params(labelsize=12)
>>> ax.set_xlabel('Year Count', fontsize=12)
>>> ax.set_ylabel('Occurrence', fontsize=12)

We can see from the skewed distribution (Figure 9-5) that this is an excellent

candidate for binning.

Figure 9-5. Raw year distribution for 10K+ academic papers in dataset

The bins will be based on ranges within the variable, rather than the unique
number of features. To further reduce the feature space, we will dummy-code the
resultant bins (see Example 9-7). Pandas can do both using built-in functions.
These methods will make our results easy to interpret, so we can do a quick
check of the transformed features before moving on (see Figure 9-6).

Example 9-7. Fixed-width binning + dummy coding (part 2)
binning here (by 10 years) reduces the year feature space from 156 to 19
>>> bins = int(round((model_df['year'].max() - model_df['year'].min()) / 10))

>>> temp_df = pd.DataFrame(index = model_df.index)
>>> temp_df['yearBinned'] = pd.cut(model_df['year'].tolist(), bins, precision
= 0)
>>> X_yrs = pd.get_dummies(temp_df['yearBinned'])
>>> X_yrs.columns.categories
IntervalIndex([(1831.0, 1841.0], (1841.0, 1851.0], (1851.0, 1860.0],
 (1860.0, 1870.0], (1870.0, 1880.0] ... (1968.0, 1978.0],
 (1978.0, 1988.0], (1988.0, 1997.0], (1997.0, 2007.0],
 (2007.0, 2017.0]]
 closed='right',

 dtype='interval[float64]')

plot the new distribution
>>> fig, ax = plt.subplots()
>>> X_yrs.sum().plot.bar(ax = ax)
>>> ax.tick_params(labelsize=8)
>>> ax.set_xlabel('Binned Years', fontsize=12)
>>> ax.set_ylabel('Counts', fontsize=12)

We have preserved the underlying distribution of the original variable through
binning by decades. If we desired to use a method that would benefit from a
different distribution, we could alter our binning choices to change how this
variable presents itself to the model. Since we are using cosine similarity, this is
fine. Let’s move on to the next feature we originally included in our model.

The fields-of-study feature space contributed significantly to the original
model’s size and processing time.

Figure 9-6. Distribution of new binned X_yrs feature

Let’s examine the work we have already done. By parsing out the list of strings,
we created a “bag-of-phrases” in the first pass. Since we already have a useful
sparse array, we can focus on using a more efficient data type. Example 9-8
illustrates how converting from a Pandas DataFrame to a NumPy sparse array
affects computation time.

Example 9-8. Converting bag-of-phrases pd.Series to NumPy sparse array
>>> X_fos = fos_features.values

We can see how this will make a difference in the future by looking
at the size of each
>>> print('Our pandas Series, in bytes: ', getsizeof(fos_features))
>>> print('Our hashed numpy array, in bytes: ', getsizeof(X_fos))

Our pandas Series, in bytes: 2530632380
Our hashed numpy array, in bytes: 112

Much better! Putting it back together, we’ll pipe our features together
(Example 9-9) and rerun our recommender (Example 9-10) to see if we have
improved results, taking advantage of scikit-learn’s cosine similarity function.
We will also reduce the computational time by only focusing on one item at a
time.

Example 9-9. Collaborative filtering stages 1 + 2: Build item feature matrix,
search for similar items
>>> second_features = np.append(X_fos, X_yrs, axis = 1)
>>> print("The power of feature engineering saves us, in bytes: ",
... getsizeof(first_features) - getsizeof(second_features))
The power of feature engineering saves us, in bytes: 168066769

>>> from sklearn.metrics.pairwise import cosine_similarity

>>> def piped_collab_filter(features_matrix, index, top_n):
... item_similarities = \
... 1 - cosine_similarity(features_matrix[index:index+1],
... features_matrix).flatten()
... related_indices = \
... [i for i in item_similarities.argsort()[::-1] if i != index]
... return [(index, item_similarities[index])
... for index in related_indices
...][0:top_n]

Example 9-10. Item-based collaborative filtering recommendations: Take 2
>>> def paper_recommender(items_df, paper_ix, top_n):
... if paper_ix in model_df.index:
... print('Based on the paper:')
... print('Paper index = ', model_df.loc[paper_ix].name)
... print('Title :', model_df.loc[paper_ix]['title'])
... print('FOS :', model_df.loc[paper_ix]['fos'])
... print('Year :', model_df.loc[paper_ix]['year'])
... print('Abstract :', model_df.loc[paper_ix]['abstract'])
... print('Authors :', model_df.loc[paper_ix]['authors'], '\n')
... # define the location index for the DataFrame index requested
... array_ix = model_df.index.get_loc(paper_ix)
... top_results = piped_collab_filter(items_df, array_ix, top_n)
... print('\nTop',top_n,'results: ')

... order = 1

... for i in range(len(top_results)):

... print(order,'. Paper index = ',

... model_df.iloc[top_results[i][0]].name)

... print('Similarity score: ', top_results[i][1])

... print('Title :', model_df.iloc[top_results[i][0]]['title'])

... print('FOS :', model_df.iloc[top_results[i][0]]['fos'])

... print('Year :', model_df.iloc[top_results[i][0]]['year'])

... print('Abstract :', model_df.iloc[top_results[i][0]]
['abstract'])
... print('Authors :', model_df.iloc[top_results[i][0]]
['authors'],
... '\n')
... if order < top_n: order += 1
... else:
... print('Whoops! Choose another paper. Try something from here: \n',
... model_df.index[100:200])

>>> paper_recommender(second_features, 2, 3)
Based on the paper:
Paper index = 2
Title : Should endometriosis be an indication for intracytoplasmic sperm
inject ...
FOS : nan
Year : 2015
Abstract : nan
Authors : [{'name': 'Jovana P. Lekovich', 'org': 'Weill Cornell Medical
College, ...

Top 3 results:
1 . Paper index = 10055
Similarity score: 1.0
Title : [Diagnosis of cerebral tumors; comparative studies on arteriography,
...
FOS : ['Radiology', 'Pathology', 'Surgery']
Year : 1953
Abstract : nan
Authors : [{'name': 'Antoine'}, {'name': 'Lepoire'}, {'name': 'Schoumacker'}]

2 . Paper index = 11771
Similarity score: 1.0
Title : A Study of Special Functions in the Theory of Eclipsing Binary Systems
FOS : ['Contact binary']
Year : 1981
Abstract : nan

Authors : [{'name': 'Filaretti Zafiropoulos', 'org': 'University of
Manchester'}]

3 . Paper index = 11773
Similarity score: 1.0
Title : Studies of powder flow using a recording powder flowmeter and measure
...
FOS : nan
Year : 1985
Abstract : This paper describes the utility of the dynamic measurement of the
...
Authors : [{'name': 'Ramachandra P. Hegde', 'org': 'Department of Pharmacy,
...

To be honest, I don’t think our feature selection is working out too well. There is
a lot of missing data in these fields. Let’s keep going to see if we can choose
richer features with more information.

FINDING YOUR PLACE
Converting between Pandas DataFrames and NumPy matrices can make
indices tricky—we have the same size index, but the index assignments are
not the same. Pandas assists with this using .iloc, .loc, and .get_loc, as
we show in Example 9-11:

.loc returns the index based on the original Pandas DataFrame,
allowing us to reference specific papers.

.iloc uses the integer location, which is the same index as our
NumPy array.

.get_loc helps us find the integer location when we know the
DataFrame index.

Example 9-11. Maintaining index assignment during conversions
>>> model_df.loc[21]
abstract A microprocessor includes hardware registers t...
authors [{'name': 'Mark John Ebersole'}]
fos [Embedded system, Parallel computing, Computer...
keywords NaN
title Microprocessor that enables ARM ISA program to...

year 2013
Name: 21, dtype: object

>>> model_df.iloc[21]
abstract NaN
authors [{'name': 'Nicola M. Heller'}, {'name': 'Steph...
fos [Biology, Medicine, Post-transcriptional regul...
keywords [glucocorticoids, post transcriptional regulat...
title Post-transcriptional regulation of eotaxin by ...
year 2002
Name: 30, dtype: object

>>> model_df.index.get_loc(30)
21

Third Pass: More Features = More Information
Our experiment thus far is not supporting the original hypothesis that year and
fields-of-study would be sufficient to recommend a similar paper. At this point,
we have a few options:

Upload more of the original dataset to see if we get better results.

Spend more time exploring the data to examine if we have a sufficiently
dense set to provide good recommendations.

Iterate on the current model by adding more features.

The first option makes the assumption that the problem is in our sampling of the
data. This might be the case, but is similar to Figure 9-4’s analogy of stirring the
data pile for better results.

The second option would give a better idea of the underlying raw data. This
should be continually revisited based on how your decisions for features and
model selection change during the exploration process. The initial subsample
chosen here reflects this step. Since we have more variables available in the
dataset, we will not go back here yet.

