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Preface

Already in 2015, the Wall Street Journal claimed that companies sit on a treasure
trove of market data. They have an ever-increasing amount of data at their disposal.
However, it is not only about access to data. Companies need to develop strong
empirical and analytical skills to turn their data into a competitive advantage.
Traditional market research firms and hundreds of new startup companies specializ-
ing in “Data Science” and analytics support companies in building and maintaining
customer relationships, developing strategies to increase customer satisfaction,
improving sales strategies, personalizing the marketing mix, and automating mar-
keting processes in real time. The Handbook of Market Research seeks to provide
material for both, firms specialized in data analysis and firms hiring those firms. On
the one hand, it seeks to provide in-depth coverage of established and new marketing
research methods. On the other hand, by giving examples throughout, it aims to be as
accessible as possible.

The Handbook of Market Research helps readers apply advanced market research
methods in their projects and provides them with a valuable overview of various
analytical techniques. It targets three groups: graduate students, scholars, and data
science practitioners. Graduate students obtain an introduction to diverse market
research topics. Scholars can use the handbook as a reference, supporting their
research and teaching. Practitioners receive a state-of-the-art overview of scientific
practices.

What is special about the Handbook of Market Research?

• Chapters in this handbook are not purely technical but also offer an intuitive
account of the discussed methodologies.

• Many chapters provide data and software code to replicate the analyses. Readers
can find such supplementary material on the handbook’s online site (https://link.
springer.com/referencework/10.1007/978-3-319-05542-8).

• Nearly all chapters in this handbook have gone through a friendly review process.
The friendly reviewers helped to improve all chapters of this handbook further.

• We publish the handbook dynamically. Novel chapters will appear continuously
on the handbook’s online site. Moreover, authors have the opportunity to update
existing chapters online to respond to emerging trends and new methods.
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The handbook has three parts: Data, Methods, and Applications. The Data part
supports readers in collecting and handling different types of data. The Method part
outlines how readers can analyze structured and unstructured data. The Application
part equips readers with knowledge on how they can use data analytics in specific
contexts.

Our special thanks go to the authors of the chapters for their willingness to share
their knowledge and experience with the readers. Furthermore, we would like to take
this opportunity to thank the friendly reviewers who have helped further to increase
the high quality of the individual contributions. We want to thank Dr. Prashanth
Mahagaonkar, Veronika Mang, and Barbara Wolf from Springer Verlag for their
excellent cooperation.

Mannheim, Germany Christian Homburg
Karlsruhe, Germany Martin Klarmann
Germany Arnd Vomberg
November 2021
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Abstract

The question of how a certain activity (e.g., the intensity of communication
activities during the launch of a new product) influences important outcomes
(e.g., sales, preferences) is one of the key questions in applied (as well as
academic) research in marketing. While such questions may be answered based
on observed values of activities and the respective outcomes using survey and/or
archival data, it is often not possible to claim that the particular activity has
actually caused the observed changes in the outcomes. To demonstrate cause-
effect relationships, experiments take a different route. Instead of observing
activities, experimentation involves the systematic variation of an independent
variable (factor) and the observation of the outcome only. The goal of this chapter
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is to discuss the parameters relevant to the proper execution of experimental
studies. Among others, this involves decisions regarding the number of factors to
be manipulated, the measurement of the outcome variable, the environment in
which to conduct the experiment, and the recruitment of participants.

Keywords

Experimental design · Laboratory experiment · Data collection · Cause-effect
relationship · Manipulation · Experimental units

Introduction

Former US-president Obama’s election campaign in 2008 made him the president
with more total votes than any other US-president before him. One of the challenges
of Obama’s team members – among them former Google manager Dan Siroker and
the social psychologist Todd Rogers – was to increase the chance that a visitor of the
campaign’s website would provide her or his e-mail address to become a donor or
volunteer. For instance, would visitors be more likely to sign-up when the respective
button asked them to “Learn More,” “Join Us Now,” or “Sign Up Now”? And which
accompanying picture of Obama would be more suitable? In order to identify the
website design that would generate the highest sign-up rates, visitors were randomly
exposed to different button/image combinations and the respective sign-up rates
were tracked. Ultimately, the best performing combination was chosen for the
campaign – and this most effective design led to 140 percent more donors than the
least performing combination (Nisbett 2015).

This is actually an example of a type of experiment that is as effective as it
is simple, often referred to as A/B testing. A/B testing is particularly common in
online environments and heralded by companies such as Google and Amazon.
In A/B testing, a fraction of users is exposed to a modified version of an existing
website and their behavior is then compared to that of visitors of the standard
website. If the modifications lead to superior results (e.g., conversion rates),
they are adopted (Christian 2012). Later in this chapter, we will refer to
such designs as between-subjects designs with one factor being manipulated at
different levels.

The question of how a certain activity (e.g., the intensity of communica-
tion activities during the launch of a new product) influences important outcomes
(e.g., sales, preferences) is one of the key questions in applied (as well as academic)
research in marketing. While such questions may be answered based on observed
values of activities and the respective outcomes using survey and/or archival data, it
is often not possible to claim that the particular activity has actually caused the
observed changes in the outcomes. For instance, the higher levels of communication
intensity may have been made possible by the initial market success of the product,
or some unobserved factor may have influenced both communication intensity and
sales (see also chapter ▶ “Dealing with Endogeneity: A Nontechnical Guide for
Marketing Researchers” by Papies, Ebbes, and van Heerde in this volume). To
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demonstrate cause-effect relationships, experiments take a different route. Instead of
observing activities, experimentation involves the systematic variation of activities
(factors) and the observation of the outcome only.

The goal of this chapter is to discuss the parameters relevant to the proper
execution of experimental studies. Among others, this involves decisions regarding
the number of factors to be manipulated, the measurement of the outcome variable,
the environment in which to conduct the experiment, and the recruitment of par-
ticipants. For information on statistical techniques to analyze the resulting experi-
mental data, the reader may refer to chapter ▶ “Analysis of Variance” by Landwehr
in this volume or to one of the various works on the statistics of experimental design
(e.g., Maxwell and Delaney 2004).

Experimentation and Causality

Experiments aim at probing cause-effect relationships. Referring to the example
from the introductory section of this chapter, a question that Obama’s team might
have asked was “What happens to conversion rates if we change the label caption
from ‘Learn More’ to ‘Join Us Now’?” Thus, the goal was to examine how an
independent variable (the cause; here: label caption) influences a dependent variable
(the effect; here conversion rate). The conditions required to actually demonstrate
that a certain cause creates a certain effect has been subject to substantial philosoph-
ical debate, but generally accepted requirements are that (1) the cause temporally
precedes the effect, that (2) variations in the cause are related to variations in the
effect, and that (3) rival explanations for variations in the effect can be ruled out
(Shadish et al. 2002).

The characteristics of experiments are in line with these considerations (Thye
2014). The requirement of temporal order is ensured because we first actively
manipulate a presumed cause (such as the label caption), thereby exposing
participants to different possible realizations of the cause, and then observe the
effect (i.e., what happens to the dependent variable). Also, we can directly assess
how far variations in the cause are associated to variations in the effect (since we
can directly track differences in conversion rates). Finally, experiments rely on
random assignment of participants to the different treatments (e.g., each website
visitor has the same probability of being exposed to either the “Learn More” or
the “Join Us Now” label) to ensure that the different groups are equally com-
posed in terms of factors that may have an influence on the dependent variable
(e.g., physical factors such as gender, weight, age, or personality factors such as
preferences, values). Simply speaking, randomization mathematically equates the
groups on any known and unknown factors, which is why measured differences
in the dependent variable between groups can be ascribed to the manipulated
cause. Experimental settings where randomization is not possible due to practical
or ethical concerns are referred to as quasi-experimental designs. In such set-
tings, approaches such as propensity score matching may be used to account for
factors that may differ between participants in the experimental groups (e.g.,
Stuart and Rubin 2007).
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Experimental Design

Experimental design refers to the process of planning an experimental study that
meets the objectives specified at the outset. A concise planning ensures appropriate
data quality and quantity to answer the underlying research question with the
required precision (Meyvis and Van Osselaer 2018). In the following, we discuss
the steps involved in designing an experiment (see Fig. 1) and subsequently illustrate
this process with an example.

Fig. 1 Steps involved in the design of an experiment
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Definition of the Research Question

The actual planning of a study starts with a precise formulation of the research
problem(s) and, resulting from that, a clear definition of the objectives of the
experiment. The problem statement typically lists the essential issues that will be
tested in the experiment (Dean et al. 2017). It should be formulated as specific as
possible to reduce complexity while at the same time avoiding so-called Type III
errors, which refer to the problem of leaving out important factors from the exper-
imental design and/or choosing insufficient measures of process performance. This
also includes the determination of the response variable(s) and the population to be
studied. For instance, a problem statement could ask which price promotion causes
more sales – a 10% off or a 10€ off coupon.

The objectives of the experiment then determine the questions to be addressed
(Morales et al. 2017). Typically, experimenters also propose answers to the questions
being investigated by formulating hypotheses. This includes a null hypothesis
suggesting no difference between the experimental treatments and an alternative
hypothesis that argues for such a difference. For instance, the null hypothesis in the
example above would suggest that the 10% off coupon and the 10€ off coupon show
the same results, while the alternative hypothesis claims differences in resulting
sales. As an important remark, experimenters should be careful to not formulate
untestable hypotheses – i.e., those that cannot be easily interpreted, are unethical, or
even empirically untestable. For instance, oftentimes it is more feasible to divide a
very extensive hypothesized claim into several subhypotheses.

Determination and Operationalization of the Sources of Variation

In line with the idea of experimentation to systematically vary an independent
variable and then observe changes in a dependent variable of interest, the second
step in designing an experimental study entails an identification of the sources of
variation. Sources of variation comprise the manipulated independent variable(s),
whose effect on the outcome variable(s) is of primary interest, and extraneous
variables, which may challenge the inference of causality and thus lead to wrong
interpretations of the results.

Independent Variable(s)
In experimental research, the manipulated independent variable is referred to as
a factor. The experimenter manipulates the factor by creating different levels of it.
Thus, participants of the experiment are randomly assigned to different levels of
a factor or, in other words, they are “treated” with different values of the factor,
which is why the different factor levels are also referred to as treatments. In most
instances, one level of a factor serves as a control in which no experimental treatment
is administered. This control group makes it possible to determine whether the
independent variable had any effect on the dependent variable. Central decisions
in this step of the experimental design process thus involve the determination of the
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number of factors to be varied and their respective levels (which emanate from the
research question) as well as the operationalization of the different treatments.

Factors and their levels. Single-factor designs are the most basic form of com-
parative studies, where one independent variable (factor) is manipulated at multiple,
qualitatively distinct levels (the treatments). The idea of such a design is to study
the causal main effect of one independent variable on one or multiple dependent
variable(s). Single factor designs are often used to get an initial feeling of how a
treatment works. For instance, experimenters may want to test the impact of ambient
scent (cool vs. warm) on ad preference and product purchase intention. To determine
whether scenting the environment has any effect at all on the dependent variables,
a control group may be included where participants also indicate their ad preference
and product purchase intention, but without being exposed to any scent. The result
thus is a single-factor design involving three levels of ambient scent: cool [e.g.,
peppermint] vs. warm [e.g., cinnamon] vs. control [no scent] (Madzharov et al. 2015).

In contrast, multifactor designs systematically vary the levels of two or more
independent variables (i.e., treatment factors) (Collins et al. 2009). These factors
are crossed such that combinations of the respective levels are formed. The classic
case of a multifactor design is the 2� 2= 4 experimental conditions case. It describes
the combination of two independent variables, which are manipulated at two dis-
tinctive levels each. Such multifactor designs enable an examination of interactions
between factors. For instance, the previously described effect of ambient scent
(cool vs. warm) on product purchase intention may depend on the salesperson’s
behavior (rude vs. polite) (Madzharov et al. 2015). Such a multifactor design
where all combinations of the respective levels are formed is referred to as a full
factorial design.

Despite the advantages of multifactor designs, one should consider that an
increasing number of independent variables may result in a large number of ex-
perimental conditions and thus an increased complexity of the experimental design
(Koschate-Fischer and Schandelmeier 2014). For instance, the interpretation of
interactions between two (two-way interactions) or three (three-way interactions)
variables seems plausible. However, the more combinations of variables exist, the
less meaningful are their interpretations. Some of those combinations may even
be nonsensical, logistically impractical, or otherwise undesirable (Collins et al.
2009). Therefore, to make settings with a large number of variables feasible,
reduced/fractional factorial designs are commonly applied (Cox 1992).

Fractional factorial designs describe designs where only a fraction of a full
factorial experiment is used. Common is the so-called half fractional factorial design,
where only half of the experimental treatments are used. For instance, experimenters
may investigate a design with three factors and two levels each. This would involve
23 = 8 experimental runs in a full factorial design. In Table 1, we illustrate this case
for three factors (A, B, and C) that are each varied at two levels (high and low). The
small letters denote treatment combinations, while capital letters refer to factors and
effects. “I” denotes the identity column that only contains “+” signs (any other
column multiplied by itself yields this column), while (1) describes the combination
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of treatments where all factors are at their low levels. Moreover, a small letter in the
treatment combination symbol indicates that the respective factor is at its high level;
if the factor does not appear, it is at its low level (e.g., the treatment combination
symbol ac indicates that factors A and C are at their high level, while factor B is at its
low level). The “+” and “�” signs in the respective factor columns indicate that the
factor is at its high or low level. Signs for the interaction columns are the result of
taking the product of the signs of the involved factor columns.

If we were now restricted in our resources and only able to run four experimental
conditions, we would have to resort to a fractional factorial design, which in this case
would be written as 23–1. The central question is which four out of the eight
conditions to choose. A first step is to select an interaction that can be neglected.
Typically, experimenters choose to sacrifice the highest order interaction for this
purpose since it is the most difficult to interpret interaction. In our case, we select
ABC as the highest order interaction. Hence, ABC is used to generate the fraction of
conditions to be tested. In order to identify those conditions, we select the conditions
from those rows where the ABC column indicates a “+”. So in our case, the four
conditions to be run are a, b, c, and abc (see the shaded rows in Table 1).

Subsequently, we can determine which effects are aliases (i.e., are confounded).
In our case of three factors, we would take the symbols for the highest order
interaction (ABC) and attach them to every effect. Whenever the same factor appears
twice in such a combination, it is erased – what remains is the alias of the original
effect. For instance, if we take effect A, we have A(ABC). When we delete the A’s,
we are left with BC. That means the main effect of factor A is confounded with the
BC interaction, or in other words, the BC interaction and factor A are aliases. In the
current example, also B and AC as well as C and AB are aliases (for more details, see
Montgomery 2009).

The specific number of levels that are manipulated for each factor is an important
decision on its own. For instance, previous research indicates that attribute impor-
tance measures can be sensitive to the number of levels. The more levels exist for
a particular attribute, the more attention and thus subjective importance is given to
this attribute (Verlegh et al. 2002).

Table 1 Example of a fractional design

Treatment
combination

Identity column Factor
Two-factor
interaction

Three-factor
interaction

I A B C AB AC BC ABC

(1) + � � � + + + �
a + + � � � � + +

b + � + � � + � +

ab + + + � + � � �
c + � � + + � � +

ac + + � + � + � �
bc + � + + � � + �
abc + + + + + + + +
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Decisions about the number of levels are easy if the independent variables are
nominal-scaled (Koschate-Fischer and Schandelmeier 2014). They result directly
from the research question. However, if the underlying scale is metric or quasi-
metric, more than two levels might be necessary. This especially holds for research
questions where nonmonotonic or nonlinear relationships between the independent
variable and the dependent variable are likely (Cox 1992). For instance, previous
research has examined the relationship between repeated advertising exposure and
consumers’ affective response in experimental designs with four levels (zero, low,
medium, high) of the advertising repetition manipulation (Nordhielm 2002). Results
suggest an inverted U-shaped relationship, where consumers’ affective judgment
was most positive for the moderate frequency of advertising exposure.

However, an increasing number of factor levels not only increases the experi-
mental sensitivity, but also the number of treatments. Therefore, more than three
levels may only be considered in single-factor designs in order to identify the most
promising levels for further investigation. In multiple-factor designs, each individual
variable should be limited to two or three manipulated levels each (Eriksson et al.
2008). If more than three levels are considered in multiple-factor designs, a frac-
tional design may be advisable. As mentioned earlier, those designs consider not all
possible treatments but only investigate logically useful ones to keep the complexity
at a manageable and interpretable level (Cox 1992).

Operationalization of the treatments. A key challenge when translating a theoret-
ically defined independent variable of interest into an operational treatment to
be administered to participants is that the respective treatment might not incorpo-
rate all characteristics of the variable of interest (underrepresentation) or that it
might contain content that is not part of the theoretical variable (thereby creating
a confound). A number of aspects can lead to such mismatches (Shadish et al. 2002).
For instance, a design that compares a treatment group with a control group may
fail to detect an effect of the treatment on the dependent variable simply because
the treatment is implemented at a too low level. Thus, in most instances, it is advis-
able to manipulate the independent variable at several levels. Appropriate and
realistic levels of the independent variable can be identified based on a pretest (see
section “Preliminary Testing”).

The manipulation of the independent variable is often implemented within stim-
ulus material containing text (a scenario in which the study is embedded, the in-
structions to the participants, and measures assessing the dependent variable),
pictures, and sometimes video material. Rashotte et al. (2005) describe the creation
of this material as “creating an alternate reality that volunteer participants will inhabit
for a time” (p. 153). The design of such stimulus material requires great care, and it is
indispensable to conduct preliminary tests before the experiment to ensure that
participants interpret the material as intended. Generally, material and instructions
should be as standardized as possible, avoiding complexity and ambiguity in the
language used. A predetermined script conveys all necessary information to the
participants and avoids any distractions. As a rule of thumb, all crucial instructions
are repeated three times using slightly different wording to ensure reception of the
information (Kuipers and Hysom 2014).
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To assess whether the manipulation has worked successfully (and not created a
confound) and how far participants have really attended to the information containing
the manipulation of the independent variable (Oppenheimer et al. 2009), most
(academic) research includes manipulation checks in the experimental material
(Kuipers and Hysom 2014; Perdue and Summers 1986). Three aspects should be
considered when designing a manipulation check in experiments.