This leaves the third option, moving forward on our current model by adding
more features. Providing more information about each item can improve the
similarity scores and result in better recommendations.

Based on our initial exploration, the next steps will focus on the fields with the
most information, abstract and authors.

Academic Paper Recommender: Take 3
Looking back at Chapter 4, we can see that abstract is a good candidate for tf-idf
to filter through the noise and find the salient associative words. We do this in
Example 9-12.

Example 9-12. Stopwords + tf-idf
need to fill in NaN for sklearn use in future
>>> filled_df = model_df.fillna('None')

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
... stop_words='english')
>>> X_abstract = vectorizer.fit_transform(filled_df['abstract'])
>>> third_features = np.append(second_features, X_abstract.toarray(), axis =
1)

We can reduce the computational load of the messy and uneven authors by
wrangling into a dictionary and then running it through a one-hot encoder, as
shown in Example 9-13.

Example 9-13. One-hot encoding using scikit-learn’s DictVectorizer
>>> authors_list = []

>>> for row in filled_df.authors.itertuples():
... # create a dictionary from each Series index
... if type(row.authors) is str:
... y = {'None': row.Index}
... if type(row.authors) is list:
... # add these keys + values to our running dictionary
... y = dict.fromkeys(row.authors[0].values(), row.Index)
... authors_list.append(y)

>>> authors_list[0:5]
[{'None': 0},
{'Ahmed M. Alluwaimi': 1},
{'Jovana P. Lekovich': 2, 'Weill Cornell Medical College, New York, NY': 2},
{'George C. Sponsler': 5},
{'M. T. Richards': 7}]

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = authors_list
>>> X_authors = v.fit_transform(D)
>>> fourth_features = np.append(third_features, X_authors, axis = 1)

Time to check in with the recommender to see how these new features are
working out. Example 9-14 shows the results.

Example 9-14. Item-based collaborative filtering recommendations: Take 3
>>> paper_recommender(fourth_features, 2, 3)

Based on the paper:
Paper index = 2
Title : Should endometriosis be an indication for intracytoplasmic sperm
inject ...
FOS : nan
Year : 2015
Abstract : nan
Authors : [{'name': 'Jovana P. Lekovich', 'org': 'Weill Cornell Medical
College, ...

Top 3 results:
1 . Paper index = 10055
Similarity score: 1.0
Title : [Diagnosis of cerebral tumors; comparative studies on arteriography,
...
FOS : ['Radiology', 'Pathology', 'Surgery']
Year : 1953
Abstract : nan
Authors : [{'name': 'Antoine'}, {'name': 'Lepoire'}, {'name': 'Schoumacker'}]

2 . Paper index = 5601
Similarity score: 1.0
Title : 633 Survival after coronary revascularization, with and without mitral
...
FOS : ['Cardiology']
Year : 2005
Abstract : nan
Authors : [{'name': 'J.B. Le Polain De Waroux'}, {'name': 'Anne-Catherine ...

3 . Paper index = 12256
Similarity score: 1.0

Title : Nucleotide Sequence and Analysis of an Insertion Sequence from
Bacillus ...
FOS : ['Biology', 'Molecular biology', 'Insertion sequence', 'Nucleic acid ...
Year : 1994
Abstract : A 5.8-kb DNA fragment encoding the cryIC gene from Bacillus
thur...
Authors : [{'name': 'Geoffrey P. Smith'}, {'name': 'David J. Ellar'}, {'name':
...

Even accounting for missing data in certain fields, the top three results from the
last round of feature engineering are directing us to other papers in the medical
field.

The range of papers represented in this dataset is broad; for example, a random
sample of papers exposed fields of study such as “Coupling constant,”
“Evapotranspiration,” “Hash function,” “IVMS,” “Meditation,” “Pareto
analysis,” “Second-generation wavelet transform,” “Slip,” and “Spiral galaxy.”
Given that there are 7,604 unique fields of study listed for 10K+ papers, these
last results seem to be moving in the right direction. We can be confident that
our work is progressing toward a useful model.

Continued iteration on more text variables, such as the finding the noun phrases
of the paper titles or stemming the keywords, could bring us even closer to a
“best” recommendation.

It should be noted here that this definition of “best” is the Holy Grail of all
recommenders and search engines alike. We are searching for what a user will
find most helpful, which may or may not be directly represented by the data.
Feature engineering allows us to abstract salient features into representations
such that algorithms can expose both the explicit and implicit information
contained therein.

Summary
As you can see, building models for machine learning is easy. Building good
models for useful results takes time and work. We hiked through the messy
processes here of examining a collection of possible variables and experimenting
with different feature engineering methods to achieve better results. We define
“better” here not just in terms of good outcomes from our training and testing,
but also reducing the size of the model and the time it takes us to iterate over

different experiments.

We started this book by talking about how mastery of a subject comes from
deeply learning the principles at work, in order to gain intuition to effectively put
your knowledge to work. We hope that our work has given you the necessary
tools to become more efficient and effective, as well as enriched your
mathematical and computational understanding of how feature engineering is an
essential skill to develop useful machine learning models.

Bibliography
Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. “Item-Based
Collaborative Filtering Recommendation Algorithms.” Proceedings of the 10th
International Conference on the World Wide Web (2001) 285–295.

Sinha, Arnab, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. “An Overview of Microsoft Academic Service (MAS)
and Applications.” Proceedings of the 24th International Conference on the
World Wide Web (2015): 243–246.

Tang, Jie, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
“ArnetMiner: Extraction and Mining of Academic Social Networks.”
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2008): 990–998.

Wickham, Hadley. “Tidy Data.” The Journal of Statistical Software 59 (2014).

Appendix A. Linear Modeling and
Linear Algebra Basics

Overview of Linear Classification
When we have a labeled dataset, the feature space is strewn with data points
from different classes. It is the job of the classifier to separate the data points
from different classes. It can do so by producing an output that is very different
for data points from one class versus another. For instance, when there are only
two classes, then a good classifier should produce large outputs for one class,
and small ones for another. The points right on the cusp of being in one class
versus another form a decision surface (Figure A-1).

Figure A-1. Simple binary classification finds a surface that separates two classes of data points

Many functions can be made into classifiers. It’s a good idea to look for the
simplest function that cleanly separates the classes, for a few reasons. First of all,
it’s easier to find the best simple separator than the best complex separator. Also,
simple functions often generalize better to new data, because it’s harder to tailor
them too specifically to the training data (a concept known as overfitting). A
simple model might make mistakes—like in Figure A-1, where some points are
on the wrong side of the divide—but we’re willing to sacrifice some training
accuracy in order to have a simpler decision surface that can achieve better test
accuracy. The principle of minimizing complexity and maximizing usefulness is
called “Occam’s razor,” and is widely applicable in science and engineering.

The simplest function is a line. A linear function of one input variable is a
familiar sight (Figure A-2).

Figure A-2. A linear function of one input variable

A linear function with two input variables can be visualized as either a flat plane
in 3D or a contour plot in 2D (shown in Figure A-3). Like a topological
geographic map, each line of the contour plot represents points in the input space
that have the same output.

It’s harder to visualize higher-dimensional linear functions, which are called
hyperplanes. But it’s easy enough to write down the algebraic formula. A
multidimensional linear function has a set of inputs x , x , ..., x and a set of
weight parameters w , w , ..., w :

f (x , x , ..., x) = w + w * x + w * x + ... + w * x

It can be written more succinctly using vector notation:

f (x) = x w

Figure A-3. Contour plot of a linear function in 2D

We follow the usual convention for mathematical notations, which uses boldface

1 2 n

0 1 n

w 1 2 n 0 1 1 2 2 n n

w
T

to indicate a vector and non-boldface to indicate a scalar. The vector x is padded
with an extra 1 at the beginning, as a placeholder for the intercept term w . If all
input features are 0, then the output of the function is w . So, w is also known as
the bias or intercept term.

Training a linear classifier is equivalent to picking out the best separating
hyperplane between the classes. This translates into finding the best vector
w that is oriented exactly right in space. Since each data point has a target label
y, we could find a w that tries to directly emulate the target label:

x w = y

Since there is usually more than one data point, we want a w that simultaneously
makes all of the predictions close to the target labels:

Aw = y

Here, A is known as the data matrix (also known as the design matrix in
statistics). It contains the data in a particular form: each row is a data point and
each column a feature. (Sometimes people also look at its transpose, where
features are the rows and data points the columns.)

The Anatomy of a Matrix
In order to solve the preceding equation, we need some basic knowledge of
linear algebra. For a systematic introduction to the subject, we highly
recommend Strang (2006).

The equation states that when a certain matrix multiplies a certain vector, there is
a certain outcome. A matrix is also called a linear operator, a name that makes it
more apparent that a matrix is a little machine. This machine takes a vector as
input and spits out another vector using a combination of several key operations:
rotating a vector’s direction, adding or subtracting dimensions, and stretching or
compressing its length. This combination can be quite powerful for manipulating
shapes in the input space.

For example, as Figure A-4 shows, a 3 × 2 matrix can transform a square area in
2D into a diamond-shaped area in 3D. It does so by rotating and stretching each
vector in the input space into a new vector in the output space.

0

0 0

1

T

Figure A-4. A 2D to 3D matrix transformation

From Vectors to Subspaces
In order to understand a linear operator, we have to look at how it morphs the
input into output. Luckily, we don’t have to analyze one input vector at a time.
Vectors can be organized into subspaces, and linear operators manipulate vector
subspaces.

A subspace is a set of vectors that satisfies two criteria. First, if it contains a
vector, then it contains the line that passes through the origin and that point.
Second, if it contains two points, then it contains all the linear combinations of
those two vectors. Linear combination is a combination of two types of
operations: multiplying a vector with a scalar, and adding two vectors together.

One important property of a subspace is its rank or dimensionality, which is a
measure of the degrees of freedom in this space. A line has rank 1, a 2D plane
has rank 2, and so on. If you can imagine a multidimensional bird in our
multidimensional space, then the rank of the subspace tells us in how many
“independent” directions the bird could fly. “Independence” here means “linear
independence”: two vectors are linearly independent if one isn’t a constant
multiple of another (i.e., they are not pointing in exactly the same or opposite
directions).

A subspace can be defined as the span of a set of basis vectors. (Span is a
technical term that describes the set of all linear combinations of a set of
vectors.) The span of a set of vectors is invariant under linear
combinations (because it’s defined that way). So, if we have one set of basis
vectors, then we can multiply the vectors by any nonzero constants or add the
vectors to get another basis.

It would be nice to have a more unique and identifiable basis to describe a
subspace. An orthonormal basis contains vectors that have unit length and are
orthogonal to each other. Orthogonality is another technical term. (At least 50%
of all math and science is made up of technical terms. If you don’t believe me,
do a bag-of-words count on this book.) Two vectors are orthogonal to each other
if their inner product is zero. For all intents and purposes, we can think of
orthogonal vectors as being at 90 degrees to each other. (This is true in
Euclidean space, which closely resembles our physical 3D reality.) Normalizing
these vectors to have unit length turns them into a uniform set of measuring
sticks.

All in all, a subspace is like a tent, and the orthogonal basis vectors are the
number of poles at right angles that are required to prop up the tent. The rank is
equal to the total number of orthogonal basis vectors. Figure A-5 illustrates some
these concepts.

Figure A-5. Illustrations of four useful linear algebra concepts: inner product, linear
combination, basis vectors, and orthogonal basis vectors

USEFUL LINEAR ALGEBRA DEFINITIONS
For those who think in math, here is some math to make our descriptions
precise:

Scalar
A number c, in contrast to a vector.

Vector
x = (x , x , ..., x)

Linear combination
ax + by = (ax + by , ax + by , ..., ax + by)

Span of a set of vectors v , ..., v
The set of vectors u = a v + ... + a v for any a , ..., a .

Linear independence
x and y are independent if x ≠ cy for any scalar constant c.

Inner product:
⟨x, y⟩ = x y + x y + ... + x y

Orthogonal vectors
Two vectors x and y are orthogonal if ⟨x, y⟩ = 0.

Subspace

A subset of vectors within a larger containing vector space, satisfying
these three criteria:

1. It contains the zero vector.

2. If it contains a vector v, then it contains all vectors cv, where c is a
scalar.

3. If it contains two vectors u and v, then it contains the vector u + v.

Basis
A set of vectors that span a subspace.

1 2 n

1 1 2 2 n n

1 k
1 1 k k 1 k

1 1 2 2 n n

Orthogonal basis
A basis {v , v , ..., v } where ⟨v , v ⟩ = 0 for all i, j.

Rank of subspace
The minimum number of linearly independent basis vectors that span the
subspace.

Singular Value Decomposition (SVD)
A matrix performs a linear transformation on the input vector. Linear
transformations are very simple and constrained. It follows that a matrix can’t
manipulate a subspace willy-nilly. One of the most fascinating theorems of
linear algebra proves that every square matrix, no matter what numbers it
contains, must map a certain set of vectors back to themselves with some
scaling. In the general case of a rectangular matrix, it maps a set of input vectors
into a corresponding set of output vectors, and its transpose maps those outputs
back to the original inputs. The technical terminology is that square matrices
have eigenvectors with eigenvalues, and rectangular matrices have left and right
singular vectors with singular values.

EIGENVECTOR AND SINGULAR VECTOR
Let A be an n × n matrix. If there is a vector v and a scalar λ such that Av =
λv, then v is an eigenvector and λ an eigenvalue of A.

Let A be a rectangular matrix. If there are vectors u and v and a scalar σ such
that Av = σu and A u = σv, then u and v are called left and right singular
vectors and σ is a singular value of A.

Algebraically, the SVD of a matrix looks like this:

A = UΣV

where the columns of the matrices U and V form orthonormal bases of the input
and output space, respectively. Σ is a diagonal matrix containing the singular
values.

Geometrically, a matrix performs the following sequence of transformations:

1 2 d i j

T

T

1. Map the input vector onto the right singular basis vector.

2. Scale each coordinate by the corresponding singular values.

3. Multiply this score with each of the left singular vectors.

4. Sum up the results.

Figure A-6 provides an illustration. The operations go from right to left for a
matrix-vector multiplication. The rightmost machine rotates and potentially
projects the input into a lower-dimensional space. In this illustration, the input
cube becomes a flat square, and is also rotated. The next machine squeezes the
square in one direction and stretches it in another; the square becomes a
rectangle. The last, leftmost machine rotates the rectangle again, and projects it
back out into a possibly higher-dimensional space—but it remains a flat
rectangle instead of some higher-dimensional object.

Figure A-6. A matrix decomposed into three little machines: rotate, scale, rotate

When A is a real matrix (i.e., all of the elements are real-valued), all of the
singular values and singular vectors are real-valued. A singular value can be
positive, negative, or zero. The ordered set of singular values of a matrix is
called its spectrum, and it reveals a lot about the matrix. The gap between the
singular values affects how stable the solutions are, and the ratio between the

maximum and minimum absolute singular values (the condition number) affects
how quickly an iterative solver can find the solution. Both of these properties
have notable impacts on the quality of the solution one can find.

The Four Fundamental Subspaces of the Data Matrix
Another useful way to dissect a matrix is via the four fundamental subspaces:
column space, row space, null space, and left null space. These four subspaces
completely characterize the solutions to linear systems involving A or A (hence
the moniker).

For the data matrix (where the rows are data points and columns are features),
the four fundamental subspaces can be understood in relation to the data and
features. Let’s look at them in more detail.

Column space

Mathematical definition:
The set of output vectors s where s = Aw as we vary the weight vector w.

Mathematical interpretation:
All possible linear combinations of columns.

Data interpretation:
All outcomes that are linearly predictable based on observed features. The
vector w contains the weight of each feature.

Basis:
The left singular vectors corresponding to nonzero singular values (a subset
of the columns of U).

Row space

Mathematical definition:
The set of output vectors r where r = u A as we vary the weight vector u.

Mathematical interpretation:
All possible linear combinations of rows.

Data interpretation:
A vector in the row space is something that can be represented as a linear
combination of existing data points. Hence, this can be interpreted as the

T

T

space of “non-novel” data. The vector u contains the weight of each data
point in the linear combination.

Basis:
The right singular vectors corresponding to nonzero singular values (a subset
of the columns of V).

Null space

Mathematical definition:
The set of input vectors w where Aw = 0.

Mathematical interpretation:
Vectors that are orthogonal to all rows of A. The null space gets squashed to
zero by the matrix. This is the “fluff” that adds volume to the solution space
of Aw = y.

Data interpretation:
“Novel” data points that cannot be represented as any linear combination of
existing data points.

Basis:
The right singular vectors corresponding to the zero singular values (the rest
of the columns of V).

Left null space

Mathematical definition:
The set of input vectors u where u A = 0.

Mathematical interpretation:
Vectors that are orthogonal to all columns of A. The left null space is
orthogonal to the column space.

Data interpretation:
“Novel feature vectors" that are not representable by linear combinations of
existing features.

Basis:
The left singular vectors corresponding to the zero singular values (the rest
of the columns of U).

Column space and row space contain what is already representable based on

T

observed data and features. Those vectors that lie in the column space are non-
novel features. Those vectors that lie in the row space are non-novel data points.

For the purposes of modeling and prediction, non-novelty is good. A full column
space means that the feature set contains enough information to model any target
vector we wish. A full row space means that the different data points contain
enough variation to cover all possible corners of the feature space. It’s the novel
data points and features—respectively contained in the null space and the left
null space—that we have to worry about.