First, the experimenter should be able to show that the manipulation indeed
changes the theoretical variable that it was intended to alter (Perdue and Summers
1986). To check whether the manipulation meets this criterion, one has to find good
indicators that assess the respective theoretical construct (Koschate-Fischer and
Schandelmeier 2014). This is a rather easy task if the manipulated variable pertains
to a simple construct such as price level. If the researcher has manipulated the price
level (e.g., low/medium/high) of a given product to examine how different prices
affect purchase intention, a simple single-item scale may serve as a manipulation
check by asking participants whether they perceived the price as low vs. high. For
a successful manipulation, significant differences in the single-item measure should
be observed between the different treatment groups.

Second, experimenters should also detect and account for satisficing behavior of
participants (Oppenheimer et al. 2009). Satisficing means that participants might
wish to minimize cognitive effort in survey responses and therefore often do not
properly read texts, questions, or instructions in the respective studies. Reception of
such information, however, is necessary to produce useful data, which is why
satisficing behavior can cause noise and reduce experimental power. This particu-
larly holds for scenario-based experimental designs, where textual descriptions are
used to create realistic experimental environments. To detect satisficing behavior,
instructional manipulation checks have been developed (Oppenheimer et al. 2009).
These are directly embedded in the experimental material and consist of questions
that are similar to other questions in length and response format. If participants
follow these instructions, experimenters get confirmation that texts, questions, and
instructions have been read carefully and participants have spent the cognitive effort
necessary to understand the experimental material. Figure 2 provides an example of
such an instructional manipulation check. Here, participants are instructed to ignore
the private transportation usage question but to proceed with the survey by directly
clicking the continue button.

Third, experimenters have to decide about the point of time in the experiment
when the manipulation check has to be answered. This also includes the question
where to place the items that check the effectiveness of the manipulation – whether
they appear before or after the measurement of the dependent variable (Perdue and
Summers 1986). In this respect, it has long been argued that the items should be
placed after measurement of the dependent variable in order to avoid demand effects
(Wetzel 1977). However, this approach has been criticized since answering the
dependent variable before might bias the subsequent manipulation check (particu-
larly in self-report measures of the manipulation check). Moreover, the effect of the
manipulation might weaken substantially over time (Kuipers and Hysom 2014;
Perdue and Summers 1986). Placing the manipulation check before the assessment
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of the dependent variable, however, may cause interference with the effect of the
manipulation or may even be interpreted as a necessary condition for the observed
effect (Trafimow and Rice 2009).

Given these issues, researchers today call for careful evaluation of whether the
benefits of a manipulation check truly outweigh the costs (Sawyer et al. 1995;
Trafimow and Rice 2009). Many situations exist where manipulation checks add
only little informational value to theory testing. This includes variables that are
isomorphic with their operationalization such as black and white vs. colored pic-
tures in advertising (Sawyer et al. 1995). Moreover, manipulation checks are not
necessarily required in situations where well-known manipulations of variables
are used and therefore confidence in the manipulation is backed by existing litera-
ture, or where the manipulations have been extensively pretested (see section
“Preliminary Testing”). Verifying the appropriateness of a manipulation in the course
of a pretest separately from the main experiment may therefore be advisable to
circumvent the previously discussed problems associated with the placement of the
manipulation check items.

Besides employing manipulation checks, also the use of more than one operatio-
nalization of a given theoretical variable may reduce the threat of false inferences.
While it is relatively easy to use multiple measures to assess an outcome variable
(e.g., different multi-item scales to capture variables such as attitude or preference),
employing different manipulations for the independent variable is more challenging

Virtual QR Code Stores

It is 8am on a Monday morning and, just like every morning, you take the tram to get to work.
However, when arriving at the platform, you notice that there are no longer posters with
advertisements for local retailers, events, etc. Instead, the posters show pictures of
supermarket shelves listing numerous products, which are typically offered in supermarkets.

Each single product on these shelves is listed together with an own QR code. By scanning
this code, you can put the respective product in an online shopping cart and you have the
possibility to initiate a same-day home delivery afterwards. We are interested in unbiased
and meaningful results. Therefore, it is important that you have read and understood the
Virtual QR Code Store scenario. To demonstrate this, please ignore the following question
on your private transportation usage by not checking any of the six answer boxes. Instead,
please directly click the continue button. Thank you very much!

Which of the following transportation do you typically use?
(multiple checks are allowed)

Own car Car sharing Bus

Tram Train Bike

Continue »

Fig. 2 Example of instructional manipulation check
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since it increases the required sample size. For instance, by manipulating psycho-
logical distance based on both temporal and social aspects, Bornemann and Hom-
burg (2011) show that psychological distance differently impacts price perception
depending on the respective operationalization of psychological distance.

Extraneous Variables
Different types of extraneous variables may challenge the inference of causality in
experimental research. Most problematic are so-called confounding variables, which
describe variables that are related to two variables of interest (i.e., factor and
observed response variable) and thus may explain their relationship (Harris et al.
2006). A confounding variable may vary with the levels of the manipulated variable
and at the same time be associated with the dependent variable. As a consequence,
the observed causal relationship between the independent and the outcome variable
can be the result of the confounding variable’s impact.

Generally, randomization should solve the issues resulting from confounding
effects by equally distributing both known and unknown confounding variables
between experimental conditions. However, in some situations, randomization
may be hard to apply (e.g., in quasi-experimental designs) or ineffective to achieve
constant terms between experimental conditions (e.g., due to small sample sizes).
Moreover, some manipulations may naturally cause more than just the intended
effects. For instance, one may create different levels of crowding in stores to
manipulate the extent of potential social contacts. Such contacts should be valued
by older consumers as they constitute a compensation for the age-related loss of
companionship (Myers and Lumbers 2008). However, there is also evidence that
crowding increases perceived stress in a shopping environment, which may prevent
older consumers from shopping at all (Albrecht et al. 2017). As such, not necessarily
the level of social contact but instead the perceived stress may relate to older
consumers’ affective and behavioral states. To overcome the issues arising from
confounding effects, researchers may include confound checks in experimental
designs to show that the manipulation does not change related but different con-
structs (Perdue and Summers 1986). Similar to a manipulation checks, this involves
the administration of indicators that assess the respective theoretical constructs
(Sawyer et al. 1995).

The timing of measurement of confounding variables depends on their potential
interrelationships with the manipulated independent variable, the manipulation
check, and the outcome variable (Koschate-Fischer and Schandelmeier 2014). If
the extraneous variable is affected by the manipulation (check), it should be mea-
sured after provision of the treatments to the participants (the manipulation check).
The same order holds true if effects of the dependent variable on the confounding
variables are likely.

In addition to confounding variables, so-called suppressor variables may affect
the magnitude of the relationship between the independent and the dependent
variable (Cohen et al. 2003). Suppressor variables are correlated with the inde-
pendent variable but not with the outcome and therefore add irrelevant variance,
which may hide or suppress the real relationship between the latter two variables. As
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a consequence, the relationship may actually become stronger or weaker or even
change sign. When including these suppressor variables into the respective analysis,
the unwanted variance is removed from the relationship of interest. For instance, we
would like to know whether differences in knowledge of history exist between
younger and older people and administer a test to both groups that has to be
completed within an indicated time limit. We may expect that older people know
more about history than younger people but find that younger people have answered
more of the test’s questions. A possible explanation for this finding may be that older
people are simply slower readers. Slow reading has prevented them from answering
all questions but is otherwise not associated with knowledge of history. In this case,
reading speed constitutes a suppressor variable we want to control for in our analysis
to obtain the true relationship between age and knowledge of history.

Definition and Operationalization of the Measured
Response-Variables

Similar to the operationalization of the treatments, also the dependent variable of
interest has to be translated into an operational measure. Moreover, additional vari-
ables may have to be assessed, particularly to reveal processes underlying a cause-
effect relationship or to rule out alternative explanations.

Operationalization of the Dependent Variable(s)
Using interviews and surveys, experimenters mostly refer to self-report measures to
capture participants’ response to experimental manipulations (Morales et al. 2017).
This approach involves asking respondents (multiple) direct questions about, for
instance, their feelings, attitudes, or behavioral intentions. These questions typically
come in the form of rating scales or fixed-choice questions. Rating scales capture
how strong participants agree or disagree with the statements and can reveal the
degree of response. In contrast, fixed-choice questions force respondents to make a
fixed-choice answer such as “yes” or “no,” or “buy” or “not buy.”

Sometimes, researchers are interested in aspects they cannot operationalize due to
restrictions they face when conducting an experimental study. For instance, market-
ing researchers may be interested in factors influencing brand choice, but are not able
to actually measure real choice behavior and therefore resort to scales assessing
brand attitude as a proxy. Unfortunately, the link between attitudes and actual
behavior is not really stable and highly contingent on a number of factors. For
instance, attitudes are better able to predict behavior when they are formed based
on actual experience with an object and often retrieved from memory (Glasman
and Albarracín 2006). This implies that particularly in case of new products,
researchers should refrain from using attitude measures if the theoretical interest
lies in behavioral consequences.

An additional aspect that poses challenges to the measurement of outcome vari-
ables is the demand effect described in the section “Assigning Participants to
Experimental Treatments.” In a within-subject design, where scores of an outcome
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variable are obtained repeatedly from the same participant, carryover-effects
may occur or participants may guess the goal of the study and – consciously or
not – act accordingly when providing scores for scale items that aim to assess the
outcome variable. For instance, a huge stream of literature examines consequences
of various treatments on participants’ emotions (in a marketing context, this could
be the impact of different advertisements on emotional reactions). While a first
challenge in this context is the theoretical definition of emotions, how to measure
them, particularly in within-subject designs, is even more difficult. Emotional
reactions may manifest in various ways, such as facial action, vocal changes, cardiac
responses, or subjective experiences. Particularly the latter are most often asses-
sed based on self-report scales. In such cases, the standard deviations across the
different measurement points may be compared to assess whether participants
simply transfer a prior judgment to a subsequent assessment (stereotypic responding;
Larsen and Fredrickson 1999).

Various outcome variables – including emotional reactions – can also be assessed
without the need for participants’ self-reports, thus circumventing this issue. In many
marketing-related research questions, the degree to which participants attend to
particular information depending on the structure of that information is of interest
(for instance in the context of designing advertisements). In such cases, eye-tracking
may be used to examine participants’ attention to particular pieces of information.
Also emotional reactions may be assessed continuously throughout the whole
experiment based on physiological recording devices or via recording and coding
participants’ facial reactions during the experiment (Larsen and Fredrickson 1999).
Since emotional reactions have been shown to systematically manifest in changes of
facial muscles, several software solutions have been developed (e.g., IntraFace by
Carnegie Mellon University’s Human Sensing Laboratory) that code the recorded
material into specific emotional reactions. More recent developments also show that
mouse cursor movements may be used to index participants’ emotional reactions
(Hibbeln et al. 2017), providing an unobtrusive way to assess emotional reactions in
online experiments.

Mediators
Assumptions on causal relationships in experiments should have a clear theoretical
rationale, which is why researchers are increasingly interested in revealing the
psychological processes underlying those relationships (Spencer et al. 2005). In
other words, they search for variables that causally transmit the effects of the
manipulated variable to the dependent variable – so-called mediators (Bullock
et al. 2010). For instance, following the theory of cognitive dissonance, researchers
postulate that the experience of incongruent information (e.g., positive impression of
a brand and negative experience with one of its products) may cause an aversive
arousal in individuals’ minds, which in turn can initiate changes in their attitudes
(Festinger 1957). In this case, the aversive arousal is the mediator of the incongruent
information-attitude relationship. Such mediators can be particularly relevant for
studies where no main effect of the independent variable on the dependent variable is
found in initial studies. Often, researchers abandon their project at these stages in the

Experiments in Market Research 15



assumption that there is no effect at all. However, multiple psychological pro-
cesses may simultaneously mediate a relationship, but with opposite signs, thereby
causing the nonsignificant main effect (Zhao et al. 2010). For instance, advertising
may (1) increase the consideration set of consumers, which in turn increases
price sensitivity. On the other hand, it may (2) increase perceived differences in
utility among competing products, which negatively affects price sensitivity (Mitra
and Lynch 1995).

To operationalize the mediator variable, three approaches exist. First, most
experiments use a so-calledmeasurement-of-mediation design, where the proposed
mediator/s is/are measured using survey item scales (Spencer et al. 2005). Then,
regression-based causal mediation analyses are applied (e.g., Zhao et al. 2010).
This approach, however, has been criticized for several limitations (see Spencer et
al. 2005 for further discussion), of which the causal inference of the mediator-
dependent variable relationship is the most decisive (Pirlott and MacKinnon 2016).
Randomly assigning participants to levels of the manipulated independent variable
and measuring both the mediator and outcome variables enables interpretation of
the independent variable-mediator and the independent variable-outcome relation-
ships. However, it is not possible to decipher whether the mediator causes the
outcome, the outcome causes the mediator, or unmeasured confounding variables
cause both the mediator and the outcome variable. To overcome the limitations of
this approach and thus make strong inferences about the causal chain of events,
researchers suggest manipulating not only the independent variable but also the
mediator. In this respect, the experimental-causal-chain and moderation-of-process
designs are the most used design approaches (Spencer et al. 2005). In experimen-
tal-causal-chain designs, two experiments are conducted. In the first experiment,
participants are randomly assigned to the levels of the independent variable while
the mediator and the outcome variables are measured. This allows for an unam-
biguous interpretation of the effect of the independent variable on the mediator and
outcome variables, respectively. In a second experiment, the causal effect of the
mediator variable on the dependent variable is tested. Here, participants are
randomly assigned to levels of the manipulated mediator variable and the outcome
variable is measured. The respective levels are defined based on the changes of the
mediator variable caused by the independent variable in the first experiment. In
contrast, in moderation-of-process designs, the independent and the mediator
variables are simultaneously manipulated in a two-factor experimental design.
These manipulations allow for inferences about the causal effects of both the
independent variable and the mediator variable on the measured outcome variable.
Moreover, a manipulation check that measures the mediator variable is applied,
which is why also the effect of the independent variable on the mediator variable
can be tested.

However, experimental-causal-chain and moderation-of-process designs have
some drawbacks as well. Some psychological processes such as personal commit-
ment are not easy to manipulate. Moreover, the manipulation of the mediator must
be the same as the measured variable before, which constitutes a serious limitation
of this approach. For instance, Postmes et al. (2001) failed to show a successful

16 T. Bornemann and S. Hattula



manipulation of group norms when measuring this variable. Also, the additional
manipulation of the mediator variable requires larger sample sizes.

Given the issues involved in the three designs, Spencer et al. (2005) make some
suggestions regarding when to use which approach based on how easy it is to
measure the proposed processes and how easy those processes are to manipulate.
Specifically, the experimental-causal-chain design is the simplest and most straight-
forward approach if the mediator can be both measured and manipulated. If one has
the resources, a series of studies conducting all three approaches would be the best
option. In situations where the mediator can easily be manipulated but measuring it
is difficult, the moderation-of-process design is recommended. The most prevalent
approach in existing research – the measurement-of-mediation design –may be used
if the manipulation of the mediator is difficult, but the mediator can be measured.

Decision About the Environmental Setting

Having identified and operationalized the sources of variation and response vari-
ables, experimenters need to decide about the environmental setting that best fits the
defined requirements. Oftentimes, the environment of an experiment is chosen based
on convenience aspects such as saving cost and time, or ease of application (Li et al.
2015). However, the experimental environment affects the controllability of the
manipulation by the researcher as well as the participants’ behavior. It is human
nature to pay attention not only to the manipulated stimuli but also to the experi-
ment’s environment (Harrison and List 2003). Individuals employ learned strategies
and heuristics to cope with those influences, which is why insights from isolated
snapshots in controlled settings can provide misleading insights of “true” behavior.
Against this background, the next subsections provide a deeper understanding of
three prevalent environmental settings of experiments (laboratory, field, and online).

Laboratory Experiments
Laboratory experiments describe experimental designs in controlled environmental
settings. They have been almost neglected until the late 1940s, but have since
become an integral part of today’s marketing research. For instance, between 2000
and 2007 alone, more than 1200 laboratory experiments have been published in the
four leading marketing journals (Baum and Spann 2011). This prevalence in acade-
mia may result from the special merits of laboratory experiments. Employing
artificial environments, experimenters can eliminate many of the confounding in-
fluences (e.g., noise level, architectural design) that may otherwise affect the results
of experiments (Falk and Heckman 2009; Harrison and List 2003). Therefore, a
higher internal validity – referring to the extent to which an experimental manipu-
lation is truly responsible for variations in the dependent variable (Shadish et al.
2002) – is assigned to laboratory experiments compared to other environmental
settings. Moreover, experiments in controlled environments enable randomized
allocation of participants to conditions, counterbalancing, and the use of standard-
ized instructions, which facilitates later replication (Aaker et al. 2011).
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However, there is an intense discussion on whether the findings from laboratory
experiments are realistic and “right” for theory testing. Researchers criticizing
controlled environmental conditions as being unrealistic argue that the context in
which participants’ decisions are embedded (and the associated level of scrutiny)
and the way they are selected to participate influence their behavior (List 2011). For
instance, there is empirical evidence that participants in laboratory environments
might make assumptions about the experimenter’s objectives and adjust their behav-
ior to align with these expectations (Benz and Meier 2008). To ensure that none of
the participants is aware of the true purpose of the study, researchers increasingly
administer suspicion probes in their experimental material (e.g., Hattula et al. 2015).
Moreover, in natural environments, individuals may adapt their behavior in ways
that can hardly be captured in a laboratory environment (Levitt and List 2007). For
instance, individuals can simply stop shopping and leave the particular store.
Consequently, the results from the laboratory may not be generalizable to real
markets and thus limit the external validity of the respective findings.