In the application of building linear models of data, the null space can also be
viewed as the subspace of “novel” data points. Novelty is not a good thing in this
context. Novel data points indicate phantom data that is not linearly
representable by the training set. Similarly, the left null space contains novel
features that are not representable as linear combinations of existing features.

The null space is orthogonal to the row space. It’s easy to see why. The
definition of null space states that w has an inner product of 0 with every row
vector in A. Therefore, w is orthogonal to the space spanned by these row
vectors, i.e., the row space. Similarly, the left null space is orthogonal to the
column space.

Solving a Linear System
Let’s tie all this math back to the problem at hand: training a linear classifier,
which is intimately connected to the task of solving a linear system. We look
closely at how a matrix operates because we have to reverse engineer it. In order
to train a linear model, we have to find the input weight vector w that maps to
the observed output targets y in the system Aw = y, where A is the data matrix.

Let’s try to crank the machine of the linear operator in reverse. If we had the
SVD decomposition of A, then we could map y onto the left singular vectors
(columns of U), reverse the scaling factors (multiply by the inverse of the
nonzero singular values), and finally map them back to the right singular vectors
(columns of V). Ta-da! Simple, right?

This is in fact the process of computing the pseudo-inverse of A. It makes use of
a key property of an orthonormal basis: the transpose is the inverse. This is why
SVD is so powerful. (In practice, real linear system solvers do not use the SVD,

2

because it’s rather expensive to compute. There are other, much cheaper ways to
decompose a matrix, such as QR or LU or Cholesky decompositions.)

However, we skipped one tiny little detail in our haste. What happens if the
singular value is zero? We can’t take the inverse of 0 because 1/0 = ∞. This is
why it’s called the pseudo-inverse. (The real inverse isn’t even defined for
rectangular matrices. Only square matrices have them, as long as all of the
eigenvalues are nonzero.) A singular value of zero squashes whatever input was
given; there’s no way to retrace its steps and come up with the original input.

Okay, going backward we get stuck on this one little detail. Let’s take what
we’ve got and go forward again to see if we can unjam the machine. Suppose we
came up with an answer to Aw = y. Let’s call it w , because it’s
particularly suited for y. Suppose that there are also a bunch of input vectors that
A squashes to zero. Let’s take one of them and call it w , because wah
wah. Then, what do you think happens when we add w to w ?

A(w + w) = y

Amazing! So this is a solution too. In fact, any input that gets squashed to zero
could be added to a particular solution and give us another solution. The general
solution looks like this:

w = w + w

w is an exact solution to the equation Aw = y. There may or may not be
such a solution. If there isn’t, then the system can only be approximately solved.
If there is, then y belongs to what’s known as the column space of A. The
column space is the set of vectors that A can map to, by taking linear
combinations of its columns.

w is a solution to the equation Aw = 0. (The grown-up name for w
 is w .) This should now look familiar. The set of all w

vectors forms the null space of A. This is the span of the right singular vectors
with singular value 0.

The name “null space” sounds like the destination of woe for an existential
crisis. If the null space contains any vectors other than the all-zero vector, then
there are infinitely many solutions to the equation Aw = y. Having too many
solutions to choose from is not in itself a bad thing. Sometimes any solution will
do. But if there are many possible answers, then there are many sets of features

particular

sad-trumpet

particular sad-trumpet

particular sad-trumpet

general particular homogeneous

particular

homogeneous sad-

trumpet homogeneous homogeneous

http://bit.ly/2D51LU1
http://bit.ly/2Fosjl6
http://bit.ly/2IbRlFQ

that are useful for the classification task. It becomes difficult to understand
which ones are truly important.

One way to fix the problem of a large null space is to regulate the model by
adding additional constraints:

Aw = y,

where w is such that w w = c.

This form of regularization constrains the weight vector to have a certain norm,
c. The strength of this regularization is controlled by a regularization parameter,
which must be tuned, as is done in our experiments.

In general, feature selection methods deal with selecting the most useful features
to reduce computation burden, decrease the amount of confusion for the model,
and make the learned model more unique. This is the focus of “Feature
Selection”.

Another problem is the “unevenness” of the spectrum of the data matrix. When
we train a linear classifier, we care not only that there is a general solution to the
linear system, but also that we can find it easily. Typically, the training process
employs a solver that works by calculating a gradient of the loss function and
walking downhill in small steps. When some singular values are very large and
others very close to zero, the solver needs to carefully step around the longer
singular vectors (those that correspond to large singular values) and spend a lot
of time digging around in the shorter singular vectors to find the true answer.
This “unevenness” in the spectrum is measured by the condition number of the
matrix, which is basically the ratio between the largest and the smallest absolute
value of the singular values.

To summarize, in order for there to be a good linear model that is relatively
unique, and in order for it to be easy to find, we wish for the following:

1. The label vector can be well approximated by a linear combination of a
subset of features (column vectors). Better yet, the set of features should
be linearly independent.

2. In order for the null space to be small, the row space must be large.
(This is due to the fact that the two subspaces are orthogonal.) The more
linearly independent the set of data points (row vectors), the smaller the

T

null space.

3. In order for the solution to be easy to find, the condition number of the
data matrix—the ratio between the maximum and minimum singular
values—should be small.

Bibliography
Strang, Gilbert. Linear Algebra and Its Applications. 4th ed. Boston, MA:
Cengage Learning, 2006.

 Strictly speaking, the formula given here is for linear regression, not linear
classification. The difference is that regression allows for real-valued target
variables, whereas classification targets are usually integers that represent
different classes. A regressor can be turned into a classifier via a nonlinear
transform. For instance, the logistic regression classifier passes the linear
transform of the input through a logistic function. Such models are called
generalized linear models and have linear functions at their core. Even though
this example is about classification, we use the formula for linear regression as a
teaching tool, because it is much easier to analyze. The intuitions readily map to
generalized linear classifiers.

 Actually, it’s a little more complicated than that. y may not be in the column
space of A, so there may not be a solution to this equation. Instead of giving up,
statistical machine learning looks for an approximate solution. It defines a loss
function that quantifies the quality of a solution. If the solution is exact, then the
loss is 0. Small errors, small loss; big errors, big loss, and so on. The training
process then looks for the best parameters that minimize this loss function. In
ordinary linear regression, the loss function is called the squared residual loss,
which essentially maps y to the closest point in the column space of A. Logistic
regression minimizes the log loss. In both cases, and linear models in general,
the linear system Aw=y often lies at the core. Hence, our analysis here is very
much relevant.

1

2

Index

Symbols

ℓ² normalization, ℓ2 Normalization, Scaling Bag-of-Words with Tf-Idf
Transformation, Scaling Bag-of-Words with Tf-Idf Transformation, Whitening
and ZCA, k-Means Clustering

cross validation classifier accuracy, Tuning Logistic Regression with
Regularization

A

academic paper recommender (see recommender for academic papers)

activation functions, Rectified Linear Unit (ReLU) Transformation

AlexNet, Learning Image Features with Deep Neural Networks

convolutional layers, Convolutional Layers

fully connected layers, Fully Connected Layers

pooling layers, Pooling Layers

ReLU transformation, Rectified Linear Unit (ReLU) Transformation

response normalization layers, Response Normalization Layers

structure of, Structure of AlexNet-Structure of AlexNet

anomaly detection of time series, use of PCA, Use Cases

approximately leakage-proof statistics, Guarding against data leakage

ASCII, Parsing and Tokenization

audio data, Automating the Featurizer: Image Feature Extraction and Deep
Learning

B

back-off bin, What about rare categories?

bag-of-n-grams, Bag-of-n-Grams

bag-of-words (BoW) featurization, Bag-of-Words

scaling with tf-idf transformation, Scaling Bag-of-Words with Tf-Idf
Transformation

basis vectors, From Vectors to Subspaces, From Vectors to Subspaces

bias, Overview of Linear Classification

“Big Learning Made Easy—With Counts!” blog post, Bin Counting

bigrams, Bag-of-n-Grams

Bilenko, Misha, Bin Counting

bin counting, Categorical Variables: Counting Eggs in the Age of Robotic
Chickens, Bin Counting-Counts without bounds

counts without bounds, Counts without bounds

example of, Bin Counting

example, using data from Avazu Kaggle competition, Bin Counting

guarding against data leakage, Guarding against data leakage

odds ratio and log odds ratio for, Bin Counting

one-hot encoding vs., Bin Counting

rare categories, What about rare categories?

trade-offs, Summary

binarization (of counts), Binarization

binning

fixed-width, Fixed-width binning

quantile, Quantile binning

binomial distribution, Hypothesis testing for collocation extraction

Box-Cox transforms, Power Transforms: Generalization of the Log Transform

C

C-HOG blocks, How are neighborhoods defined? How should they cover the
image?