External validity denotes how far a causal relationship that has been uncovered in
an experimental study can be generalized beyond the context of the experiment in
terms of people, places, treatments, and outcomes (Shadish et al. 2002). An impor-
tant prerequisite for external validity is that the experiment’s participants represent
the true population of interest and that the experimental setting is perceived as
realistic as possible. For instance, experimentation is often used to identify effective
designs and layouts of advertisements. In such studies, participants are frequently
exposed to variations of the focal advertisement only (in terms of pictures included,
font sizes, etc.), whereas in real life, consumers normally are exposed to a sequence
of advertisements for different brands and products (e.g., when watching TV-com-
mercials or reading a magazine or newspaper). Thus, the attention participants pay to
an isolated advertisement in an experimental study may be different from the
attention they would pay for it in real life situations.

The extent of a laboratory experiment’s external validity therefore depends on its
design and execution in the specific context. “The external validity of an experiment
cannot be evaluated either a priori or a posteriori (e.g., on the basis of sampling
practices or realism) in the absence of a fairly deep understanding of the structural
determinants of the behavior under study” (Lynch 1982, p. 238). In this respect,
Koschate-Fischer and Schandelmeier (2014) discuss three aspects that influence the
generalizability of findings generated from laboratory experiments. First, the natu-
ralness of a laboratory setting strongly depends on the operationalization of the
independent and dependent variable(s). For instance, the levels of the manipulation
of the independent variable should be different enough to represent meaningful
categories (Zikmund and Babin 2006). Second, not the mundane realism (i.e.,
physically resembling the real world) of an experiment is important, but the exper-
imental realism matters (Berkowitz and Donnerstein 1982). That is, experiments
should be designed such that participants are caught up in the procedures and forget
that they are part of an experiment – they should perceive the research setting as
natural. Finally, laboratory experiments should be conducted in different contexts to
provide valid results. For instance, the threats to external validity can be varied in
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multiple experiments to examine their relevance (Falk and Heckman 2009) and thus
to enhance the generalizability of the findings.

Field Experiments
Field experiments represent a conjunction of experimentation and fieldwork – they
describe experimental designs conducted in mostly natural environmental settings
(see also chapter ▶ “Field Experiments” by Valli, Stahl, and Feit in this volume).
Literature in marketing has recently seen an increase in research using field exper-
iments: more than 60% of all field experiments published in the leading marketing
journals over the last 20 years were published in the most recent 5 years (Simester
2017). Following Harrison and List (2004), three types of field experiments can be
differentiated (see Fig. 3). Artefactual field experiments are similar to laboratory
experiments except for one feature – they involve a nonstandard pool of participants.
Instead of recruiting students, participants of the experiment are drawn from the
real market (List 2011). Thus, the respective research more closely features the real
world actors of interest. Compared to artefactual field experiments, framed field
experiments additionally consider a realistic task to avoid confounding effects that
result from a laboratory setting. That is, the experiment is framed “in the field context
of the commodity, task, stakes, or information set of the subjects” (List 2011, p. 5).
Finally, natural field experiments are similar to framed field experiments, but
here, participants naturally undertake the tasks and therefore are not aware of
participating in an experiment. This combination of realism and randomization
helps avoiding that participants adjust their behavior to align with assumed expec-
tations of the experimenter (Benz and Meier 2008). Natural field experiments
therefore maximize the generalizability and thus the external validity of experimen-
tal findings. They simulate as closely as possible the conditions under which a causal
process occurs (List 2011).

However, the uncontrolled and frequently complex environmental settings in
field experiments have been argued to limit the internal validity of those experiments
(Aaker et al. 2011). Since confounding environmental characteristics are not held
constant, establishing cause-effect relationships is difficult. Therefore, “an ideal field
experiment not only increases external validity, but does so in a manner in which
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Fig. 3 Overview of laboratory and field experiments
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little internal validity is foregone” (Harrison and List 2003, p. 37). To achieve this,
several prerequisites have to be met. First, the treatment variable must be exoge-
nous (Remler and Van Ryzin 2010). In other words, the dependent variable should
not determine the manipulation of the independent variable. Second, the char-
acteristics of the treatment and the control group must be truly comparable. For
instance, finding comparable locations for both groups is crucial (Trafimow et al.
2016). Matching techniques can be applied, where locations are evaluated based
on variables that might differentiate them. Finally, experimenters should capture
as many control variables as possible to account for potential confounding effects
(Arnold 2008).

At this point, one might expect a recommendation regarding whether to use
laboratory or field experiments in market research. There is a lively debate on this
question. Some researchers favor laboratory experiments due to their high internal
validity, whereas others value the external validity of field experiments. “The
obvious solution is to conduct experiments both ways: with and without naturally
occurring field referents and context” (Harrison and List 2004, p. 1050). Combin-
ing the results from laboratory and field experiments can help understanding the
mechanisms of behavior observed in the real market (Falk and Heckman 2009).
For instance, differences in the findings between both settings indicate the need to
study the environment in more detail in order to understand real world behavior of
market actors.

Online Experiments
The third environmental setting is Internet based – the respective experimen-
tal design is mostly referred to as online experiments. Due to technological ad
vancements and cost and distribution advantages (see Koschate-Fischer and
Schandelmeier 2014 and Reips 2002 for further advantages), online experiments
have become a standard instrument in today’s market research. Descriptions of this
experimental setting highlight the possibility of an interaction of participants with
the experimenter or other participants via the Internet (Morton and Williams 2010).
This interaction is direct, but virtually mediated through the internet. Due to the fact
that participants of online experiments remain in their natural environment, some
researchers suggest that online experiments pertain to the category of field experi-
ments (Koschate-Fischer and Schandelmeier 2014). This categorization may hold
for settings where online marketing phenomena such as e-commerce strategies are
studied and the use of a computer thus describes the natural environment of the
participants. However, online experiments are also applied to study offline phenom-
ena and to validate and/or extend results from field and laboratory studies (Reips
2002). In this latter case, scenario techniques ask participants to imagine offline
situations, which is why they do not act in their situation-specific natural environ-
ment anymore. Depending on the actual context and execution, online experiments
may therefore share more common properties with either field or laboratory settings
(Morton and Williams 2010).

Given the use of online experiments to study offline behavior, the question
arises as to whether data obtained online and offline provide equivalent results.

20 T. Bornemann and S. Hattula



Researchers arguing against this equivalence highlight confounding factors that may
affect individual behavior. Online respondents cannot scan, preview, review, skip,
or change items, which is why they may experience a different level of self-
generated validity (Feldman and Lynch Jr. 1988). Moreover, results may be different
in a more public offline setting, where aspects such as social pressure are present that
could influence individual shopping behavior (Bearden and Etzel 1982). Recent
research, in contrast, indicates equivalence of online and offline data and demon-
strates acceptable levels of accuracy, completeness, and response quality in some
settings (Hauser and Schwarz 2016). Moreover, due to their broad coverage, online
experiments provide good generalizability of findings to the population (Horswill
and Coster 2001) and to a good number of settings and situations (Laugwitz 2001).

Nonetheless, careful evaluation of the applicability of online experiments for the
individual research question and context is necessary. Online experiments are less
suited for studies that require high levels of attention to the study material and
instructions and that ask for a high motivation (Goodman et al. 2013). Also,
participants in online settings seem to mentally process the material differently in
that they pay more attention to minor aspects of instructions (Hauser and Schwarz
2016). Similarly, it is difficult to reliably assess factual answers such as competen-
cies, since participants of online studies can simply search for answers in the internet
(Goodman et al. 2013).

Determination of the Experimental Units and Assignment
to Treatments

The next step in the process of designing an experimental study involves the
determination of the experimental units and the rule by which the experimental
units are assigned to the different treatments. Experimental units describe the entities
upon which the relationships of interest are tested, i.e., which are subjected to the
respective treatments. In marketing research, the experimental units are typically
human participants (e.g., customers, managers). The high percentage of student
samples in existing experimental research studying market phenomena has sparked
a lively discussion on their qualification as experimental units (Koschate-Fischer and
Schandelmeier 2014). Critics highlight that students are not representative for the
decision-making of “real” customers because they are better educated and represent
less mature personalities (Sears 1986). Moreover, they constitute a very homoge-
neous group with little variation in factors such as age or income, which makes the
study of personal characteristics more difficult. Even more critical is the use of
student samples to address business problems such as the selection of employees in
organizational settings. Such issues are generally addressed by managers whose
qualifications and job experience is key to make the respective decisions (Hakel et al.
1970). Advocates of student samples, however, argue that only little research exists
that finds generalizable significant differences in the decision-making of students
and “real” customers or managers, respectively. Such differences only exist if the
above-mentioned characteristics such as age or job experience truly influence the
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independent variable’s effect on the dependent variable. This, however, is not very
often the case for the phenomena studied in experimental research (Lynch 1982).
The homogeneity in individual characteristics can even be beneficial to experiments
because it reduces many confounding effects (see section “Extraneous Variables”).
The conclusion from this discussion is that a careful evaluation of the suitability of
students before conducting an experiment is required.

In the following, we will elaborate on the number of participants required and
how to sample them, the question of whether and how to incentivize these partici-
pants, and finally how to assign participants to the different treatments.

Number of Participants and Sampling Procedure
One of the most frequently asked questions of students and practitioners in empirical
projects is “How many participants do I need?” (Evans and Rooney 2013, p. 134).
There is no universal answer to this question because different aspects have to be
considered in determining this number. First, the required sample size depends on
the specific experimental research design. A large number of treatments require a
larger sample size especially in designs where each participant is exposed to only
one of the multiple treatments (see section “Assigning Participants to Experimental
Treatments”). In this respect, simple heuristics have been introduced suggesting to
use approximately 30 participants for each experimental condition (Sawyer and Ball
1981). Usability professionals even argue that just 5 participants could be enough in
qualitative experiments. They should reveal about 80% of all usability problems that
exist in a product (Nielsen 2000). However, the number of participants should not be
determined without considering the experimental setting itself. For instance, at least
39 users are required in eye-tracking studies to get stable heatmaps (Nielsen 2012).

More sophisticated approaches consider anticipated or previously observed effect
sizes to calculate the statistical power and based on that estimate appropriate sample
sizes (Fritz et al. 2012). The idea is that nonsignificant effects of independent
variables in experiments are not necessarily the result of a missing relationship
with the dependent variable but of low statistical power – a phenomenon called
the dilemma of the nonrejected null hypothesis or simply Type II error. Significant
effects may be found with quite small samples when the relationship between the
manipulated variable and the dependent variable is strong and control is tight – that
is, the effect size is large (Evans and Rooney 2013). However, small effect sizes
require larger samples to achieve statistical significance. Experimenters make
assumptions about the effect size by relying on previous research or on the smallest
effect that would be meaningful. As an orientation, Cohen (1988) defines standard-
ized effect sizes for common statistical tests. For instance, while for independent
sample t-tests, he defines 0.20, 0.50, and 0.80 as small, medium, and large effect
sizes, respectively, 0.10, 0.25, and 0.40 are the respective values for one-way
ANOVAs. With respect to statistical power, a commonly suggested Type II error is
0.20, which indicates a power need of 0.80 (Ellis 2010). The sample size can then be
estimated for a small, medium, or large anticipated effect size, considering the
specified statistical power and significance level following Cohen’s (1988) proce-
dure. As an example, assuming a statistical power of 0.80 and a significance level of
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0.05, the required total number of participants for an independent sample t-test
(ANOVA with four group means) would be 786 (1096), 128 (180), and 52 (76)
participants for a small, medium, and large effect size, respectively.

To obtain a pool of participants that constitutes a representative part of the total
population of interest, two categories of sampling approaches can be applied:
probability or nonprobability sampling (Evans and Rooney 2013). Probability sam-
pling approaches subsume techniques where the likelihood of the selection of
participants from a population is specified. The most prominent probability approach
is simple random sampling. It assumes that all individuals of a population are
included in the sample with the same probability. In an ideal case, all members of
a population would be included in a list and then randomly picked until the desired
sample size is reached. In contrast, proportional random sampling considers sub-
groups of the initial population, which are built first based on criteria such as age,
gender, or income. Then, individuals are randomly selected from the respective
subgroups. This technique is particularly useful when subgroups of the population
such as women or older individuals represent the target segment. The third proba-
bility approach is systematic random sampling. Here, experimenters choose the first
subject of a population and then every nth further subject is considered until the
desired number of participants is reached. Finally, multistage random sampling
combines at least two of the previously introduced approaches.

Nonprobability sampling approaches do not specify the likelihood of selecting an
individual from the population, but select participants on the basis of accessibility or
personal judgment (Evans and Rooney 2013). The most often used form of this
sampling approach is convenience sampling (also known as haphazard or accidental
sampling), where participants are selected based on simple recruitment. A common
example in experimental research projects is the recruitment of students. Experi-
menters walk around the campus and ask them to participate in the respective
experiment. This is convenient because it saves time and incentivizing students is
less costly compared to other groups of a population.

Another nonprobability sampling approach is volunteer sampling. This technique
describes the selection of participants from a group of volunteers and is used when it
is difficult and unethical to randomly assign participants to the levels of a manipu-
lation. This applies, for instance, to studies examining the effectiveness of pharma-
ceutical products. In an online context, opt-in panels are a popular volunteer
sampling technique. People sign in or put their name on a mailing list to participate
in experimental studies. Representatives of such opt-in panels are Amazon’s
Mechanical Turk (MTurk), CrowdFlower (CF), and Prolific Academic (ProA)
(Peer et al. 2017). Particularly MTurk is increasingly drawing attention from prac-
titioners and academics alike. It allows experimenters rapid data collection at low
cost (ca. 10 cents per participant) and around the clock (Goodman et al. 2013).
However, significant concerns exist regarding the use of MTurk in behavioral
research. For instance, participants may pay less attention to instructions than
traditional subject pools do because individuals are more likely to engage in dis-
tractions such as cell phone usage (Hauser and Schwarz 2016). Moreover, partici-
pants of MTurk may have different attitudes about money and time due to the low
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compensation (Goodman et al. 2013). Those issues may cause a serious bias in the
respective data. Given these concerns, several studies examined data generated by
MTurk participants. The results are mixed in that some studies provide evidence for
a higher risk-aversion and lower attention of MTurk participants in case of longer
surveys (Goodman et al. 2013). Other research, however, demonstrated high accu-
racy and validity as well as a good replicability in behavioral outcomes (Buhrmester
et al. 2011). This discussion indicates the need for a careful assessment of the
suitability of MTurk participants for the underlying research question. Experi-
menters are recommended to “use screening procedures to measure participants’
attention levels and take into account that MTurk participants may vary from non-
MTurk participants on social and financial traits” (Goodman et al. 2013, p. 222).

Finally, quota sampling describes a nonprobability sampling approach similar to
convenience sampling, with one exception: participants with particular characteris-
tics are selected until their proportion in the sample is large enough. For instance, this
technique may be used if equal numbers of men and women are required.

Incentivization of Participants
The question what motivates individuals to participate in experiments is as old as
experimental research itself. Besides altruistic (e.g., social obligations) and study-
related (e.g., interesting topic) reasons, particularly egoistic motives have been
shown to increase the willingness to contribute (Singer and Couper 2008). That is,
individuals strive for a personal benefit when participating in experimental studies,
which is why experimenters usually offer monetary and/or nonmonetary incentives
(e.g., awarding of credit points or chance to win in a lottery drawing; Koschate-
Fischer and Schandelmeier 2014). Such incentives have been shown to stimulate
participation in experimental studies, especially when commitment to the task is low
(Hansen 1980) and/or other motives are absent (Singer and Couper 2008).

Some aspects should be considered in this context. First, incentivization may not
just impact the motivation of individuals to participate but also their performance in
the experiment. An economic view holds that money generally lets individuals work
harder, more persistently, and more effectively on a task, which improves the quality
of the data received (Smith and Walker 1993). An increase in performance, however,
has mostly been documented for mundane tasks such as memory or recall tasks,
where financial incentives induce persistent diligence (Camerer and Hogarth 1999).
In contrast, no effects on performance have been observed for more complex tasks.
Even more problematic is that financial incentives may even decrease response
quality – particularly in experimental settings where open-ended questions are
asked. Here, the answers of incentivized participants were shorter and of lower
quality compared to nonincentivized settings where participants contributed out of
intrinsic motivation (Hansen 1980). Similarly, incentivization can produce inferior
data quality in settings where incentives raise self-consciousness or may cause
overreaction to feedback (Camerer 2011).

Second, one should consider that monetary and nonmonetary incentives are not
equally attractive to potential participants. Generally, monetary incentives have been
shown to be more effective to stimulate the willingness to participate in experiments
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(Singer and Couper 2008). The amount of money offered, however, is not necessar-
ily decisive for participation because participants see the monetary compensation
more as a symbolic act (a thank you) than as a true income (Koschate-Fischer and
Schandelmeier 2014). This is why participants may continue participation in future
research for even less than the current payment (Singer and Couper 2008). The
amount should be appropriate for the task to be solved, which means that it should
compensate for the physical and psychological risks involved. Nonmonetary incen-
tives such as lotteries are attractive to individuals if there is a realistic chance of
winning (Koschate-Fischer and Schandelmeier 2014). Often, students are offered
course credits as a compensation for their participation. This may be effective, but
students may feel they have no other choice than participating to improve their
grades. Meaningful extra credit options can reduce this coerciveness issue (Kalkoff
et al. 2014). Similarly, the educational value of an experiment can be attractive to
students. That is, they are more likely to participate in an experiment if they perceive
that participation provides a valuable learning experience.

Finally, experimenters should be aware that response rates differ between in-
centives paid in advance (e.g., with the initial mailing) and those promised for
the survey return (Singer et al. 1999). While both can be effective to increase
response rates, prepaid incentives are more stimulating. This particularly holds for
monetary incentives, where increases in response rates of more than 19% (compared
to no incentivization) have been observed (Singer et al. 1999). In contrast, gifts as
incentives accounted for increases of up to 8% only. With respect to promised
incentives, charitable donations have been argued to be more effective to reduce
costs and nonresponse bias than monetary incentives if the respective amount of
money spent is low (Robertson and Bellenger 1978). This reasoning, however,
could not be supported in an online context, where the monetary interest outweighed
altruistic motives – particularly for longer studies (Deutskens et al. 2004).

Assigning Participants to Experimental Treatments
A fundamental issue pertaining to the design of experiments relates to the assign-
ment of the experimental units (participants) to the different treatments. In a within-
subject design, each participant of the experiment is (successively) exposed to
multiple treatments, leading to multiple observations of the dependent variable
from the same person. Thus, estimates of the causal effects of the treatments are
obtained by measuring how the dependent variable changes with the successive
exposure of the individual to the different treatments. In a between-subjects design,
in contrast, each participant is (randomly) assigned to only one treatment combina-
tion, leading to one observation of the dependent variable per person. Hence,
estimates of causal effects of the treatments are obtained by comparing the measure
of the dependent variable between individuals of the different treatment groups.

Both approaches have their merits and weaknesses, and the application of one
or another should be decided very carefully based on a number of factors. Consider,
for instance, that the goal is to examine how far individuals infer quality from
price. The hypothesis is that they indicate higher levels of perceived quality for the
same type of product at a higher price as compared to a lower price. Examining this
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question in a within-subject design would imply exposing the same individual
repeatedly to the product stimulus at varying price levels. In a between-subjects
design, it would imply the randomized assignment of individuals to either the high
price condition or the low price condition and the respective measurement of
perceived quality. Meta-analytical findings have repeatedly shown that in within-
subject designs, the observed relationship between the product’s price level and
perceived quality is significantly stronger than in between-subjects designs
(Völckner and Hofmann 2007). To provide guidance on the choice of design, we
will subsequently elaborate on the statistical, theoretical, and psychological issues
that may lead to differences between the two design options. It should also be noted
that the designs can be combined into mixed designs – where one factor is manip-
ulated between-subjects and another factor is manipulated within-subject – to profit
from the advantages of both (Maxwell and Delaney 2004).

From a statistical viewpoint, within-subject designs result in data for two or more
treatments per participant, whereas between-subjects designs yield data for only one
treatment per participant. Moreover, each participant serves as his own control group
when comparing the treatment effects in within-subject designs. Thus, internal
validity does not depend on random assignment as in between-subjects designs
since individual differences of the participants are removed from the error term.
As a consequence, the number of participants needed to reach a certain level of
statistical power is generally lower for within-subject designs as compared to
between-subjects designs (Maxwell and Delaney 2004). Within-subject designs
therefore are often employed in contexts where the costs per participant are relatively
high and/or accessibility to the required infrastructure is limited. For instance,
experimental studies that require functional magnetic resonance imaging (fMRI)
mostly employ within-subject designs.

Also theoretical considerations may guide the choice of design. If the real-world
phenomenon that is examined in an experimental setting can be described as whether
at all to make a particular decision, a between-subjects design may be appropriate. A
choice about which decision to make, however, is more akin to a within-subject
design (Charness et al. 2012). Thus, the question is which design exhibits higher
external validity in that it comes closer to the phenomenon as it unfolds in reality. For
instance, a between-subjects design does not provide participants with a clear anchor
or reference point. Going back to the price-perceived quality example, the phenom-
enon to be studied may be consumers’ search behavior in a store, where the
consumer is being exposed to different prices for products of the same category,
and hence reference price effects are likely to occur. Alternatively, the researcher
may be interested in the effect of a single advertisement where only one price cue is
present (Völckner and Hofmann 2007). Whereas a within-subject design may
provide higher external validity in the former scenario, the latter scenario may better
map onto a between-subjects design. The results of the meta-analysis described
above thus may suggest that price-quality inferences are less likely if no clear
reference point exists.

The heaviest critique on within-subject designs is due to psychological issues
inherent in this design (Greenwald 1976). A first phenomenon that can be observed
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in some contexts is that participants simply become better in a task the more often
they practice it. For instance, if the phenomenon to be studied involves the perfor-
mance at a motor skill task (dependent variable) when being exposed to different
types of distracting stimuli (treatment), participants in a within-subject design may
become better in the task with every successive measurement simply due to practice
of the task independent of the distracting stimuli. Such practice may confound the
effect of the distraction treatment on task performance and thus threaten internal
validity. A second phenomenon is the so-called demand effect: compared to a
between-subjects design, participants in a within-subject design are more likely to
guess the true purpose of the study and act in line with the inferred hypotheses. The
more treatments a single participant is exposed to, the more likely is it that demand
effects result (Greenwald 1976). For instance, successively exposing a participant to
similar product stimuli with only price information being varied and asking this
participant to indicate her or his quality perception of the product may indeed trigger
thoughts on the purpose of the study. Finally, carryover effects may occur in a sense
that the effect of a certain treatment persists over time and influences the subsequent
measurement of the effect of another treatment. Such an effect may be observed if
the effects of different drugs with unknown action times are examined in a within-
subject design (Greenwald 1976; Maxwell and Delaney 2004). Moreover, individ-
uals may use their evaluation of a prior treatment and transfer this prior judgment to a
subsequent treatment if the prior judgment is accessible in memory and perceived as
relevant and useful also in the new context (Lynch et al. 1988). This effect may occur
when participants do not perceive that there is a substantial difference (e.g., new
information) in subsequent treatments (Bornemann and Homburg 2011).

To counter some of these psychological issues, the order of the treatments in a
within-subject design may be counterbalanced by randomly assigning participants to
groups of equal size and presenting treatments to each group in a different order
(e.g., with two treatments A and B, group 1 may first be given treatment A followed
by B, while the reverse treatment order is administered to group 2). Maxwell and
Delaney (2004) refer to such designs as crossover designs. To examine whether any
effects caused by the order of the treatments exist, the factor “group” is included as a
between-subjects factor in an analysis of variance. Nonsignificance of this “group”
factor indicates that no order effects exist.

Preliminary Testing

As a final step in the design of an experimental study and before conducting the
actual experiment, investigators have to conduct preliminary testing to ensure the
adequacy of manipulations and measures (Perdue and Summers 1986). Weak exper-
imental designs may make results unusable/uninterpretable and thus costly for
researchers. This is especially the case for rather new research settings (Reynolds
et al. 1993). Therefore, one should be able to modify potential shortcomings in
advance and thus at a stage where corrections are less costly. Preliminary tests also
make manipulation and confounding checks less necessary in the main experiment
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(Perdue and Summers 1986). The only cases where skipping those preliminary
analyses is acceptable relate to settings with very small target populations where at
least some individuals of the preliminary test may equal those of the main experi-
ment and to settings where the additional tests would adversely affect the main
experiment (Reynolds et al. 1993).

Two types of preliminary testing may be considered. First, pretesting ensures the
validity of aspects of the experiment such as instructions, tasks, and instruments.
Participants of such pretests are instructed to evaluate these aspects in isolation,
independent of the rest of the experimental design. Importantly, manipulation and
confounding checks should be implemented in pretests to assess whether the manip-
ulation adequately reflects the theoretical assumptions (Kuipers and Hysom 2014;
Perdue and Summers 1986). Besides employing scale items, interviews with the
participants or other qualitative techniques such as verbal protocols of scenarios or
instructions can provide useful information on the credibility of the stimuli used.
Moreover, pretesting can reveal issues related to missing response categories and the
difficulty to answer particular questions (Reynolds et al. 1993).

In pilot tests, the second preliminary testing, the full experiment is provided to
participants in situations comparable to those of the main experiment (Kuipers and
Hysom 2014). Such pilot tests offer additional value to the experimenter since they
provide information beyond individual parts of the experiment, including the mea-
sure of the dependent variable. Pilot testing can reveal whether there is enough
variability in this measure. If this is not the case, the measure can be altered.
Moreover, experimenters get information on readability and understandability of
the instructions (e.g., logical flow), time required for completion, and the look of the
design (Kuipers and Hysom 2014; Reynolds et al. 1993).

A general requirement for pre- and pilot testing is that participants should have
the same characteristics as those targeted with the main experiment (Reynolds et al.
1993). This ensures that the adjustments made fit the requirements of this audience.
Moreover, the same procedures and experimental instruments as in the main study
are required to receive valid feedback for potential adjustments. Both the target
population and the design of the instrument determine the sample size required for
the preliminary analyses. The more subgroups of the total population to be consid-
ered and the more complex the experimental design (e.g., the more treatments), the
more individuals are required. Usually, this sample size is rather small (5–10 to
50–100 participants; Reynolds et al. 1993). Finally, the feedback of participants
should be captured directly after exposure to avoid any feedback bias that may result
from later retrieval from memory (Perdue and Summers 1986).

Exemplary Experimental Study

We now illustrate the steps involved in the design of experiments with a real
experiment that we conducted as part of a published research project (Albrecht
et al. 2016). The project investigated the relevance of the interaction environment
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for customer response to interactional service experiences and required the manip-
ulation of two factors: the service experience and an environmental trigger.

Definition of Research Question. The starting point for this study was the
observation that, in daily practice, buying behavior is affected by frontline
employees’ emotions as observed by the customer. However, little was known
about how this relationship is influenced by the purchase environment – typically
an important information source for customers to evaluate store experiences. Spe-
cifically, we intended to test our hypothesis that the presence of cues/triggers in the
respective store environment that help explaining a given frontline employee’s
emotional display towards the customer may influence customer reactions. We
expected that the impact of the presence of the environmental trigger would differ-
ently affect the customer response to positive versus negative emotions shown by the
employee. Moreover, we were interested in the underlying psychological processes.

Determination and Operationalization of the Sources of Variation. Considering
the independent variables, the experiment’s objectives suggested two factors of
interest: the emotional display of a frontline employee and the presence of a trigger
in the store environment that may provide an explanation for the employee’s
emotion. The first factor, emotional display of the frontline employee, was varied
at two levels: negative versus positive. The second factor, emotion trigger, also
consisted of two levels: a control condition and a treatment condition, where an
observable environmental trigger existed. In the control condition, no such emotion
trigger was provided. We hence applied a full factorial design.

With respect to the operationalization of the treatments, a key challenge of our
online experiment dealing with an offline phenomenon was to create a realistic
purchase situation. To achieve that, we employed a scenario role-play-based approach
and produced videotapes, one for each of the four treatments. Particularly, we hired a
professional cinematographer and actor to create stimulus material in a local hardware
store simulating a typical customer-employee interaction. The actor was instructed
either to express the negative emotion of unfriendliness or to show the positive
emotional display condition of smile. The customer was not shown explicitly but
the camera represented the “eyes” of the customer such that each participant could put
him/herself into the customer’s shoes. In the emotion trigger condition, before the
service interaction, the participant could hear the employee’s phone ringing, see how
the employee answered the call, and see and hear his reaction to the colleague on the
phone. This reaction was either positive or negative in line with the emotional display
manipulation. No such phone call trigger was provided in the control condition.

We applied manipulation checks to ensure that the service interaction scenario
was perceived as realistic and that the manipulations worked as intended. In this
respect, appropriate single/multi-item scales had already been validated in previous
research. Therefore, we included those items as self-report measures in our study.
These checks were administered after the assessment of the dependent variables
to avoid any interference with the effect of the manipulation. Moreover, previous
research suggested potential extraneous factors that we accounted for by assessing
them as covariates: participants’ susceptibility to catching emotions, preencounter
mood, and age.
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Definition and Operationalization of the Measured Response-Variables. With
respect to the response variables, we assessed participants’ purchase intention as a
reaction to the employee’s emotion. The examined process explanations comprised
the perceived authenticity of the employee’s emotional display and the perceived
sympathy for this behavior. We decided to capture both the dependent and mediator
variables with well-established self-report measures. We screened existing literature
and identified multi-item scales that already worked well to capture purchase
intention, perceived authenticity, and perceived sympathy. Participants rated the
items on disagree-agree rating scales.

Decision about the Environmental Setting. We conducted the experiment online;
hence, participants viewed the stimulus material on a computer monitor. We used the
online setting because of cost advantages and the suitability of the stimulus material
(the role-play video) for this type of environment. Alternatively, a laboratory setting
would have been adequate as well.

Determination of the Experimental Units and Assignment to Treatments. The
objective of the research project implies (adult) customers as the relevant experi-
mental unit. We purposely did not refer to a student sample because of the above-
mentioned homogeneity restrictions. We applied simple heuristics and set a mini-
mum of 30 participants for each experimental condition. We recruited participants by
posting the link to the study in relevant online communities and web forums with
audiences from different social class, gender, and age categories. As such, we
employed convenience sampling because we did not specify the likelihood of
selecting an individual from the population, but selected participants based on
accessibility in these online channels. In the end, we received 138 usable responses.

Participants were not paid an incentive but took part voluntarily. They were
instructed to turn on the sound of their computer to be able to follow the videos.
Moreover, we informed participants about the general purpose and procedure of the
research and their right to decline participation or withdraw from the study. We told
participants that they take part in a study on customer service. The experiment’s
objectives did not require deception – that is, we did not disguise any relevant
information throughout the experimental study.

Given its multiple advantages and its easy application in online experiments, we
applied randomization of the participants to the experimental conditions. Moreover,
we chose a between-subjects design, where each participant was (randomly)
assigned to only one of the four treatment combinations (negative/positive emotional
display � provision/nonprovision of the emotion trigger). We did so for theoretical
considerations of realism. Typically, customers are confronted with a single
employee showing either a positive or negative emotional display. Also, the trigger
either exists or not, such that a mixed or within-subject design was not suited.

Preliminary Testing. We used different pretests to ensure the validity of our
experimental manipulations. First, we provided the four videotapes to five doctoral
students to ensure that participants had enough time to recognize all content of
the videos. Second, we pretested the effectiveness of the manipulations and asked
246 persons to watch the videos and answer a few questions. Specifically, they were
asked to rate the perceived unfriendliness and smiling of the frontline employee.
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Finally, we provided the emotion trigger (cell phone call) sequence of the video to a
university seminar class. Students watched the video sequence and wrote down their
thoughts on what the talk was about and what the colleague on the phone had said to
the frontline employee. We did so to ensure that the manipulation of the emotion
trigger was perceived as “implicitly visible” to participants. All pretests confirmed
the validity of our experimental manipulations.

Ethical Issues in Experimental Research

All research involving humans has to meet generally accepted ethical criteria to
ensure the welfare of study participants and to protect them from physical and
psychological harm. Building among others on regulatory requirements, the Amer-
ican Psychological Association (APA), for instance, has released the Ethical Prin-
ciples of Psychologists and Code of Conduct (APA 2002) to provide guidance to
researchers. The following aspects are part of the guidelines for research:

• Institutional Approval: Many organizations, particularly in the academic field,
have created institutional review boards (IRBs) to protect the human dignity and
welfare of participants of research projects. The IRB reviews research proposals
submitted by researchers according to their conformance with ethical standards.
Many academic journals now ask for such approval for submitted manuscripts.

• Informed Consent: Investigators are required to inform participants about the
general purpose and procedure of the research and their right to decline partici-
pation or withdraw from the study.

• Deception: Investigators should generally refrain from deceiving participants
unless the scientific value of the research is significant and the study cannot be
realized without any deception. If unavoidable, such deception must not relate to
aspects that may cause physical pain or severe emotional distress. After comple-
tion of the study, investigators are required to explain to participants the aspects
involving deception and permit participants to withdraw their data.

• Debriefing: Investigators provide participants with the opportunity to obtain
information about the results, conclusion, and purpose of the research and they
correct potential misperceptions that participants may have.

While these aspects are relevant to all kinds of research involving humans,
particularly issues related to deception are specific to experimental research since
deception is sometimes used to ensure a high level of experimental control and to
reduce the impact of extraneous factors.

Deception refers to the provision of false information or to withholding informa-
tion to mislead participants into believing something that is not true (Hegtvedt 2014).
Deception is distinct from the common practice to not fully inform participants about
the hypotheses beforehand (e.g., through providing only partial information about
the research question) to avoid demand effects (Hertwig and Ortmann 2008). An
example of a rather serious form of deception is the provision of false feedback to
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participants regarding their performance in a task they have completed, particularly
if such feedback may affect their self-confidence in general (Hegtvedt 2014; Kuipers
and Hysom 2014).

The controversy on the legitimacy of the use of deception has been quite intense,
providing a long list of negative consequences of deception, such as embarrassment
and a loss of self-esteem of participants at the individual level and resulting suspi-
cion and negative attitudes towards research in general. This view is particularly
prevalent among economists, who more or less generally reject deception. They also
argue that if participants expect or are aware of deception, their behavior may no
longer be shaped by the circumstances of the study (e.g., monetary rewards) but by
psychological reactions to suspected manipulations (Hertwig and Ortmann 2008).
Sieber (1992) argues that deception may be justifiable if (1) there is no other means
to achieve stimulus control, if (2) responses to low-frequency events are studied, if
(3) absolutely no risk of harm is associated with the deception, and if (4) the
information would otherwise be unobtainable because of participants’ anxiety or
defensiveness. Pascual-Leone et al. (2010) offer a checklist that investigators may
use to assess whether deception can be justified in a given context. As a general
recommendation, investigators should employ such aids to determine whether there
is really no way to avoid deception. If deception is used, it is important to conduct
proper debriefing of participants to unravel the deceptive practice (Kuipers and
Hysom 2014).