categorical variables, Categorical Variables: Counting Eggs in the Age of
Robotic Chickens-Bibliography

encodings, Encoding Categorical Variables-Pros and Cons of Categorical
Variable Encodings

dummy coding, Dummy Coding-Effect Coding

effect coding, Effect Coding

one-hot encoding, One-Hot Encoding

pros and cons of, Pros and Cons of Categorical Variable Encodings

large, dealing with, Dealing with Large Categorical Variables-Counts without
bounds

bin counting, Bin Counting-Counts without bounds

feature hashing, Feature Hashing-Feature Hashing

chunking, Chunking and part-of-speech tagging

class-imbalanced dataset, Creating a Classification Dataset

classification

using k-means featurization, k-Means Featurization for Classification-
Alternative Dense Featurization

with logistic regression, Classification with Logistic Regression-Classification
with Logistic Regression

classification dataset, creating, Creating a Classification Dataset

clustering algorithms, Nonlinear Featurization via K-Means Model Stacking

(see also k-means)

collisions, Feature Hashing

collocations, Collocation Extraction for Phrase Detection-Summary

extracting using chunking and part-of-speech tagging, Chunking and part-of-
speech tagging

extracting using frequency-based methods, Frequency-based methods

extracting using hypothesis testing, Hypothesis testing for collocation
extraction

n-grams vs., Collocation Extraction for Phrase Detection

column space, Column space

complex features, Fancy Tricks with Simple Numbers

handcrafted, Interaction Features

convolutional layers in neural networks, Convolutional Layers-Convolutional
Layers

convolutional filter, Convolutional Layers

convolutional filter example, Convolutional Layers-Convolutional Layers

intuition behind convolutions, Convolutional Layers

convolutions, Image Gradients

count-min sketch, What about rare categories?

counts, Dealing with Counts-Log Transformation

binarization, Binarization

quantization or binning, Quantization or Binning-Log Transformation

visualizing business review counts in Yelp dataset, Quantization or Binning

without bounds, Counts without bounds

CountVectorizer transformer, Bag-of-n-Grams, Scaling Bag-of-Words with Tf-
Idf Transformation

covariance between random variables (in PCA), Variance and Empirical
Variance

D

data

about, Data

answering questions with, Tasks

importing in recommender for academic papers (example), Academic Paper
Recommender: Naive Approach

data leakage

guarding against in bin counting, Guarding against data leakage

in k-means feature classification, Pros, Cons, and Gotchas

data matrix, Deep Dive: What Is Happening?-Deep Dive: What Is Happening?,
Overview of Linear Classification

data space, Scalars, Vectors, and Spaces

feature vectors in, Bag-of-Words

vs. feature space, ℓ2 Normalization

data visualization, importance of, Log Transform in Action

decision surface, Overview of Linear Classification

decision tree models, Interaction Features, Feature Selection

input feature scale and, Fancy Tricks with Simple Numbers

use in model stacking, Pros, Cons, and Gotchas

deep learning

learning image features with deep neural networks, Learning Image Features
with Deep Neural Networks-Structure of AlexNet

fully connected layers, Fully Connected Layers

use of PCA or ZCA in preprocessing, Use Cases

delimiters, Parsing and Tokenization

dense featurization with k-means, Alternative Dense Featurization

dimensionality of subspaces, From Vectors to Subspaces

dimensionality reduction, Dimensionality Reduction: Squashing the Data
Pancake with PCA

(see also PCA)

nonlinear, Nonlinear Featurization via K-Means Model Stacking

distance, Intuition

distribution, Fancy Tricks with Simple Numbers

document frequency, Scaling Bag-of-Words with Tf-Idf Transformation

document-term matrix, Deep Dive: What Is Happening?

dummy coding, Dummy Coding-Effect Coding

pros and cons of, Pros and Cons of Categorical Variable Encodings

E

effect coding, Effect Coding

pros and cons of, Pros and Cons of Categorical Variable Encodings

eigen decomposition of a matrix, Principal Components: Matrix-Vector
Formulation

eigenvectors, Singular Value Decomposition (SVD)

embedded methods, Feature Selection

empirical variance, Variance and Empirical Variance

encodings

categorical variables, Encoding Categorical Variables-Pros and Cons of
Categorical Variable Encodings

dummy coding, Dummy Coding-Effect Coding

effect coding, Effect Coding

one-hot encoding, One-Hot Encoding

pros and cons of, Pros and Cons of Categorical Variable Encodings

string objects, Parsing and Tokenization

Euclidean distance, k-Means Clustering

Euclidean norm, ℓ2 Normalization

F

factor analysis, Use Cases

feature engineering, Fancy Tricks with Simple Numbers

(see also numeric data; text data)

defined, Features

in machine learning workflow, Model Evaluation

numeric data, Fancy Tricks with Simple Numbers

feature extraction, The Simplest Image Features (and Why They Don’t Work)

(see also image feature extraction)

automatic, in deep learning, Automating the Featurizer: Image Feature
Extraction and Deep Learning

nonlinear manifold feature extraction by k-means, Nonlinear Featurization via
K-Means Model Stacking

feature hashing, Feature Hashing-Feature Hashing

for word features, Feature Hashing

signed, Feature Hashing

storage and interpretability tradeoffs, Feature Hashing

trade-offs, Summary

feature normalization, Feature Scaling or Normalization

(see also feature scaling)

feature scaling, Feature Scaling or Normalization-ℓ2 Normalization, The Effects
of Feature Scaling: From Bag-of-Words to Tf-Idf-Summary

min-max scaling, Min-Max Scaling

standardization (variance scaling), Standardization (Variance Scaling)

testing scaled vs. unscaled features, Putting It to the Test-Tuning Logistic
Regression with Regularization

classification with logistic regression, Classification with Logistic
Regression-Classification with Logistic Regression

creating classification dataset, Creating a Classification Dataset

scaling bag-of-words with tf-idf transform, Scaling Bag-of-Words with Tf-

Idf Transformation

tuning logistic regression with regularization, Tuning Logistic Regression
with Regularization-Tuning Logistic Regression with Regularization

understanding the results, Deep Dive: What Is Happening?-Deep Dive:
What Is Happening?

tf-idf, Tf-Idf : A Simple Twist on Bag-of-Words-Putting It to the Test

use case for, ℓ2 Normalization

ℓ² normalization, ℓ2 Normalization

feature selection, Feature Selection-Feature Selection

embedded methods, Feature Selection

filtering techniques, Feature Selection

focus of, Solving a Linear System

with interaction features, Interaction Features

wrapper methods, Feature Selection

feature space, Scalars, Vectors, and Spaces

data space vs., ℓ2 Normalization

text sentences in 3D feature space, Bag-of-Words

FeatureHasher, scikit-learn, Feature Hashing

features

about, Features

multiple, composed into more complex features, Fancy Tricks with Simple
Numbers

filtering, Feature Selection, Item-Based Collaborative Filtering

(see also item-based collaborative filtering)

for cleaner features, using text data, Filtering for Cleaner Features-Stemming

frequency-based filtering, Frequency-Based Filtering

stemming, Stemming

stopwords, Stopwords

techniques for collocation extraction, Hypothesis testing for collocation
extraction

filters

2D convolutional filter, Convolutional Layers-Convolutional Layers

applying to an image, Image Gradients

financial modeling, use of PCA in, Use Cases

fixed-width binning, Fixed-width binning

in recommender for academic papers (example), Academic Paper
Recommender: Take 2

part two, Academic Paper Recommender: Take 2

frequency-based filtering (text data), Frequency-Based Filtering

frequent words, filtering from text, Frequent words

fully connected layers (in neural networks), Fully Connected Layers

G

Gaussian distribution, Fancy Tricks with Simple Numbers

Gaussian filter, applying to an image, Convolutional Layers-Convolutional
Layers

gradient boosting tree (GBT) classifiers, k-Means Featurization for

Classification, Pros, Cons, and Gotchas

gradient orientation histograms, Gradient Orientation Histograms

bins, considerations for, How many bins should there be? Should they span
from 0°–360° (signed gradients) or 0°–180° (unsigned gradients)?

image neighborhoods, How are neighborhoods defined? How should they
cover the image?

normalization, What kind of normalization should be done?

weight functions for gradient magnitude, What weight functions should be
used?

grid search, Tuning Logistic Regression with Regularization

tuning logistic regression hyperparameters with, Tuning Logistic Regression
with Regularization

GridSearchCV function, scikit-learn, Tuning Logistic Regression with
Regularization

H

hard clustering, k-Means Clustering

hash functions, Feature Hashing

(see also feature hashing)

heatmap of paper recommendations, Academic Paper Recommender: Naive
Approach

heavy-tailed distribution, Log Transformation

in text data, Rare words

HOG (Histogram of Oriented Gradients), Manual Feature Extraction: SIFT and
HOG-Learning Image Features with Deep Neural Networks

gradient orientation histograms, Gradient Orientation Histograms-What kind
of normalization should be done?

bins, considerations for, How many bins should there be? Should they span
from 0°–360° (signed gradients) or 0°–180° (unsigned gradients)?