Conclusion

This chapter described the relevant steps involved when planning and executing
experimental research in marketing. While experimentation is a central type of data
collection in academic research in marketing, its use in corporate practice is still
comparatively limited. Instead, companies nowadays embrace the blessings of big
data analytics. However, the tremendous amount of historical data that companies
create and collect poses challenges regarding the required data analysis skills, and
not every company can afford to permanently employ the respective specialists.
Experimentation, on the other hand, is technically relatively easy to implement and
requires managers to directly focus on the causes and effects of interest instead of
mining data that might provide useful insights. Specifically, the “test-and-learn”
approach inherent in experimentation, where certain activities are directed towards
one group of customers and other or no activities at all are directed to a control
group, enables managers to develop a more direct feeling for relevant cause-effect
relationships. The ease of implementation to a large extent depends on how easy
the relevant outcomes can be assessed, which is why e-commerce and online
business in general is at the forefront of corporate use of experimentation (remember
the example of A/B testing from the introductory section). But also other businesses
may easily implement and profit from experimentation (Anderson and Simester
2011). We hope that this chapter provides the necessary insights to accomplish
such an endeavor.
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Abstract

Digitalization of value chains and company processes offers new opportunities to
measure and control a firm’s activities and to make a business more efficient by
better understanding markets, competitors, and consumers’ behaviors. Among
other methodologies, field experiments conducted in online and offline environ-
ments are rapidly changing the way companies make business decisions. Simple
A/B tests as well as more complex multivariate experiments are increasingly
employed by managers to inform their marketing decisions.
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This chapter explains why field experiments are a reliable way to reveal and to
prove that a business action results in a desired outcome and provides guidelines
on how to perform such experiments step by step covering issues such as
randomization, sample selection, and data analysis. Various practical issues in
the design of field experiments are covered with the main focus on causal
inference and internal and external validity. We conclude the chapter with a
practical case study as well as a brief literature review on recent published articles
employing field experiments as a data collection method, providing the reader
with a list of examples to consider and to refer to when conducting and designing
a field experiment.

Keywords

Field experiment · A/B test · Randomized experiment · Online experiment ·
Digital experiment · Business optimization · Causal inference · Experimental
design · Internal validity · External validity

Introduction

In God we trust, all others must bring data (Edward W. Deming1).

Motivation

Digitalization of value chains and company processes offers new opportunities to
measure and control a firm’s activities and to make a business more efficient by
better understanding markets, competitors, and consumers’ behaviors. Among
others, the advent of two main sets of methodologies is changing the way organiza-
tions do business in the current digital age:

1. Big Data Analytics: data mining, machine learning, and other statistical tech-
niques allow practitioners to handle and analyze huge sets of data with a reason-
able effort.

2. Business Field Experiments: studies conducted outside of the lab by means of
easy-to-use software allow managers to reliably answer causality questions at
reasonable costs. At the same time, field experiments have become a primary
method for investigating scientific phenomena and that is why this chapter
considers field experiments aimed at testing theories, of the same importance as
those aimed at testing tactical business strategies.

1Edward W. Deming was an eminent engineer, statistician, professor, and management consultant
for more than half a century. His work on statistical process control and other strategies for data-
driven decision making continues to be relavent today.
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With the primary objective of informing marketing decisions, the fundamental
value of market research is the collection, analysis, and interpretation of market-
related information (Homburg et al. 2013). Depending on the objective, the research
design can be exploratory, descriptive, or causal (Aaker et al. 2011). In particular, the
causal design is the best approach to identify cause-effect relationships between
variables based on preformulated hypotheses (Homburg 2015). Especially for prac-
titioners, answers to the question “does A cause B?” are essential to derivemanagerial
implications (Iacobucci and Churchill 2010), and, in such a context, an experiment is
the most suitable and most popular method to establish causality (Crook et al. 2009;
Homburg et al. 2013). For example, consider a marketer wishing to know the impact
that a 20% discount will have on the proportion of customers making a purchase
during a holiday sale. In such a case, comparing sales between a group of customers
who were randomly chosen to be offered the discount and another group who was
randomly assigned to not receive the offer will give a direct estimate of the incre-
mental sales lift of the discount. For this reason, market researchers and other
practitioners are increasingly making use of experiments in the field. Similarly
academics have turned to field experiments, when once there was little experimenta-
tion outside of the lab. Field experiments are not only applied to inform almost every
type of marketing decision (promotions, communications, visual designs, pricing,
optimization of digital services, etc.) but also in disparate areas including business
organization, product development, health care, human resource management, poli-
tics, and so on. As software tools and expertise grow, there are more and more A/B
testing case studies showing that the practice of testing is becoming increasingly
popular with small- and medium-sized businesses as well as with larger ones (see “A/
B Testing Case Studies” on Optimizely.com for many examples of online field
experiments or Applied Predictive Technologies Case Studies on www.pre
dictivetechnologies.com for examples of offline field experiments).

The first field experiments in business practice date back to the first half of the
1900s when experiments revolutionized agriculture and created massive gains in
farm productivity. Toward the end of that century, experiments became popular in
manufacturing to improve production and quality. At their early stages, especially
in firms that focused on product design and engineering, experiments were
tremendously costly and often involved the destruction of expensive prototypes,
such as in automotive crash testing. Nowadays, the digitalization of value chains
has created a data-rich environment that offers both new challenges and new
opportunities to managers, policy makers, and researchers, as also recognized in
the recent (2014–2016) research priorities of the Marketing Science Institute
(MSI). In such an environment, it is possible to measure market response at a
much faster speed, allowing managers to track key economic parameters. These
tracking skills allow companies to develop more effective business strategies to
increase customer retention and loyalty or spending on products and/or services.
This increased digitalization has also turned experiments into an economically
feasible way to improve marketing decisions. Many marketers are embracing a
test and learn philosophy with the aid of several platforms, such as Optimizely,
Adobe Target, Applied Predictive Technologies (APT), Visual Website Optimizer
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(VWO), Oracle Maxymiser, and Google Content Experiments, providing easy-to-
use software to perform rigorous field experiments in the online and offline
environments.

The primary scope of this chapter is to provide an answer to those readers who
may be asking themselves: “why should I consider setting-up a field experiment to
answer my research or business question?”

As a first answer, bear in mind the following hallmarks of well-designed field
experiments:

• Field experiments are one of the most reliable ways to test a theory or to prove
that a business action results in a desired outcome.

• Findings from field experiments have direct implications for business operations.
In the language of experimentation, we say that they generalize well and have
high external validity. On the other hand, lab experiments are acknowledged to
have higher internal validity.

• Field experiments are easy to explain to business leaders and policy makers.

Throughout the following pages, we are going to explain each of the aforemen-
tioned points in depth advocating a major focus on business-related field experi-
ments and online experiments (A/B tests).

Defining a Field Experiment

Field experimentation represents the conjunction of two methodological strategies:
experimentation and fieldwork.

Defining an Experiment
Experimentation is a form of investigation in which units of observation are ran-
domly assigned to treatment groups. Ex ante randomization ensures that the exper-
imental groups have the same expected outcomes, which is fundamental to achieve
an unbiased estimate of the causal effect of the treatment. Experimentation stands
opposite to observational investigations, in which researchers attempt to draw
inference from naturally occurring variations, as opposed to variations generated
through random assignment (Gerber and Green 2008). However, some authors (e.g.,
Teele 2014) prefer to not exclude nonrandomized studies from the group of exper-
iments, while others refer to studies without randomization as quasi-experiments
(cf. Campbell and Stanley 1963).

An experiment involves the manipulation of the independent (or explanatory)
variables in a systematic way which is then followed by the observation and
measurement of the effect on the dependent (or response) variable, while any
other variables that might affect the treatment are controlled or randomized over
(Aaker et al. 2011; Iacobucci and Churchill 2010). For instance, in testing the impact
of a 20% off promotion on sales, the researcher manipulates the independent variable
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of promotion between the two levels of 20% and zero and measures customer
purchases as the response variable.

From the perspective of Dunning (2012), true experiments (either in the lab or in
the field) show three identifiable aspects:

1. The responses of experimental subjects assigned to receive one treatment are
compared to the responses of subjects assigned to another treatment (often a
control group which receives some type of baseline treatment that is essentially
no treatment or the state-of-the-art condition). In the case of multivariate exper-
iments, there are several treatment groups, which are all compared among each
other.

2. The assignment of subjects to each group is done through a randomization device,
such as a coin flip, a dice roll, or a digital algorithm.

3. The manipulation of the treatment is under the control of an experimental
researcher.

Some observational studies share attribute number 1 of true experiments, in that
treatment conditions’ outcomes are compared. However, they do not share attributes
number 2 and 3 as there is no randomization of treatment assignment and there is no
treatment manipulation. On the other side, natural experiments share attribute 1 and
partially attribute 2 since assignment is random or as-if random. However, in such
cases, data comes from naturally occurring phenomena, and therefore the manipu-
lation of treatment variables is not generally under the researcher’s control. Natural
experiments consider the treatment itself as an experiment and employ naturally
occurring variations as a proxy for random assignment. In particular, the treatment is
not assigned by a researcher but by some rule-based process that can be mathemat-
ically modeled (Teele 2014). Without it, other confounder variables could easily
explain ex post differences between observed units (Dunning 2012).

Lab Versus Field Experiments
Depending on the setting employed, one can distinguish between laboratory and
field experiments (Homburg 2015). In laboratory experiments, participants are
tested in an environment which is created by the researcher and which thus differs
from reality (Aaker et al. 2011). This unreal environment allows the experimenter to
control other potential influences on the response but has the main drawback of
making the respondent feel observed, which can lead to several kinds of response
bias. In addition, the respondents who are willing to participate in a lab experiment
may not represent the target population as a whole, and then findings might not be
generalizable.

Outside of the lab environment, it is possible to run field experiments, in which
the setting is an everyday life situation, often the exact same setting where the
findings from the experiment will be deployed (Gerber and Greene 2012). In most
field experiments, participants are not even conscious of taking part in an experiment
(Aaker et al. 2011; Gneezy 2017) eliminating the risk of incurring a response bias.
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Just as experiments are designed to test causal claims with minimal reliance on
assumptions, experiments conducted in real-world settings are designed to make
generalizations less dependent on assumptions (Gerber and Green 2012). Further,
especially in digital environments such as websites, adequate sample sizes can be
much more easily reached than in offline settings or labs, and randomization over
large samples protects against the possibility that a variable other than the treatment
is causing the response. Since the aim of this chapter is to provide a complete
overview of the topic, a few issues discussed (e.g., issues related to causality,
treatment effects, randomization, sources of bias, etc.) apply to experiments in
general and therefore to both field and lab experiments. The reader will excuse the
unavoidable overlap of some content with other chapters in this book.

Key Features of Field Experiments
Field experiments, either online or offline, can take many forms, but all have four
key features that make them a field experiment: authenticity of treatments, represen-
tativeness of participants, real-world context, and relevant outcome measures.
Indeed, the degree of fieldness of an experiment can vary dramatically; some field
experiments may seem naturalistic on all dimensions, while others may be more
dependent on assumptions. In a nutshell, what constitutes a field experiment depends
on how the field itself is defined (Gerber and Green 2012). Harrison and List (2004)
offer a classification system ranking field experiments depending on their degree of
realism. The taxonomy they propose is based on six dimensions: (1) nature of the
subject pool, (2) nature of the information that the subjects bring to the task,
(3) nature of the commodity, (4) nature of the task, (5) nature of the stakes, and
(6) nature of the environment that the subject operates in. Harrison and List (2004)
propose the following terminology:

• The conventional lab experiment employs a convenient subject pool (typically
students2), an abstract framing, and an imposed set of rules.

• The artifactual field experiment is akin to the lab experiment but involving a
nonstandard (i.e., non-students) subject pool. With the term artifactual, the
authors want to denote studies with an empirical approach that is artificial or
synthetic in certain dimensions.

• The framed field experiment is akin to the artifactual field experiment but
involving a realistic task and the natural environment of the tested subjects that
are conscious of being tested. The term framed denotes the fact that the experi-
ment is organized in the field context of the subjects (e.g., social experiments).

• The natural field experiment is akin to the framed field experiment involving the
environment where subjects naturally undertake the tasks but with the subjects
being unaware of participating in an experiment, that is, either online or offline
depending on the nature of the setting under examination. Since participants in

2For an interesting discussion on the choice of participants for an experiment and the questionability
of employing students, refer to Koschate-Fisher and Schandelmeier (2014).
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this kind of experiments are a representative, randomly chosen, and non-self-
selected subset of the treatment population of interest, the causal effect obtained
from this type of experiment is the average causal effect for the full population,
not for a nonrandom subset that chooses to participate (List 2011).

Online Experiments
Online experiments are a special form of field experiments and their simplest form is
commonly referred to as A/B test. As shown in Fig. 1, this method involves random
assignment of users to two different treatments, typically the current (or A) version and
the new (or B) version (Kohavi et al. 2009). In particular, it involves the following steps:

• Randomly divide customers into groups.
• Expose each group to a different treatment.
• Measure one or more selected response variables (also called overall evaluation

criteria or key performance indicators, such as conversion rates, click-through
rate, revenues, etc.) for both groups.

• Compare groups by mean of data analysis to determine which treatment is better.

Fig. 1 Example of A/B test on Microsoft Office (Adapted from Crook et al. 2009 and Kohavi et al.
2009)
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Field experiments did not start with digital marketing, and they are certainly not
limited to digital marketing, but the digital environment has made testing easier and
more popular as a way to inform managers’ decisions. Managers are slowly
accepting that carefully observing how customers respond to changes in marketing
is more reliable than their experience and intuition.

Experimentation: Causal Inference and Generalizability

Whether it is a simple A/B test to choose the subject line for an email or a complex
field experiment to test an economic theory, there are two main issues that the
researcher must consider in designing an experiment. The first is whether the
experiment has successfully measured the causal effect of the treatment within
the context that the experiment is conducted (called internal validity). The second
is whether the specific findings of the experiment can be generalized to other
settings (called external validity). In this section, we discuss these two main issues
in turn.

Estimating the Causal Effect of a Treatment

The Average Treatment Effect
Field experiments such as A/B tests allow managers to reveal the causal relationship
between actions the company might take, such as price promotions (the cause), and
consumers’ purchase decisions (the effect). In other words, the goal of a field
experiment is to determine whether a particular cause (such as a 20% price promo-
tion) is responsible for an effect (such as a consumer’s increased likelihood to
purchase a particular product) and to exclude the reverse. Estimating the causal
effect of an action has been a golden standard in the social sciences and in economic
research for decades, and, as John List (2011) reminds us, economists have long
worked on approaches that seek to separate cause and effect in naturally occurring
data. For instance, instrumental variable regression aims at isolating cause-effect
relationships. Field experiments use randomization as an instrumental variable,
which, by construction, is uncorrelated with other variables that might affect the
outcome (List 2011). However, there are a few key assumptions that must be met in
order for experiments to provide reliable assessments of cause and effect (Gerber and
Green 2012, Imbens and Rubin 2015). First, we provide a definition of causal effect:
a causal effect is the difference between two potential outcomes, one in which a
subject receives the treatment and the other in which the subject does not receive the
treatment. In formulas:

τi � Yi 1ð Þ � Yi 0ð Þ
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where (τi) is the causal effect of the treatment and Yi(1) is the potential outcome if
the ith subject receives the treatment while Yi(0) is the potential outcome if the ith
subject does not receive the treatment. For example, Yi(1) might be an indicator for
whether the customer would make a purchase if she receives the promotion, and
Yi(0) would be an indicator for whether the customer would make a purchase
without the promotion.

Of course, it is typically not possible to directly observe both conditions for any
given subject, but it is possible to estimate the average treatment effect (ATE) among
all subjects, when certain assumptions are met. The ATE is defined as the sum of the
subject-level treatment effects, Yi(1) – Yi(0) divided by the total number of subjects.
In formulas:

ATE � 1

N

XN
i¼1

τi

The challenge in estimating the ATE is that at a given point in time, subject i is
either treated or non-treated, and therefore either Yi(1) or Yi(0) is observed, but not
both. Some statisticians conceptualize this as a missing data problem where either
Yi(1) or Yi(0) is unobserved for each subject (Imbens and Rubin 2015).

Experiments, both in the lab and in the field, provide unbiased estimates of the
ATE when the following assumptions are met (Gerber and Green 2012):

1. Random assignment: treatments are allocated such that all units have an equal
probability between 0 and 1 of being assigned to the treatment group.

2. Excludability: the treatment must be defined clearly so that one can assess
whether subjects are exposed to the intended treatment or to something else.

3. Noninterference: no matter which subjects the random assignment allocates to
treatment or control, a given subject’s potential outcomes remain the same.

Let us consider the three assumptions in more depth.
Random assignment is fundamental in experimentation, with roots that go back as

far as Neyman (1923) and Fisher (1925). It implies that treatment assignments are
statistically independent of the subjects’ potential outcomes and addresses the miss-
ing data issue that challenges the estimate of the ATE, that is, the issue that at a given
point in time, subject i is either treated or non-treated and therefore either Yi(1) or
Yi(0) is observed, but not both. In fact, when treatments are allocated randomly, the
treatment group is a random sample of the population in the experiment, and therefore
the expected potential outcomes among subjects in the treatment group are identical
to the average potential outcomes among the control group. Therefore, in expectation,
the treatment group’s potential outcomes are the same as the control group. When
units are randomly assigned to treatment and control, a comparison of average
outcomes in treatment and control groups, the so-called difference-in-means estima-
tor, is an unbiased estimator of the ATE. In formulas, the estimator is:
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where N is the number of subjects in the treatment group and M is the number of
subjects in the control group. We can see that the expected value of the estimator is
equal to the ATE, meaning it is unbiased:
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When random assignment is not used, there is always potential for a selection
bias, where the treatment assignment is systematically related to potential outcomes.
For example, if we want to measure the effect of a call from a sales agent and we do
not randomize calls between customers, the sales agent may choose to call those
customers that she/he feels are most likely to buy. This will produce an upward bias
in our estimate of the ATE. The key idea is that randomized assignment allows us to
use simple averages of the outcome for the treatment and control group to estimate
the average treatment effect.

Excludability refers to the fact that each potential outcome depends solely on
whether the subject itself receives the treatment and not on some other feature of the
experiment. Therefore, when conducting an experiment, we must define the treat-
ment and distinguish it from other factors with which it may be correlated. Specif-
ically, we must distinguish between di, the treatment, and zi, a variable that indicates
which observations have been allocated to treatment or control. We seek to estimate
the effect of di, and we assume that the treatment assignment zi has no effect on the
outcomes. In other words, the exclusion restriction refers to the assumption that zi
can be omitted from the potential outcomes for Yi(1) and Yi(0), and this restriction
fails when random assignment sets in motion causes of Yi other than the treatment. In
real life, and therefore in field experiments in particular, it can become difficult to
ensure excludability. Consider, for example, an A/B test investigating the impact of a
discount on purchase decisions. If being assigned to receive a discount also means
that the customer will get an email and customers in the treatment group do not get
an email, then the excludability assumption is not met, and any observed difference
between the treatment and control groups may be due to the email and not to the
discount. A straightforward example of a research design that attempts to isolate a
specific cause is a pharmaceutical trial in which the treatment group is given an
experimental pill while the control group is given an esthetically identical sugar pill.
The aim of administering a pill to both groups is to isolate the pharmacological
effects of the ingredients, holding constant the effect of merely taking some sort of
pill (placebo effect).
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How can we make sure that the excludability assumption is met and that we are
able to isolate the specific cause we intend to? Basically, by ensuring uniform
handling of treatment and control groups, for instance, with double blindness,
neither the subjects nor the researchers charged with measuring outcomes are
aware of which treatments the subjects receive, so that they cannot consciously or
unconsciously distort the results. Another procedure is parallelism when adminis-
trating an experiment: the same procedures should be used for both treatment and
control groups, and both groups’ outcomes should be gathered at approximately the
same time and under similar conditions (Gerber and Green 2012). In online exper-
iments, meeting excludability assumptions might seem easier; however, consider, for
instance, a test of several versions of the same webpage showing prices and pro-
motions for a given brand. Randomization algorithms ensure that different cus-
tomers shopping from different laptops and IP addresses see different versions.
But if, unluckily, two people sitting one next to the other and surfing the same
webpage from different terminals but in the same location see different versions
(having been assigned to different treatment groups), we might incur in a violation of
the exclusion restriction, as recognizing the different versions can confound the
causal effect we set out to estimate. In such cases, precise geolocalization and a
randomization procedure that considers such geographical information could help
solve the problem.

Noninterference refers to the fact that potential outcomes are defined over the set
of treatments that the subject itself receives, not the treatments assigned to other
subjects. This assumption is sometimes called the Stable Unit Treatment Value
Assumption (SUTVA). Considering that each observational unit is either treated or
not treated, the number of potential outcomes to take into account can quickly
increase if we allow the outcome for subject i to depend on the treatment assignment
of another subject j. The noninterference assumption cuts through this complexity by
assuming that the outcome for i is not affected by the treatment of other subjects
(Gerber and Green 2012; Imbens and Rubin 2015). Consider, for instance, when an
A/B test is conducted on an e-commerce website offering promotions to a targeted
subsample of existing customers and not to some others. Noninterference would
assume that purchase decisions of subject i were only affected by his/her personal
assignment to treatment or control group. But what if, for instance, two subjects
belonging to the same household, say two sisters, are shopping from the same
website and one falls into the treatment but the other one falls into the control?
Then, we might have violation of noninterference as the treatment received by one
sister can affect the other that therefore no longer constitutes an untreated control
group. To prevent this from happening, researchers should try to design experiments
in ways that minimize interference between units by spreading them out temporally
or geographically or to design experiments in ways that allow researchers to detect
spillover between units. Instead of treating interference as a nuisance, these more
complex experimental designs aim to detect evidence of communication or strategic
interaction among units.
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Causality and Internal Validity
The previous section described the issues involved in estimating the causal effects as
they are typically discussed in economics (Gerber and Green 2012) and statistics
(Imbens and Rubin 2015). Psychologists also have a rich tradition of describing
problems that can occur in experiments and have coined the term internal validity
which refers to the extent to which we can say the observed effect in our study was
caused by our treatment (Campbell 1957; Campbell and Stanley 1963; Shadish et al.
2002). Many of the ideas in this section are closely related to the previous discussion
of the conditions necessary to estimate the causal average treatment effects, but using
a different set of terms. Since both perspectives on experiments are common in
marketing, we present both.

To achieve high internal validity, laboratory experiments are generally more
suitable. This is because the controlled environment allows for better control of
confounders. However, depending on the field considered, the natural environ-
ment can be highly controlled as well, especially in digital settings. In general,
when considering studies that go beyond the randomized controlled experiment,
there are many threats to internal validity, some of which we have discussed
previously and most of which apply to both field and lab experiments:

• Selection bias: when assignment to treatment is not random and certain types of
people are more likely to receive one of the treatments, in other words the
experimental groups systematically differ from each other either because of
self-selection (e.g., by voluntary choosing whether to receive the treatment) or
by incorrect assignment (Campbell 1957; Iacobucci and Churchill 2010; Shadish
et al. 2002). For example, when running an offline field experiment to test the
effect of marketing actions on purchase intentions, a selection bias could emerge
due to self-selection of respondents into treatments. When treatments are not
randomly assigned, the subjects or the experimenters may assign certain types of
subjects to treatment and other types to the control. For example, if we are
studying the effect of receiving emails on customer’s purchase rate using obser-
vational data collected by the company, we have to consider that customers get to
self-select whether to sign up for the mailing list, and so those who sign up may be
systematically more likely to purchase than those who do not sign up. This is less
likely to happen in online field experiments, as assignment to treatment groups is
handled by the computer systems and mostly unnoticed by users who are often
completely unaware of being tested.

• Differential attrition: when certain types of subjects drop out of one of the
treatments. It implies that certain types of participants leave during the run of
the experiment or do not take part in the final measurement (Aaker et al. 2011;
Shadish et al. 2002), and this attrition is different for the treatment and the control
groups. For instance, if you were testing an increase in the frequency of direct
marketing, customers who have less affinity for the brand may be more likely to
ask to be put on a “do not call” list when they are in the high-frequency condition.
These participants would not complete the treatment and so typically would not
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be counted in the analysis of the response. The direct consequence of differential
attrition is that the average of the experimental group might differ if the exited
participants were still involved (Iacobucci and Churchill 2010; Shadish et al.
2002).

• Time effects: when treatments are administered at two different times, outside
events, learning, or other changes are confounded with the treatment (Shadish
et al. 2002).

• Confounding variables: when other variables are correlated with the treatment
and have an effect on the outcome, a cause-effect relationship between the
confounder and the dependent variable can be mistakenly assumed to be a causal
effect of the treatment.

• Noncompliance: subjects assigned to the experiment do not get the specified
treatment. This can happen because of individuals’ voluntary decision to use a
different treatment than the one they were assigned, because they do not like it or
they think another treatment would be better.

• Diffusion of the treatment across groups: subjects assigned to one treatment find
out about the other treatment.

• Demand effects: participants guess the hypothesis of the experiment and try to
cooperate by exhibiting behavior that confirms the hypothesis.

• Experimenter bias: experimenter makes subjective measurements and inadver-
tently favors the hypothesis in those measurements. An experimenter bias may
exist when the mere presence or interaction with the interviewer has an effect on
the respondent’s responses. Being interviewed about personal purchase intentions
might arouse a sense of self-exposure that could lead to biased responses not
reflecting the private true intentions. This is more often the case in face-to-face
interviews and is quite unlikely to happen in lab experiments or in online field
experiments.

• Hawthorne effect: it is also possible that individuals being part of an experiment
and being monitored change their behavior due to the attention they are receiving
from researchers rather than because of the manipulation of the independent
variables. The Hawthorne effect was first described in the 1950s by researcher
Henry A. Landsberger during his analysis of experiments conducted during the
1920s and 1930s at the Hawthorne works electric company in Illinois. His
findings suggested that the novelty of being research subjects and the increased
attention deriving from this could lead to temporary increases in workers’ pro-
ductivity. This is sometimes also referred to as the John Henry effect and is
closely related to the placebo effect in medicine. This issue is easily overcome in
many field experiments where subjects are unaware of being a subject in a test but
is more likely to happen in lab experiments (Landsberger 1958).

• Ambiguous temporal precedence: In some experiments, it can be unclear whether
the treatment was administered before or after the effect was measured. For
instance, if purchases and promotional emails are tracked at a daily level, it can
be difficult to discern if a customer who received an email on a particular day and
also made a purchase that same day received the email before she made the
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purchase. If the treatment does not occur before the outcome is measured, then the
causality may be reversed.

Generalizability of Findings and External Validity

Often, we are interested in whether the conclusions of our experiment can be applied
to a specific business decision. For instance, if we test a new product display in
30 stores within a chain and find that the new product display increases sales, then
we want to know whether this finding will generalize to other stores in the chain or to
other retailers. External validity refers to the extent to which the specific findings of
the experiment can be generalized to other target populations or other similar
situations (Campbell 1957; Shadish et al. 2002). If the study shows high external
validity, we can say that the results can be generalized. Field experiments are largely
acknowledged to better generalize to real situations than lab experiments because of
the real setting in which they are deployed, although some have cautioned that field
experiments conducted in one setting cannot always be generalized to other settings
(Gneezy 2017).

The major threat to external validity is that some idiosyncrasy of the test situation
(context effect) produced the effect, but the effect goes away in the target business
environment. For instance, while an ad may perform well in a copy test where
customers are brought into a lab setting and exposed to the ad and then surveyed on
their purchase intent, those results may not generalize to ad exposures in the real
world, perhaps because people do not pay as much attention to ads in the real world
as they do in the lab. Or a finding from a field experiment showing that price
promotions increase sales of packaged goods may not extend to a different product
category. For those familiar with regression, another way to conceptualize context
effects is that there is an interaction between the treatment and some context variable
that was held fixed in the experiment, such that the effect of the treatment is different
depending on the value of that context variable (Campbell and Stanley 1963).

Another key element in designing an experiment with good external validity is
determining which subjects to include in the experiment. Note that the assignment of
subjects to treatments is closely related to the internal validity of the test, while the
selection of subjects to include in the experiment is closely related to the external
validity. The best way to enhance external validity is to test the research hypotheses
on the entire population that the researcher hopes to learn about, e.g., all the
customers in a CRM system or all the stores in a chain. This approach also
maximizes the power of the test to detect differences between treatments, which
we will discuss in the next section. Obviously, this is rarely possible outside of some
digital marketing contexts either because of the high costs of applying treatments
and measuring outcomes and/or the riskiness of the treatment.

To reduce risks and costs, researchers frequently rely on samples of subjects from
the target population. Some sampling strategies that are available to use are (from
ideal to worst):
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• Simple random sample: take a random draw from the target population using, for
instance, a coin flip or a dice roll. This gives to each subject an identical
probability of entering the sample, ensuring that the sample will be representative
of the target population.

• Cluster sample: when it is easy to measure groups or clusters of subjects,
randomly sample from among the clusters.

• Stratified sample: use a procedure to make sure that the sample contains different
types of subjects.

• Convenience sample: sample in some way that is easy for the researcher, e.g., an
academic might conduct the experiment with students or a company might
conduct the experiment using store locations that are nearby.

For instance, if a publishing company wants to evaluate whether a given
promotion strategy works better than another and decides to run a field experiment,
they have to consider the target population from which to sample. If their goal is to
learn how their current customers respond, they might focus on customers from
their current mailing list. However, if they hope to learn about how potential
customers respond to the promotions, they might choose to sample customers
from a larger list of avid readers. In either case, once the target population is
identified, the ideal strategy for selecting a group of customers to include in the
experiment is to either use all the customers in the target population, assigning
some to treatment and some to control, or to select smaller treatment and control
groups randomly from the mailing list. The simple random sample ensures that the
subjects in the study represent the target population. A convenience sample, by
contrast, may not properly represent the target population; for example, students
may not behave in the same way as other types of customers. If the company plans
to study separate subgroups within the target population, they may find a stratified
sample useful for ensuring that there is sufficient sample size within each sub-
group. Another potential threat to generalizability is the representativeness of the
subjects in the test. A common criticism of experiments conducted with students,
for instance, through surveys or lab experiments, is that the results may not reliably
extend to the entire population of reference. Similarly, in online experiments the
researcher should keep in mind that mostly heavy users of the website or app are
more likely to be included in field experiments than light users. Most online tests
include in the sample all the visitors in a fixed period, and this group will naturally
include more frequent users than infrequent users. To overcome such issues,
companies should consider test designs that assign treatments to users (rather
than to sessions), track users across visits, and cap the number of times each user
is exposed to the treatment.

Sample Size

A key question in designing any experiment is determining how many subjects to
include in the test. Sample sizes for an A/B test are typically determined by considering
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the hypothesis test comparing the two groups. The typical A/B test in marketing
estimates the average treatment effects by comparing the proportions of people who
respond to two different stimuli. Following the traditional one-tailed test for comparing
proportions, we begin with a null hypothesis that the proportion of people who respond
will be the same in both groups versus an alternative that the A group responds in
greater proportion than the B group:

H0 ¼ πA ¼ πB ¼ π
H1 ¼ πA � πB ¼ δ > 0

Our goal is to plan the number of subjects to include in the treatment and control
groups so that we will be able to correctly retain the null hypothesis if there is no
difference between treatments and reject the null if there is a difference of at least δ.
In the extreme, if we have no subjects, then we clearly will always retain the null
hypothesis no matter what. There are four aspects of the experiment that influence
the expected required sample size for an A/B test:

• The expected proportion π
• The expected (minimum) difference between the two groups δ
• The desired confidence 1-α (where α is the significance)
• The desired power 1-β

The confidence is the likelihood that you will retain the null hypothesis and
decide that there is no difference when there really is no difference. Power is the
likelihood that you will reject the null and detect a difference when indeed there is a
difference of at least δ. Both should be considered carefully in the design of an
experiment. Consider, for example, an A/B test designed to determine the effect of
an ad on the proportion of people who buy. In this case, we want high confidence to
prevent the possibility of concluding that the ad has a positive effect when it, in fact,
does not. We also want high power, to prevent concluding that that the ad does not
work when, in fact, it does. For a given sample size, power and confidence can be
traded off. Lewis and Rao (2015) find that for display advertisements, even A/B tests
with very large sample size conducted at a traditional confidence level of 0.95 do not
have sufficient power to detect whether an ad has positive ROI. Thus, it is critical to
consider power when planning an A/B test.

The sample size for each group in a comparative A/B test can be accurately
estimated by (Ledolter and Swersey 2007):

N � 2π 1� πð Þ z1�α þ z1�β

� �2
δ2

where zx is the cumulative normal distribution evaluated at x. This can be computed, for
example, using the Excel formulas: z1 � α = NORM . S . INV(1 � α) and z1 � β =
NORM . S . INV(1 � β).

One can see from this formula that if the researcher wants to detect a small
difference, δ, in the response rate between the A and B groups, then a larger sample
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size is required. Similarly, if the researcher wishes to reduce the chance of an
erroneous conclusion (i.e., that there is a difference when there is not or that there
is not a difference when there is), then z1 � α and z1 � β will be larger and the required
sample sizes will be higher.

Note that this formula depends on the size of the difference that the marketer
wishes to detect. In practice, it is very important to consider δ carefully. When a very
large amount of data is available (for instance, from e-commerce websites), generat-
ing large datasets and big samples is much easier than few years ago. In such cases, it
might happen that very negligible effects become significant (e.g., WTP is $10 in
treatment group and $9.99 in control). While this effect is statistically significant, it
does not really tell much about our business/research question and may not be useful
for making decisions. So, in situations where N is not limited by the budget, it may be
sensible to choose a smaller N so that the difference to detect, δ, is a difference that
would be meaningful to the business. This is sometimes referred to as aligning
practical and statistical significance.

Experimental Design and Multivariate Experiments

Managers frequently want to measure the effect of several different marketing
actions (i.e., they are interested in more than one treatment). For instance, a publisher
might be interested in assessing how different discount levels perform in combina-
tion with different ways of communicating the discount. They might be interested in
measuring the effect of two levels of discount (say 5€ and 10€) while at the same
time understanding the effect of communicating the price reduction in terms of price
discount (e.g., “subscribe for one month and save x €!”) or in terms of bonus time
(e.g., “subscribe for 1 month and get x weeks free!”). A multivariate experiment can
be used to simultaneously measure the effect of the discount level and the message
type while also determining if there is any additional effect of combining two
treatments together. When the combined effect of two treatments is better than the
sum of the individual effects, there is an interaction effect. Detecting interactions is
the main reason why companies conduct multivariate tests. In addition, multivariate
tests can reduce required sample sizes and increase the amount that can be learned in
the time frame of a single test.

Before approaching the technicalities of multivariate testing, we define some useful
terminology. The factors are those variables (continuous or categorical) whose effect
we want to study, e.g., ad copy, font, photo, and color in an advertisement or seed type,
fertilizer, and amount of water for an agricultural experiment. In the experiment, each
factor is tested at multiple levels, the different versions we want to test. The simplest
A/B test comparing two treatments has 1 factor with two levels.

Multivariate tests are experiments where two or more factors are tested. Multi-
variate tests should be carried out when the researcher wants to know the relative
effects of the different factors or when there might be combinations of levels that
perform especially well together. If the effect of the two factors together is more
(or less) than the sum of their separate effects, we say the two factors interact with
each other. For instance, the text color and the background color of a call-to-action
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button typically interact: when the colors are the same, customers cannot read the
button and do not respond.

For a better understanding of multivariate experiments, consider the following
experiment (adapted from Ledolter and Swersey 2007) that was conducted by a
credit card company who wanted to increase the response rate, that is, the number of
people who respond to a credit card offer. The marketing team decided to study the
effects of interest rates and fees, using the four factors shown in the following table.