image neighborhoods, How are neighborhoods defined? How should they
cover the image?

normalization, What kind of normalization should be done?

weight functions, What weight functions should be used?

image gradients, Image Gradients-Image Gradients

horizontal image gradients, Image Gradients

hyperparameter tuning, Tuning Logistic Regression with Regularization

for logistic regression with grid search, Tuning Logistic Regression with
Regularization

in comparing models, importance of, Tuning Logistic Regression with
Regularization

in k-means feature classification, k-Means Featurization for Classification

using grid search, Tuning Logistic Regression with Regularization

hyperparameters, Tuning Logistic Regression with Regularization

hyperplanes, Overview of Linear Classification

hypothesis testing, using for collocation extraction, Hypothesis testing for
collocation extraction

I

image descriptors, Manual Feature Extraction: SIFT and HOG

image feature extraction, Automating the Featurizer: Image Feature Extraction

and Deep Learning-Summary

learning image features with deep neural networks, Learning Image Features
with Deep Neural Networks-Structure of AlexNet

convolutional layers, Convolutional Layers-Convolutional Layers

fully connected layers, Fully Connected Layers

pooling layers, Pooling Layers

ReLU transformation, Rectified Linear Unit (ReLU) Transformation-
Rectified Linear Unit (ReLU) Transformation

response normalization layers, Response Normalization Layers

structure of AlexNet, Structure of AlexNet-Structure of AlexNet

manual feature extraction with SIFT and HOG, Manual Feature Extraction:
SIFT and HOG-Learning Image Features with Deep Neural Networks

simplest image features (why they don't work), The Simplest Image Features
(and Why They Don’t Work)

image gradients, Image Gradients-Image Gradients

image neighborhoods, How are neighborhoods defined? How should they cover
the image?

ImageNet Large Scale Visual Recognition Challenge (ILSVRC), Learning
Image Features with Deep Neural Networks

indices, maintaining assignments during coversions, Academic Paper
Recommender: Take 2

inner product, From Vectors to Subspaces, From Vectors to Subspaces

interaction features, Fancy Tricks with Simple Numbers, Interaction Features-
Interaction Features

computational expense of, Interaction Features

example of use in prediction, Interaction Features

intercept, Dummy Coding

intercept term, Overview of Linear Classification

intrinsic dimensionality, Intuition

inverse document frequency, Tf-Idf : A Simple Twist on Bag-of-Words

item-based collaborative filtering, Item-Based Collaborative Filtering

building an item-based recommender, Item-Based Collaborative Filtering

filter for academic paper recommender, First Pass: Data Import, Cleaning, and
Feature Parsing

for academic paper recommender

stage 1, building item feature matrix, Academic Paper Recommender:
Naive Approach

stage 2, searching for similar items, Academic Paper Recommender: Naive
Approach

origins of, Item-Based Collaborative Filtering

recommendations, Academic Paper Recommender: Naive Approach,
Academic Paper Recommender: Take 2, Academic Paper Recommender:
Take 3

K

k-means, k-Means Clustering-Summary

clustering as surface tiling, Clustering as Surface Tiling-Clustering as Surface
Tiling

clustering with, k-Means Clustering

featurization for classification, k-Means Featurization for Classification-Pros,

Cons, and Gotchas

k-nearest neighbors (kNN), k-Means Featurization for Classification, Pros, Cons,
and Gotchas

kernel, Convolutional Layers

L

left null space, Left null space

likelihood ratio test analysis, Hypothesis testing for collocation extraction

algorithm for detecting common phrases with, Hypothesis testing for
collocation extraction

linear algebra

anatomy of a matrix, The Anatomy of a Matrix

from vectors to subspaces, From Vectors to Subspaces

useful concepts, From Vectors to Subspaces

fundamental subspaces of the data matrix, The Four Fundamental Subspaces
of the Data Matrix-Left null space

singular value decomposition (SVD), Singular Value Decomposition (SVD)-
Singular Value Decomposition (SVD)

tips for navigating formulas, Intuition

useful definitions, From Vectors to Subspaces

linear classification

overview, Overview of Linear Classification-Overview of Linear
Classification

solving a linear system, Solving a Linear System-Solving a Linear System

linear combination, From Vectors to Subspaces

linear correlation, Variance and Empirical Variance

linear dependent features, One-Hot Encoding

linear independence, From Vectors to Subspaces

linear operators, The Anatomy of a Matrix

linear projection (in PCA), Linear Projection

using to transform features, Transforming Features

linear regression

learned coefficients, Dummy Coding

on categorical variable, using one-hot and dummy codes, Dummy Coding

with effect coding, Effect Coding

log transforms, Fancy Tricks with Simple Numbers, Log Transformation-Feature
Scaling or Normalization

generalization of, in power transforms, Power Transforms: Generalization of
the Log Transform-Feature Scaling or Normalization

using log transformed data to make predictions, Log Transform in Action-
Power Transforms: Generalization of the Log Transform

using with inverse document frequency, Tf-Idf : A Simple Twist on Bag-of-
Words

log-odds ratio for bin counting, Bin Counting

logical functions, Fancy Tricks with Simple Numbers

logistic regression

classification with, Classification with Logistic Regression-Classification with
Logistic Regression

tuning logistic regression with regularization, Tuning Logistic Regression

with Regularization-Tuning Logistic Regression with Regularization

looking at model's use of features, Deep Dive: What Is Happening?-Deep
Dive: What Is Happening?

with k-means cluster features, k-Means Featurization for Classification, Pros,
Cons, and Gotchas

M

machine learning

progress in text analysis vs. audio and images, Automating the Featurizer:
Image Feature Extraction and Deep Learning

workflow, Model Evaluation

magnitude of numeric data, Fancy Tricks with Simple Numbers

manifold (nonlinear subspace), Nonlinear Featurization via K-Means Model
Stacking

manifold learning, Nonlinear Featurization via K-Means Model Stacking

mask, Convolutional Layers

mathematical formulas, Models

mathematical modeling, Models

matrices

anatomy of, The Anatomy of a Matrix

decomposition of, methods for, Solving a Linear System

matrix-vector formulation, principal components, Principal Components:
Matrix-Vector Formulation

mean, Scaling Bag-of-Words with Tf-Idf Transformation

metric (k-means), k-Means Clustering

Microsoft Academic Graph dataset, Item-Based Collaborative Filtering

min-max scaling, Min-Max Scaling

caution when performing on sparse features, Standardization (Variance
Scaling)

missing data, Models

model evaluation, Model Evaluation

model stacking, Fancy Tricks with Simple Numbers

about, Pros, Cons, and Gotchas

k-means featurization, k-Means Featurization for Classification-Alternative
Dense Featurization

key intuition for, Pros, Cons, and Gotchas

models

about, Models

based on space-partitioning trees, Fancy Tricks with Simple Numbers

comparing, using hyperparameter tuning in, Tuning Logistic Regression with
Regularization

data scheme for academic paper recommender model, Academic Paper
Recommender: Naive Approach

evaluating for use with categorical variable features, Summary

good linear model that is relatively unique, Solving a Linear System

model-driven feature engineering, PCA as example of, Summary

N

n-grams, Bag-of-n-Grams, Parsing and Tokenization

collocations vs., Collocation Extraction for Phrase Detection

computing, Bag-of-n-Grams

natural language processing (NLP), Collocation Extraction for Phrase Detection

neighborhoods (image), How are neighborhoods defined? How should they
cover the image?

neural networks (deep), learning image features with, Learning Image Features
with Deep Neural Networks-Structure of AlexNet

convolutional layers, Convolutional Layers-Convolutional Layers

fully connected layers, Fully Connected Layers

pooling layers, Pooling Layers

ReLU transformation, Rectified Linear Unit (ReLU) Transformation-Rectified
Linear Unit (ReLU) Transformation

response normalization layers, Response Normalization Layers

structure of AlexNet, Structure of AlexNet-Structure of AlexNet

NLP (natural language processing), Collocation Extraction for Phrase Detection

NLTK Python package, Stemming

nonlinear dimensionality reduction, Nonlinear Featurization via K-Means Model
Stacking

nonlinear embedding, Nonlinear Featurization via K-Means Model Stacking

nonlinear featurization, Nonlinear Featurization via K-Means Model Stacking

nonlinear manifold feature extraction (k-means), Nonlinear Featurization via K-
Means Model Stacking

nonordinal values, Categorical Variables: Counting Eggs in the Age of Robotic
Chickens

normalization, Fancy Tricks with Simple Numbers

feature, Feature Scaling or Normalization

(see also feature scaling)

of gradient orientation histograms, What kind of normalization should be
done?

response normalization layers in neural networks, Response Normalization
Layers

normalization constant, ℓ2 Normalization

null space, Null space, Solving a Linear System

numeric data, Fancy Tricks with Simple Numbers-Summary

counts, Dealing with Counts-Log Transformation

binarization, Binarization

quantization or binning, Quantization or Binning-Log Transformation

feature scaling or normalization, Feature Scaling or Normalization-ℓ2
Normalization

min-max scaling, Min-Max Scaling

standardization (variance scaling), Standardization (Variance Scaling)