Factor Level 1 (�) Level 2 (+)

A Annual fee Current Lower

B Account-opening fee No Yes

C Initial interest rate Current Lower

D Long-term interest rate Low High

We could choose to study these factors with a series of A/B tests. Suppose we all
agree that factor A (annual fee) is likely to be most important. Then we can run an
A/B test on annual fee, holding the other factors at the control levels. The combi-
nation of factors and levels is clearly summarized in the following design matrix:

Run

A
Annual
fee

B
Account-opening
fee

C
Initial interest
rate

D
Long-term interest
rate Sample

1 – – – – 20,000

2 + – – – 20,000

Suppose our first test found that the lower annual fee increased the response rate.
So, we can fix the factor A to “+” and in our next A/B test, we can look at factor B:

Run

A
Annual
fee

B
Account-opening
fee

C
Initial interest
rate

D
Long-term interest
rate Sample

3 + � � � 20,000

4 + + � � 20,000

Putting a sequence of these A/B tests together, we might end up with the
following runs:

Run

A
Annual
fee

B
Account-opening
fee

C
Initial interest
rate

D
Long-term interest
rate Sample

1 � � � � 20,000

2 + � � � 20,000

3 + � � � 20,000

4 + + � � 20,000

5 + � � � 20,000

6 + � + � 20,000

7 + � � � 20,000

8 + � � + 20,000
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Looking back at the resulting set of runs, we might notice several serious
problems:

• Before we run the first A/B tests, we do not really know which factor is most
influential, so it is difficult to know where to start.

• We could be wasting time with the sequential process.
• We are sometimes running the same condition more than once, which is ineffi-

cient (runs 2, 3, 5, and 7 are all the same).
• Because we have not tested all combinations of factors, we have little information

about the interactions between factors.
• If there are interactions, testing the factors in a different sequence could lead to

different conclusions about which combination is best.

To overcome these issues, it is recommended to make use of a proper experi-
mental design (commonly referred to as design of experiment, or DOE). In this
example, a better approach creates a single test that includes every possible combi-
nation of levels ( full factorial design) which allows us to see if there are certain
combinations of factors which are particularly good and to reduce the sample sizes
for each run. The full factorial design matrix, in this case, looks like this:

Run

A
Annual
fee

B
Account-opening
fee

C
Initial interest
rate

D
Long-term interest
rate Sample

1 � � � � 7500

2 + � � � 7500

3 � + � � 7500

4 + + � � 7500

5 � � + � 7500

6 + � + � 7500

7 � + + � 7500

8 + + + � 7500

9 � � � + 7500

10 + � � + 7500

11 � + � + 7500

12 + + � + 7500

13 � � + + 7500

14 + � + + 7500

15 � + + + 7500

16 + + + + 7500

Note that the number of possible combinations for a design can be computed by
multiplying together the number of levels (2) for each of the four factors
(2 � 2 � 2 � 2 = 24 = 16 combinations). It has become common to describe an
experiment with multiple factors using this shorthand. For example, a 23 � 51 full
factorial experiment has three factors that have two levels and one factor that has five
levels, which is a total of 40 different combinations of the factors.
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A full factorial design allows us to estimate the main effects of the factors and all
interactions between factors. The main effect of a factor is defined as the change in
the response variable when the level of the factor is changed from low to high and
corresponds to the average treatment effect for an A/B test that we discussed in
“Motivation”. For a full factorial design, we can compute the main effect, by
averaging the response rate across the runs when the level is at the high level and
comparing that to the average across the runs at the low level. A two-way interaction
occurs when the effect of one factor depends on the level of another factor (e.g., does
the impact of having an annual fee depend on whether or not there is an account-
opening fee?). Three- and four-way interactions are similar to two-way interactions,
but are difficult to think about (e.g., is the effect of C different when both A and B are
at their high levels?). Luckily, those higher-order interactions are usually negligible
in most business settings. To estimate main effects and interactions for multivariate
experiments, most researchers use regression analysis, fitting a model that relates the
outcome measure to the various factors. If the subjects in a multivariate test are
assigned to conditions randomly, the estimates of main effects and interactions that
we get from this regression represent the causal effect of those treatments, just as in
single-factor experiments.

In the example above, we show a full factorial test, where all the possible
combinations of factors are tested. However, as the number of factors increases,
the number of combinations increases rapidly. Therefore, researchers who use
multivariate tests frequently spend a lot of time thinking about which combinations
of factors they should include in their experiment and which they can leave out. One
approach is fractional factorial design, which reduces the number of combinations
to a half or a quarter of the possible combinations, by eliminating the possibility of
estimating high-order (three-way and higher) interactions. A newer approach for
determining which combinations of factors to include in a multivariate test is optimal
design, which characterizes how much we learn from an experiment by considering
how precisely we will be able to estimate the parameters of our regression model.
Optimal designs choose the design matrix so as to get the best possible standard
errors and covariance matrix for the parameter estimates. (See Goos and Jones 2011
for more detail.) Optimal design typically requires specialized software (e.g., JMP
from SAS or the AlgDesign package in R) where the user inputs the factors and
levels and the software finds the best combination of factors to test.

An important feature of good multivariate experimental designs is orthogonality.
When two variables are orthogonal in an experiment, it means that the various
combinations of the two factors occur exactly the same number of times. A nice
property of orthogonal design is that the estimate of the effect of one factor will not
depend on whether or not the other factor is controlled for in the regression. When the
two factors are always set at the same level (e.g., the account opening fee is always
paired with the annual fee), it is impossible to estimate separate effects for each factor,
and this is called a confound in the multivariate design, which is the opposite of
orthogonality. Full and fractional factorial designs maintain orthogonality, while
optimal designs are not necessarily orthogonal, but are usually nearly orthogonal.

One common application of multivariate testing in marketing is in testing various
features of direct mail offers: from the color of the envelope to the celebrity
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endorser’s appeal. In this type of experiment, the direct marketer typically sends out
a number of different direct marketing offers with varying levels of the features and
then measures the number of customers who respond. In this context, additional cost
is incurred for each different version of the mailing, and so fractional factorial and
optimal design approaches, which reduce the number of required combinations, are
valuable. Applying an optimal design or an orthogonal, fractional factorial design
instead of a one-factor-at-a-time method increases the efficiency at evaluating the
effects and possible interactions of several factors (independent variables).

Another important application of multivariate experimental design is conjoint
analysis. In conjoint analysis, customers are asked to evaluate or to choose from a set
of hypothetical products, where the products vary along a set of features. These
product features become the factors in a multivariate experimental design. A com-
mon approach to creating the questions to include in a conjoint survey is to use
optimal design (Sándor and Wedel 2001).

Examples of Field Experiments

Case Studies

Field Experiments in Business
Field experiments are rapidly becoming an important part of business practice, and
many marketing-oriented firms now employ a testing manager, who is responsible
for designing, executing, and reporting on field experiments to answer important
questions. These testing managers often specialize in a particular part of the business
or communication channel. For instance, one might find different specialists in
website testing, email testing, and direct marketing experiments, all within the
same company. Regardless of the specific platform, the goal of these testing man-
agers is to find treatments to test, to determine how to measure the response to the
treatments, to ensure that the test is designed so that it can be interpreted causally,
and to analyze and report on the results. In the next subsection, we describe the
testing program employed by the donation platform for the 2012 US presidential
campaign for Barack Obama.

A major focus for the 2012 US presidential campaigns was fundraising. Several
changes in regulation had made donations to political campaigns more important
than ever, and so there was a major focus on the web platform where potential donors
were encouraged to make small- and medium-sized donations. In their ongoing
efforts to improve the platform, the team conducted more than 240 A/B tests over
6 months to determine which marketing messages worked best (Rush 2012a).

An important consideration for any testing team is deciding which features of the
website platform to test. The ultimate determination of which features are worth
testing should depend on the potential returns the firm can gain by acting on the
findings of the test. The potential returns depend both on how much better the new
treatments perform (which is of course unknown before the test) and how many
customers will be affected by the treatment. Consequently, most testing teams
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choose to test features of their marketing that are seen by many customers and that
they believe have a large potential to increase sales or other desired outcomes.

The team managing the donation platform for the Obama campaign tested several
areas of the website including imagery, copy, and the donation process. Figure 2
shows an example of an image test that was used on the splash page, where potential
donors arrived after clicking on a link describing a special campaign where donors
could win a “Dinner with Barack” (adapted from Rush 2012b). The objective of the
test was to learn whether the focused shot showing the candidate smiling (which they
labeled as control) would perform better than the wide shot showing several
attendees at a previous event chatting with the candidate and his wife (which they
labeled as variation). Previous tests had shown that large images of the smiling
candidate increased the donation rate, so the team hypothesized that the control
image would perform better. The images were assigned randomly in real time to all
visitors who clicked on a link to the splash page. The team used the Optimizely
web-testing platform, which, like other web-testing platforms, handles the random
assignment of treatments automatically and integrates with the web analytics plat-
form to measure the response. The team assessed the performance of the two images,
by comparing the percentage of people who made donations in the control group
relative to the variation group. The team found that the wider shot showing previous
guests at the table with the candidate resulted in a 19% increase in donations. Based
on this finding, they quickly decided to change the splash page to the variation image
for the remaining duration of the campaign.

Figure 3 shows another example of a test described by Rush (2012b) that
involved website copy. The website had a feature that invited donors to store their
payment information so that they could make donations in the future with one click.
This was a very successful tool – by the end of the campaign more than 1.5 million

Fig. 2 Image test for Obama campaign (Adapted from Rush 2012b)

58 V. Valli et al.



Quick Donate users donated $115 million – and so the team was anxious to find
ways to get more donors to sign up for Quick Donate.

Figure 3 shows two versions of the page that donors saw just after making their
donation. The control page asked customers: “save your payment information for
next time,” while the treatment page made it seem as if saving the payment
information was part of the current process by saying: “now, save your payment
information.” When users were randomly assigned to the two treatments, the
percentage of customers who saved their payment information was 21% greater
among those who saw the segue copy.

This example raises a key issue that testing managers face in practice: how to
measure the effect of the treatment. In this case, the team chose to compare
treatments based on how many customers signed up for the Quick Donate program,
and this is a logical choice as that is the immediate goal of these marketing
treatments. However, Quick Donate sign-ups do not result in an immediate monetary
gain for the campaign. One might also legitimately prefer to compare these two
treatments based on how many actual donations are received in the subsequent
month for those in each group, although this would require more time and tracking
capability to measure effectively.

In field experiments in digital marketing, it is common to measure a variety of
outcomes within the same experiment, both those that are directly related to the
short- and long-term effects of the treatment and potential side effects such as
increased costs or increased complaints. (Medical experiments face a similar chal-
lenge in defining response measures: in testing a new cancer treatment, researchers
must decide whether to compare treatments based on a near-term outcome such as
the recurrence of cancer in the subsequent 5 years or a longer-term outcome such as
mortality in the next 20 years.)

Fig. 3 Copy test for Obama campaign (Adapted from Rush 2012b)
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The straightforward randomization and measurement available on the web plat-
form allow for easy causal interpretation of the results, which in turn makes it easy
for decision makers to act immediately on the findings without much risk of paralysis
by analysis. As Rush describes, “In looking at the overall results I think you could
say our efforts paid off. We increased donation conversions by 49%, sign up
conversions by 161% and we were able to apply our findings to other areas and
products.” And this sort of result is not unique: spurred on by a number of popular
business books with titles like Always Be Testing (Eisenberg and Quarto-von Tivadar
2009), Experiment! (McFarland 2012), and A/B Testing (Siroker and Koomen 2013)
where other examples of the Obama campaign’s optimization are reported, many
firms are finding ways to making field experiments a regular part of how they make
decisions.

Field Experiments in the Academic Literature
Field experiments are becoming popular as a tool for exploring marketing theory
(Gneezy 2017), and there are many online and offline field experiments reported in
the academic literature.

Offline field experiments can, for instance, be run in retail stores like Chen et al.
(2012) did to test how different types of promotions can impact the volume of
purchases. They tested whether the bonus pack or an equivalent price decrease of a
product has an impact on the sales figures changing the promotion type on a weekly
basis for 16 weeks. The employment of only one store allowed keeping all external
factors constant (e.g., store layout, employees, background of customers, neighbor-
ing environment), increasing internal validity at the expense of external validity.

Furthermore, field experiments are often conducted over a long period of time in
order to identify long-term effects. For example, Bawa and Schoemaker (2004)
conducted two field experiments each one over a 2-year time frame aimed at
estimating the long-run effect of free sampling on sales. In both cases, they recorded
the sales data of the customers over 1 year (panel data). After delivering the sample
at the end of the first year, the volumes were registered for another year. Of course,
the longer the time frame, the higher the probability that external factors can
influence the participants. In general, problematic marketing-related extraneous
factors depend on the respective context and on the research topic.

Online-controlled experiments have gained popularity because of the increased
digitalization of companies that are more and more engaging in a test and learn
mentality. As we have discussed, A/B tests can easily be implemented to examine
how users react to different webpage layouts and designs. An example is Yang and
Ghose (2010), who measured the impact of different search advertising strategies on
the click through rate, conversion rate, and revenues. All of these measures give an
indication of how the customers use the website.

A study revealing how the use of field experiments can shed new light on existing
and well-established theories is the recent paper by Anderson and Simester (2013).
Standard models of competition predict that firms will sell less when competitors
target their customers with advertising. This is particularly true in mature markets
with many competitors that sell relatively undifferentiated products. However, the
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authors present findings from a large-scale randomized field experiment that contrast
sharply with this prediction. The field experiment examines the effect of competi-
tors’ advertising on sales at a private label apparel retailer. To examine this effect, the
researchers sent competitive advertisement mailings to the treatment group. As
customers normally have no comparison of whether other people receive the same
or different mailings, they do not realize that they are part of an experiment. Results
show that, surprisingly, for a substantial segment of customers, the competitors’
advertisements increased sales at this retailer.

Recommended readings for those interested in online advertising are the field
tests employed by Goldfarb and Tucker (2011a, c). In the same area, Blake et al.
(2015) and Kalyanam et al. (2015) published large-scale field experiments aimed at
studying the causal effectiveness of paid search ads. They find somewhat contradic-
tory results: Blake et al. (2015) showed that returns from paid search ads for eBay are
minimal, while Kalyanam et al. (2015) find that search ads are effective for other
retailers. In a recent working paper, Simonov et al. (2015) have also confirmed that
search advertising does have some benefit for less-well-established brands. They use
a large-scale, fully randomized experiment on Bing data studying 2500 brands.
These experiments rely on treatment and control groups made up of various geo-
graphic regions where advertising can be turned on or off; using such geo-experi-
ments to measure ad effectiveness has also been suggested by researchers at Google
(Vaver and Koehler 2011).

Randomized holdouts take this idea of non-exposure to customer-level experi-
ments and are rapidly becoming popular in many industries. In a randomized holdout
experiment, the marketer selects a group of customers at random to not receive
planned marketing communication, such as an email, a catalog, or a promotional
offer. Comparing the treated and the holdout group allows the marketer to make a
causal measurement of the treatment effect, i.e., the incremental sales lift of the
marketing. Hoban and Bucklin (2015) report on randomized holdout experiments in
display advertising, Zantedeschi et al. (2016) report on randomized holdouts for
catalog and email campaigns, and Sahni et al. (2015) report on randomized holdouts
for discount offers. All of these studies find positive incremental effects of market-
ing. However, Lewis and Rao (2015) report similar experiments on display adver-
tising and find effect sizes that are so small that it would be difficult to accurately
measure the returns on advertising.

Lambrecht and Tucker (2013) run a field experiment with an online travel firm to
examine whether dynamic retargeting, a new form of personalized advertising that
shows consumers ads that contain images of products they have looked at before on
the firm’s own website, is more effective than simply showing generic brand ads.
Even if this new strategy integrates the usage of both internal and external browsing
data, results revealed that dynamic retargeted ads are on average less effective than
traditional retargeting.

Ascarza et al. (2016) analyze retention campaigns based on pricing plan recom-
mendations, and the results emerging from their field experiment surprisingly show
that being proactive and encouraging customers to switch to cost-minimizing plans
can increase rather than decrease customer churn.
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As the MSI-Tier 1 priorities suggest, the customer journey is developing into a
multimedia, multiscreen, and multichannel era (mobile = physical + digital worlds).
Considering multichannel customer management literature, Montaguti et al. (2016)
test the causal relationship between multichannel purchasing and customer profit-
ability. Within a field experiment, they show that multichannel customers are indeed
more profitable than they would be if they were single-channel customers providing
insights on how multichannel shopping leads to higher profit.

Andrews et al. (2015) had the opportunity to collaborate with one of the world’s
largest telecom providers managing to gauge physical crowdedness in real time in
terms of the number of active mobile users in subway trains. Their research examines
the effects of hyper-contextual targeting with physical crowdedness on consumer
responses to mobile ads, and results based on a massive field experiment counting a
sample of 14,972 mobile phone users suggest that, counterintuitively, commuters in
crowded subway trains are about twice as likely to respond to a mobile offer by
making a purchase vis-à-vis those in non-crowded trains.

Dubé et al. (2015) implemented another massive field experiment to test an
information theory of prosocial behavior. A long literature in behavioral economics
has generated a collection of empirical examples where economic incentives coun-
terintuitively reduce the supply of prosocial behavior. The data comes from two field
experiments involving a consumer good bundled with a charitable donation. Con-
sidering a population of 15 million subscribers living 2 km from a theater and who
purchased a ticket via phone in the previous 6 months, the sample consisted of 4200
randomly chosen individuals. Results suggest that price discounts crowd out con-
sumer self-inference of altruism.

Nevertheless, the aforementioned papers are only some of those interesting works
published involving the use of field experiments. We leave to the reader’s curiosity
the task to look for other field experiments!