ℓ² normalization, ℓ2 Normalization

feature selection, Feature Selection-Feature Selection

interaction features, Interaction Features-Interaction Features

log transformation, Log Transformation-Feature Scaling or Normalization

generalization of, in power transforms, Power Transforms: Generalization
of the Log Transform-Feature Scaling or Normalization

using log transformed data to make predictions, Log Transform in Action-
Power Transforms: Generalization of the Log Transform

scalars, vectors, and spaces, Scalars, Vectors, and Spaces-Dealing with Counts

NumPy sparse array, converting Pandas DataFrame to, Academic Paper
Recommender: Take 2

O

odds ratio for bin counting, Bin Counting

one-hot encoding, One-Hot Encoding, Bin Counting

of cluster membership categorical variable, k-Means Featurization for
Classification

dense featurization vs., Alternative Dense Featurization

pros and cons of, Pros and Cons of Categorical Variable Encodings

trade-offs, Summary

using scikit-learn DictVectorizer, Academic Paper Recommender: Take 3

vs. bin counting, Bin Counting

orthogonal basis, From Vectors to Subspaces

orthogonal vectors, From Vectors to Subspaces

orthogonality, From Vectors to Subspaces

orthonormal basis, From Vectors to Subspaces

P

Pandas

computing quantiles and mapping data into quantile bins, Quantile binning

converting Pandas DataFrame to NumPy sparse array, Academic Paper
Recommender: Take 2

maintaining index assignments, Academic Paper Recommender: Take 2

dummy coding and one-hot encoding implementation, Dummy Coding

using to compute n-grams, Bag-of-n-Grams

parsing, Parsing and Tokenization

part-of-speech (PoS) tagging, Chunking and part-of-speech tagging

PCA (principal component analysis), Dimensionality Reduction: Squashing the
Data Pancake with PCA-Bibliography

considerations and limitations, Considerations and Limitations of PCA-
Considerations and Limitations of PCA

derivation, Derivation-PCA in Action

implementing PCA, Implementing PCA

linear projection, Linear Projection

principal components, first formulation, Principal Components: First
Formulation

principal components, general solution of, General Solution of the Principal
Components

principal components, matrix-vector formulation, Principal Components:
Matrix-Vector Formulation

transforming features using linear projection, Transforming Features

variance and empirical variance, Variance and Empirical Variance

use cases, Use Cases

using on scikit-learn digits dataset, PCA in Action-PCA in Action

whitening and ZCA, Whitening and ZCA

phrase detection, Filtering for Cleaner Features

collocation extraction for, Collocation Extraction for Phrase Detection-
Summary

frequency-based methods, Frequency-based methods

using chunking and part-of-speech tagging, Chunking and part-of-speech
tagging

using hypothesis testing, Hypothesis testing for collocation extraction

Poisson distribution, Power Transforms: Generalization of the Log Transform

pooling layers (in neural networks), Pooling Layers

Porter stemmer, Stemming

power transforms, Fancy Tricks with Simple Numbers, Power Transforms:
Generalization of the Log Transform-Feature Scaling or Normalization

principal component analysis (see PCA)

probability plots (probplots), Power Transforms: Generalization of the Log
Transform

Pythagorean theorem, ℓ2 Normalization

Python

converting Pandas DataFrame to NumPy sparse array, Academic Paper
Recommender: Take 2

maintaining index assignments, Academic Paper Recommender: Take 2

libraries for chunking and part-of-speech (PoS) tagging, Chunking and part-
of-speech tagging

using to calculate image gradients, Image Gradients

Q

quantiles, Quantile binning

quantization (or binning), Quantization or Binning-Log Transformation

fixed-width binning, Fixed-width binning

quantile binning, Quantile binning

quantizing a count, Quantization or Binning

R

R-HOG blocks, How are neighborhoods defined? How should they cover the
image?

radial basis function support vector machine (RBF SVM), k-Means Featurization
for Classification, Pros, Cons, and Gotchas

random forest classifiers, k-Means Featurization for Classification

rank or dimensionality (subspaces), From Vectors to Subspaces, From Vectors to
Subspaces

rare categories, What about rare categories?

rare words, filtering from text, Rare words

raw counts, PCA and, Considerations and Limitations of PCA

receiver operating characteristic (ROC) curves, k-Means Featurization for
Classification

recommender for academic papers (example), Back to the Feature: Building an
Academic Paper Recommender-Bibliography

first pass, data import, cleaning, and feature parsing, First Pass: Data Import,
Cleaning, and Feature Parsing-Academic Paper Recommender: Naive
Approach

naive approach, Academic Paper Recommender: Naive Approach-
Academic Paper Recommender: Naive Approach

second pass, more engineering and smarter model, Second Pass: More

Engineering and a Smarter Model-Third Pass: More Features = More
Information

fixed-width binning and dummy coding (part 2), Academic Paper
Recommender: Take 2

third pass, more features and more information, Third Pass: More Features =
More Information-Academic Paper Recommender: Take 3

rectified linear unit, Rectified Linear Unit (ReLU) Transformation

rectified linear unit (ReLU) transformation, Rectified Linear Unit (ReLU)
Transformation-Rectified Linear Unit (ReLU) Transformation

redundant data, Models

reference category, Dummy Coding

effect, calculating, Effect Coding

regularization constraints, adding to a model, Solving a Linear System

regularization, tuning logistic regression with, Tuning Logistic Regression with
Regularization-Tuning Logistic Regression with Regularization

resampling, Tuning Logistic Regression with Regularization

response normalization layers (in neural networks), Response Normalization
Layers

local response normalization, Response Normalization Layers

robustness, Binarization

row space, Row space

S

scalars, Scalars, Vectors, and Spaces, From Vectors to Subspaces

scale, Fancy Tricks with Simple Numbers

scikit-learn

CountVectorizer transformer, Bag-of-n-Grams, Scaling Bag-of-Words with
Tf-Idf Transformation

digits dataset, PCA in Action

FeatureHasher, Feature Hashing

GridSearchCV function, Tuning Logistic Regression with Regularization

k-means clustering on Swiss roll, Clustering as Surface Tiling

one-hot encoding, One-Hot Encoding

one-hot encoding using DictVectorizer, Academic Paper Recommender: Take
3

PCA package, Considerations and Limitations of PCA

SciPy, stats package, Power Transforms: Generalization of the Log Transform

sentences, analysis of, Parsing and Tokenization

separators, Parsing and Tokenization

SIFT (Scale Invariant Feature Transform), Manual Feature Extraction: SIFT and
HOG-Learning Image Features with Deep Neural Networks

architecture, SIFT Architecture

gradient orientation histograms, Gradient Orientation Histograms-What kind
of normalization should be done?

bins, considerations for, How many bins should there be? Should they span
from 0°–360° (signed gradients) or 0°–180° (unsigned gradients)?

image neighborhoods, How are neighborhoods defined? How should they
cover the image?

normalization, What kind of normalization should be done?

weight functions, What weight functions should be used?

image gradients, Image Gradients-Image Gradients

sigmoid function, Classification with Logistic Regression, Rectified Linear Unit
(ReLU) Transformation

signed feature hashing, Feature Hashing

singular value decomposition (SVD) of a matrix, Derivation, Principal
Components: Matrix-Vector Formulation, Singular Value Decomposition
(SVD)-Singular Value Decomposition (SVD), Solving a Linear System

computational expense of, Considerations and Limitations of PCA

singular vectors, Singular Value Decomposition (SVD)

space characters, Parsing and Tokenization

spaces, Scalars, Vectors, and Spaces

data space vs. feature space, ℓ2 Normalization

spaCy library, Chunking and part-of-speech tagging

span of a set of vectors, From Vectors to Subspaces

sparse data

caution when performing min-max scaling or standardization on,
Standardization (Variance Scaling)

example document-term matrix, Deep Dive: What Is Happening?

spectrum (of a matrix), Considerations and Limitations of PCA, Singular Value
Decomposition (SVD)

unevenness in, Solving a Linear System

standardization, Standardization (Variance Scaling)

caution when performing on sparse features, Standardization (Variance

Scaling)

statistical factor model, Use Cases

statistical modeling, Models

stats package, Power Transforms: Generalization of the Log Transform

stemming, Stemming

stocks, correlation patterns in, Use Cases

stopwords, Stopwords

string objects, Parsing and Tokenization

subspaces, From Vectors to Subspaces

fundamental, of the data matrix, The Four Fundamental Subspaces of the Data
Matrix-Left null space

organizing vectors into, From Vectors to Subspaces

Swiss roll, Nonlinear Featurization via K-Means Model Stacking

k-means clustering on, Clustering as Surface Tiling-Clustering as Surface
Tiling

T

tanh function, Rectified Linear Unit (ReLU) Transformation

target engineering, Fancy Tricks with Simple Numbers, Binarization

target hints, k-means featurization with/without, k-Means Featurization for
Classification

text data, Text Data: Flattening, Filtering, and Chunking-Summary

atoms of meaning, Atoms of Meaning: From Words to n-Grams to Phrases-
Summary

parsing and tokenization, Parsing and Tokenization

bag-of-x, turning text into flat vectors, Bag-of-X: Turning Natural Text into
Flat Vectors-Filtering for Cleaner Features

bag-of-n-grams, Bag-of-n-Grams

bag-of-words (BoW) featurization, Bag-of-Words

filtering for cleaner features, Filtering for Cleaner Features-Stemming

frequency-based filtering, Frequency-Based Filtering

stemming, Stemming

text analysis in machine learning, Automating the Featurizer: Image Feature
Extraction and Deep Learning

TextBlob library, Chunking and part-of-speech tagging

tf-idf (term frequency-inverse document frequency), Tf-Idf : A Simple Twist on
Bag-of-Words-Putting It to the Test

scaling bag-of-words with tf-idf transform, Scaling Bag-of-Words with Tf-Idf
Transformation

using in recommender for academic papers (example), Academic Paper
Recommender: Take 3

tokenization, Bag-of-n-Grams, Parsing and Tokenization

scikit-learn's tokenizing pattern, Scaling Bag-of-Words with Tf-Idf
Transformation

training

fitting feature transformer on training data, Scaling Bag-of-Words with Tf-Idf
Transformation

of logistic regression classifiers with default parameters, Classification with
Logistic Regression

tree-based models, Fancy Tricks with Simple Numbers

(see also decision tree models)

input feature scale and, Feature Scaling or Normalization

U

Unicode, Parsing and Tokenization

uniform hash functions, Feature Hashing

unigrams, Bag-of-n-Grams

V

variance, Scaling Bag-of-Words with Tf-Idf Transformation

and empirical variance in PCA, Variance and Empirical Variance

estimating via resampling, Tuning Logistic Regression with Regularization

in a blob of data points, Intuition

variance scaling, Standardization (Variance Scaling)

variance-stabilizing transformations, Power Transforms: Generalization of the
Log Transform

(see also log transforms; power transforms)

vector quantization, Clustering as Surface Tiling

vector spaces, Scalars, Vectors, and Spaces

vectors, Scalars, Vectors, and Spaces, From Vectors to Subspaces

Euclidean distance between, k-Means Clustering

from vectors to subspaces, From Vectors to Subspaces

turning text into flat vectors with bag-of-words (BoW), Bag-of-Words

vertical image gradients, Image Gradients

volume, Intuition

W

weighting schemes, gradient magnitude, What weight functions should be used?

whitening, Whitening and ZCA

word features, feature hashing for, Feature Hashing

wrapper methods, Feature Selection

wrong data, Models

Z

ZCA (zero-phase component analysis), Whitening and ZCA

use cases, Use Cases

About the Authors
Alice Zheng is a technical leader in applied machine learning, spanning
algorithm and platform development. Currently, she is a research science
manager in Amazon Advertising. Previously, she worked on toolkit development
and user education at GraphLab/Dato/Turi, and was a machine learning
researcher at Microsoft Research. She holds a PhD in electrical engineering and
computer science, and BA degrees in computer science and mathematics, all
from UC Berkeley.

Amanda Casari is a leader and engineer who explores the next horizons of
technology and how to best demonstrate the impacts these will bring. She is
currently a senior product manager and data scientist in Concur Labs and
cofounder of the Concur Labs AI Research team at SAP Concur. She has worked
in a breadth of cross-functional roles and engineering disciplines for the last 16
years, including data science, machine learning, complex systems, and robotics.
Amanda holds a BS in control systems engineering from the United States Naval
Academy and an MS in electrical engineering from the University of Vermont.

Colophon
The animal on the cover of Feature Engineering for Machine Learning is a
pharaoh eagle-owl (Bubo ascalaphus). This bird of prey is found in Northern
Africa and the Arabian peninsula in rocky, arid habitat. It is among the smaller
eagle-owls at 18–20 inches long, though the Bubo genus contains some of the
largest owl species. Most eagle-owls (as well as their American cousins, horned
owls) have distinctive ear tufts.

The pharaoh eagle-owl is nocturnal and hunts with a perching method. From a
high vantage point, it waits for small mammals, snakes, lizards, birds, and even
insects to come into range, before swiftly swooping toward its prey. It is well
equipped for this with keen farsightedness and hearing, feathers optimized for
silent flight, and sharp talons. Owls can also turn their heads in a range of about
270 degrees, allowing them to look behind themselves without making much
movement.

This species has mottled brown, black, and white plumage, and distinctive
orange-yellow eyes. Pharaoh owls are known to mate for life. Nesting sites are
created in shallow scrapes among rocks, within crevices, or (occasionally)
manmade structures like wells. In Egypt, the owls have been seen nesting on the
pyramids.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Elements of Ornithology. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

http://animals.oreilly.com

	Preface
	Introduction
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments
	Special Thanks from Alice
	Special Thanks from Amanda

	1. The Machine Learning Pipeline
	Data
	Tasks
	Models
	Features
	Model Evaluation

	2. Fancy Tricks with Simple Numbers
	Scalars, Vectors, and Spaces
	Dealing with Counts
	Binarization
	Quantization or Binning

	Log Transformation
	Log Transform in Action
	Power Transforms: Generalization of the Log Transform

	Feature Scaling or Normalization
	Min-Max Scaling
	Standardization (Variance Scaling)
	ℓ2 Normalization

	Interaction Features
	Feature Selection
	Summary
	Bibliography

	3. Text Data: Flattening, Filtering, and Chunking
	Bag-of-X: Turning Natural Text into Flat Vectors
	Bag-of-Words
	Bag-of-n-Grams

	Filtering for Cleaner Features
	Stopwords
	Frequency-Based Filtering
	Stemming

	Atoms of Meaning: From Words to n-Grams to Phrases
	Parsing and Tokenization
	Collocation Extraction for Phrase Detection

	Summary
	Bibliography

	4. The Effects of Feature Scaling: From Bag-of-Words to Tf-Idf
	Tf-Idf : A Simple Twist on Bag-of-Words
	Putting It to the Test
	Creating a Classification Dataset
	Scaling Bag-of-Words with Tf-Idf Transformation
	Classification with Logistic Regression
	Tuning Logistic Regression with Regularization

	Deep Dive: What Is Happening?
	Summary
	Bibliography

	5. Categorical Variables: Counting Eggs in the Age of Robotic Chickens
	Encoding Categorical Variables
	One-Hot Encoding
	Dummy Coding
	Effect Coding
	Pros and Cons of Categorical Variable Encodings

	Dealing with Large Categorical Variables
	Feature Hashing
	Bin Counting

	Summary
	Bibliography

	6. Dimensionality Reduction: Squashing the Data Pancake with PCA
	Intuition
	Derivation
	Linear Projection
	Variance and Empirical Variance
	Principal Components: First Formulation
	Principal Components: Matrix-Vector Formulation
	General Solution of the Principal Components
	Transforming Features
	Implementing PCA

	PCA in Action
	Whitening and ZCA
	Considerations and Limitations of PCA
	Use Cases
	Summary
	Bibliography

	7. Nonlinear Featurization via K-Means Model Stacking
	k-Means Clustering
	Clustering as Surface Tiling
	k-Means Featurization for Classification
	Alternative Dense Featurization

	Pros, Cons, and Gotchas
	Summary
	Bibliography

	8. Automating the Featurizer: Image Feature Extraction and Deep Learning
	The Simplest Image Features (and Why They Don’t Work)
	Manual Feature Extraction: SIFT and HOG
	Image Gradients
	Gradient Orientation Histograms
	SIFT Architecture

	Learning Image Features with Deep Neural Networks
	Fully Connected Layers
	Convolutional Layers
	Rectified Linear Unit (ReLU) Transformation
	Response Normalization Layers
	Pooling Layers
	Structure of AlexNet

	Summary
	Bibliography

	9. Back to the Feature: Building an Academic Paper Recommender
	Item-Based Collaborative Filtering
	First Pass: Data Import, Cleaning, and Feature Parsing
	Academic Paper Recommender: Naive Approach

	Second Pass: More Engineering and a Smarter Model
	Academic Paper Recommender: Take 2

	Third Pass: More Features = More Information
	Academic Paper Recommender: Take 3

	Summary
	Bibliography

	A. Linear Modeling and Linear Algebra Basics
	Overview of Linear Classification
	The Anatomy of a Matrix
	From Vectors to Subspaces
	Singular Value Decomposition (SVD)
	The Four Fundamental Subspaces of the Data Matrix

	Solving a Linear System
	Bibliography

	Index