Conclusions

As can be seen from the previous section, there are numerous examples of both
companies and academics using field experiments to answer tactical questions and
test marketing theory. The increasing use of field experiments in marketing is also
enhancing the collaboration between firms and academia. The big challenge and
opportunity here are the reconciliation of academics doing “big stats on small data”
with practitioners doing “small stats on big data.”

This chapter has laid out the key ideas one should think about when designing
field experiments. For the reader interested in more detail, a major author of
reference is John A. List, who focuses on field experiments in economics. In List
(2004) the author presents a series of field experiments he conducted about theories
of discrimination, and in a slightly more recent paper (2006), he reviews a broad set
of field experiments to explore the implications of behavioral and neoclassical
theories as well as of topics ranging from the economics of charity to the measure-
ment of preferences. Furthermore, in 2011 he proposed 14 tips to follow for
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improving academic’s chances of executing successful field experiments in collab-
oration with companies. We suggest practitioners to refer to this checklist, before
implementing their experiment ideas.

Of course, it is unavoidable to meet some challenges in the implementation and
use of field experiments. First of all, as pointed out by Levitt and List (2009), field
experiments do not provide the same extent of control as laboratory experiments.
Therefore, internal validity is often lower, and, because of a lower level of control,
potential confounding variables should be identified before starting and recorded
during the experiment in order to control for them using statistical methods (Hom-
burg 2015; Gneezy 2017). Pre-testing and continuous monitoring during the exper-
iment are helpful to identify excluded effects and record general trends like a change
of the general market conditions which can impact the sales volume independently
of the experiment (Gerber and Green 2012; Gneezy 2017). This issue further reveals
that researchers should put much effort and time into the planning stage and in the
experimental design. On top of that, a relatively high level of knowledge of the
whole experimental design and of the underlying constructs is required upfront
(Levitt and List 2009). Other challenges concern privacy and security regulations
that unavoidably tend to limit collection/retention of data (Goldfarb and Tucker
2011b). Future researchers should focus on the development of analytics that can
overcome such limitations and on the proactive development of methods for pro-
tection of customer privacy.

In summary, this chapter outlines and argues that field experiments are, next to
big data analytics, one of the major advances of the digital age which allow firms to
reveal the causality between two processes, actions or observations. Managers and
researchers have now to accept the challenge by ensuring that the causal inferences
of their field experiments are both correct and useful in terms of advancing man-
agement and marketing practice. We hope this chapter encourages and helps man-
agers in considering field experiments as a state-of-the-art market research approach
for collection, analysis, and interpretation of market-related information.
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Abstract

Surveys represent flexible and powerful ways for practitioners to gain insights
into customers and markets and for researchers to develop, test, and generalize
theories. However, conducting effective survey research is challenging. Survey
researchers must induce participation by “over-surveyed” respondents, choose
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appropriately from among numerous design alternatives, and need to account for
the respondents’ complex psychological processes when answering the survey.
The aim of this chapter is to guide investigators in effective design of their
surveys. We discuss state-of-the-art research findings on measurement biases
(i.e., common method bias, key informant bias, social desirability bias, and
response patterns) and representation biases (i.e., non-sampling bias and non-
response bias) and outline when those biases are likely to occur and how
investigators can best avoid them. In addition, we offer a systematic approach
for crafting surveys. We discuss key steps and decisions in the survey design
process, with a particular focus on standardized questionnaires, and we empha-
size how those choices can help alleviate potential biases. Finally, we discuss how
investigators can address potential endogeneity concerns in surveys.

Keywords

Survey research · Biases · Survey design · Survey research process ·
Measurement theory · Common method bias · Key informant bias · Social
desirability · Response styles · Non-sampling bias · Non-response bias · Item
reversal · Order bias

Introduction: Relevance of Survey Research

Surveys are ubiquitous, used to inform decision makers in every walk of life.
Surveys provide practitioners with deeper insights into the attitudes of their cus-
tomers (e.g., Hohenberg and Taylor (chapter ▶ “Measuring Customer Satisfaction
and Customer Loyalty”) in this handbook) and employees (e.g., employee satisfac-
tion surveys). Surveys are also helpful in exploring theoretical mechanisms for
theory testing and development, as survey research can contribute to generalizing
experimental findings to different persons and settings (Krosnick 1999; MacKenzie
and Podsakoff 2012). Many relevant and important research questions would be
difficult to study without relying on survey data (Hulland et al. 2018). Often,
adequate secondary data are not available and experimental manipulations are not
feasible. Thus, unsurprisingly, marketing research has a “rich tradition. . .in survey
research” (Rindfleisch and Heide 1997, p. 30).

Surveys represent a versatile and powerful research instrument that is applicable
in various contexts. For instance, investigators rely on surveys to study:

• Customer attitudes (e.g., customer satisfaction, customer loyalty, voice of the
customer surveys)

• Employee attitudes (e.g., employee satisfaction, employee commitment)
• Service quality (e.g., surveys about hotel service)
• Product quality (e.g., surveys with package inserts)
• Performance evaluations (e.g., training evaluation surveys)
• Product feedback (e.g., new product/concept testing surveys)
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Recent findings demonstrate the superiority of survey research over other
methods. For instance, a recent meta-analysis reveals that direct survey-based
techniques more validly indicate consumers’ willingness-to-pay than indirect
methods (Schmidt and Bijmolt 2019). Similarly, survey research might deliver the
most valid results in studies of sensitive topics (John et al. 2018).

However, despite its important benefits, survey research is in decline (Hulland
et al. 2018). Possibly, awareness of potential biases that can occur in survey research
may have nurtured skepticism toward surveys, rendering findings less trustworthy or
credible. Thus, a critical challenge for survey research lies in separating noise and
bias from a survey. As an understanding of how biases emerge will help investigators
enhance the validity of their surveys, we discuss the most commonly identified
biases in survey research.

Researchers need to make various decisions when developing their surveys. We
introduce a systematic process to survey research design that will help investigators
organize and structure survey development by answering guiding questions for each
stage of the survey research process. In addition, we outline how those decisions can
help to alleviate potential biases – an important consideration, as biases from survey
research can to a large extent be attributed to “haphazard decisions” (Schwarz 2003,
p. 588), investigators make when constructing surveys. While we focus primarily on
procedural remedies to avoiding biases (ex ante bias prevention),we also briefly address
statistical techniques (ex post bias corrections) and direct readers to further literature.
Such statistical techniques represent important supplements to effective survey design.

After reading this chapter, researchers will have an in-depth understanding of the
various biases that may affect the results of survey research. In addition, researchers
will comprehend the general survey process and know which decisions in survey
development will help to reduce potential biases. Figure 1 shows how we have

Survey research processUnderstanding survey bias 

Decision about the survey content
Decision about the question content
Decision about the question format
Decision about the question wording
Decision about the question sequence
Decision about the survey layout
Pretest of the questionnaire

Measurement errors

Representation errors

1. Selection of research variables

2. Selection of survey method

3. Questionnaire design

4. Data collection

5. Measurement evaluation

6. Data analysis

Fundamentals of survey research

Psychology of survey response

Measurement theory

Common method bias
Key informant bias
Social desirability
Response styles

Non-sampling bias
Non-response bias

Endogeneity in survey research
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structured this chapter. We first foster an understanding of survey bias (section
“Understanding Survey Bias”) by discussing the psychology of survey response
(section “Psychology of Survey Response”) and measurement theory (section “Mea-
surement Theory”). We then discuss in detail important sources of systematic errors
in survey research, which we classify into measurement errors (section “Sources of
Systematic Errors in Survey Research: Measurement Errors”) and representation
errors (section “Sources of Systematic Errors in Survey Research: Representation
Errors”). We subsequently outline the survey research process (section “Survey
Research Process”), with a particular focus on how to design the questionnaire
(section “Questionnaire Design”). We briefly address the issue of endogeneity
(section “Endogeneity in Survey Research”) and end by summarizing and aligning
the sections (section “Conclusion”).

Understanding Survey Bias

Fundamentals of Survey Research

A survey comprises a “cross-sectional design in relation to which data are collected
predominantly by questionnaire or by structured interview on more than one case
(usually quite a lot more than one) and at a single point in time” (Bryman and Bell
2015, p. 63). Surveys can be categorized by several aspects, such as

1. The method in which they are administered to the participant: written, online,
telephone, or personal surveys

2. Time horizon: cross-sectional versus longitudinal surveys
3. The role of the respondent: self-reports versus key informants

Survey administration can be classified into personal, telephone, written, and
online surveys. We discuss these different forms when outlining the selection of the
survey method (section “Selection of Survey Method”), focusing primarily on
written and online surveys because these are the dominant forms of survey research
(Hulland et al. 2018).

The time horizon can be purely cross-sectional or longitudinal. While cross-
sectional surveys are administered at a single point in time, longitudinal surveys
comprise repeated observations for different time periods (e.g., Heide et al. 2007;
Jansen et al. 2006; Wathne et al. 2018). Cross-sectional surveys are the dominant
form of applied research, encompassing 92.1% (Hulland et al. 2018, p. 94) and 94%
(Rindfleisch et al. 2008, p. 262). Examples of longitudinal surveys include

• American Customer Satisfaction Index (theacsi.org; Fornell et al. 1996), which
tracks the evolution of customers’ satisfaction with several companies over time

• Harris Poll EquiTrend study (e.g., Vomberg et al. 2015) or Young & Rubicam
Brand Asset Valuator (e.g., Mizik and Jacobson 2008), which gauge consumers’
brand perceptions
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• The CMO survey, which regularly surveys the opinions of chief marketing
officers (e.g., cmosurvey.org)

Longitudinal surveys can be designed in various ways. The American Customer
Satisfaction Index and the Harris Poll EquiTrend Study are repeated cross-sectional
surveys in which different respondents are sampled each time. Alternatively,
researchers can conduct a panel survey in which mostly the same respondents are
surveyed each time (chapter ▶ “Panel Data Analysis: A Non-technical Introduction
for Marketing Researchers” by Vomberg and Wies).

Regarding the role of the respondent, survey participants can either provide self-
reports or act as key informants. In self-reports, participants assess questions for
themselves. For instance, they may indicate their level of satisfaction or their attitude
toward a focal brand. In contrast, key informants provide answers for a higher-order
social entity. For instance, employees may indicate the strategic orientation of their
company. Key informants are commonly relied on in organizational contexts. We
elaborate later on a potential bias stemming from the use of key informants (section
“Key Informant Bias”).

Psychology of Survey Response

Survey researchers need to be aware of the psychological processes that typically
occur when participants answer a questionnaire. In business research, participants
usually cannot offer predefined responses but form their evaluations when answering
the questionnaire. For instance, when customers are asked about their satisfaction
with a company, they are not likely to retrieve such an evaluation directly from
memory, but instead tend to reflect on their answer when completing the question-
naire. Thus, survey questions trigger a cognitive process of response generation.

It is beyond the scope of this chapter to outline the variety of models that have
been proposed to capture these cognitive processes. Therefore, we only briefly
summarize the model of Tourangeau et al. (2000), which investigators frequently
refer to when studying respondent behaviors (e.g., MacKenzie and Podsakoff 2012;
Podsakoff et al. 2003; Weijters et al. 2009).

Tourangeau et al. (2000) argue that respondents pass through five stages when
replying to survey questions: (1) comprehension, (2) retrieval, (3) judgment,
(4) response selection, and (5) response reporting. In the comprehension stage,
participants attend to the survey question and deduce its intent. Respondents then
generate a retrieval strategy and search their memories for relevant information.
Retrieval thus entails the process of bringing information held in long-term memory
to an active state, in which it enters the short-term memory to be used (belief-
sampling model). Respondents integrate this information into a judgment (e.g., their
satisfaction with a certain product). Finally, when selecting their response, partici-
pants map the judgment onto the offered response categories and report their answer
(e.g., Krosnick 1999; Tourangeau et al. 2000; Weijters and Baumgartner 2012).

Each of these stages is quite complex and involves a significant amount of
cognitive effort by the participant. Thus, during this process, participants may not
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be motivated to process survey items in sufficient detail to provide a valid statement.
However, even motivated respondents may retrieve biased information. The acces-
sibility-diagnosticity theory argues that respondents retrieve information that is
accessible to them and has a high diagnosticity (Feldman and Lynch 1988). For
instance, very salient but exceptional events (e.g., a specific negative incident with a
company) are likely to be more accessible than regular events and thus lead
respondents to provide a distorted picture of their true attitudes and opinions. In
addition, information provided in earlier questions may represent a source of infor-
mation that respondents use to form their answers. For instance, the sequence of
questions may influence what information respondents retrieve when answering
subsequent questions (section “Decisions About the Question Sequence”). Even if
consumers retrieve accurate information, they must make substantial efforts to
condense this complex information into rather simple answer categories, such as
scales from 1 to 7 (Homburg et al. 2012c).

These examples highlight the complexity of survey response. In the following,
we outline the consequences of these psychological processes for the interpretation
of survey data.

Measurement Theory

Reliability and Validity: Fundamentals
Measurement theory claims that any observed value x for a question (e.g., an
observed value for the liking of a brand) is the sum of a true value t (also referred
to as trait) and measurement error, which can have a random e and a systematic
component s. Hence, any observed value can be understood in the following way
(Eq. 1):

x ¼ tþ sþ e ð1Þ
Importantly, the random error component poses threats to the reliability of a

survey question, and the systematic error component can affect the question’s
validity. A survey question can be considered reliable when it produces the same
results under the same measurement conditions, whereas the question has validity
when it actually measures what it purports to measure. An intuitive example to
understand the concept of random and systematic error is the following. Imagine that
100 researchers measure the time it takes for a participant to run a certain distance.
Usually, when all researchers compare their results, their observed measurements
will differ slightly. Thus, individual measurements likely suffer from random mea-
surement error. However, since this error is assumed to be randomly distributed
among participants, its expected value is zero: E(e) ¼ 0. Hence, when taking the
average value, researchers likely obtain an unbiased measure (Iacobucci 2013).

With respect to survey research, a characteristic such as imprecise wording
can raise fundamental threats to reliability: participants could interpret
words such as “usually” or “almost” differently, adding noise to the data
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(section “Decisions About the Question Wording”). However, since the expected
value of the random error is zero, survey researchers can ask multiple questions
when measuring abstract concepts such as commitment or satisfaction. Just as in the
stop watch example, averaging multiple measurements may help to safeguard
against reliability concerns (section “Decisions About the Question Content”).

In contrast, systematic errors affect the validity of survey questions. Validity
refers to the degree to which a measure really measures what it is supposed to
measure. Since the expected value of the systematic error is not zero (E(s) 6¼ 0),
repeated measurements cannot alleviate potential validity concerns. Intuitively, this
can be explained by continuing with the stop watch example. If all researchers had
received stop watches that systematically add 10 s, even the average of the individual
measurements will be biased. We discuss sources of systematic errors in survey
research in sections “Sources of Systematic Errors in Survey Research: Measure-
ment Errors” and “Sources of Systematic Errors in Survey Research: Representation
Errors.”

Reliability and Validity: Implications for Survey Research
A natural follow-up question is the extent to which random and systematic errors
influence the results of survey research. Many times survey researchers are inter-
ested in establishing relationships between variables. In the simplest case, inves-
tigators can focus on bivariate correlation coefficients, and in the following we
discuss the bivariate correlation coefficient between a variable x (e.g., customer
satisfaction (CS)) and a variable y (e.g., word-of-mouth behavior (WOM)). In line
with Eq. 1, we assume that both variables are measured with error. We apply two
common assumptions in deriving the correlation coefficient: we assume (1)
uncorrelated random measurement errors (i.e., Cov(e,t) ¼ 0; Cov(e,s) ¼ 0; Cov
(ex, ey) ¼ 0) and (2) no correlation between the true value and the systematic
measurement error (Cov(t,s) ¼ 0). These assumptions lead to the following
correlation coefficient (Eq. 2) (e.g., Baumgartner and Steenkamp 2001; Homburg
and Klarmann 2009):

r x, yð Þ ¼ Cov CS;WOMð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var CSð Þ � Var WOMð Þp ¼ Cov x; yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var xð Þ � Var yð Þp ¼

¼ Cov tx þ ex þ sx; ty þ ey þ sy
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var tx þ ex þ sxð Þ � Var ty þ ey þ sy
� �

q ¼

¼ Cov tx, ty
� �þ Cov sx, sy

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var txð Þ þ Var exð Þ þ Var sxð Þ½ � � Var ty
� �þ Var ey

� �þ Var sy
� �� �

q :

ð2Þ

Equation 2 offers three important insights. First, a common concern regarding
survey research is that participants may provide inflated answers that bias the results
(e.g., De Jong et al. 2015). For instance, managers may be tempted to exaggerate
their performance. However, while these over- or understatements affect mean
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values, mean values do not directly affect Eq. 2. Thus, (systematic) over- or
understatements do not bias the relationships between variables in survey research.

Second, in many research applications, investigators are interested in the direc-
tion of a relationship rather than in the size of the coefficient. Since the denominator
in Eq. 2 contains only variances that cannot become negative, only the numerator is
responsible for the direction of the correlation coefficient. Increased variances in the
denominator can only reduce the size of the correlation coefficient. Consequently,
Eq. 2 reveals that random measurement errors cannot change the sign of the
correlation coefficient since the random error is only part of the denominator.
From the perspective of a survey researcher, Eq. 2 implies that random measurement
errors can lead to only conservative results by decreasing statistical power. Thus,
random measurement errors may obscure an effect that is present, leading to Type II
errors. However, random measurement errors cannot artificially create relationships.

Third, the impact of systematic measurement errors (also referred to as method
error) can be twofold since the systematic error is part of both the numerator and the
denominator in Eq. 2. If sources of systematic errors affect both variables indepen-
dently (i.e., cov(sx, sy) ¼ 0), then systematic errors have the same impact as random
errors: they can lower statistical power but cannot artificially create effects. How-
ever, more likely sources of systematic errors (e.g., key informant bias) affect both
variables simultaneously (i.e., cov(sx, sy) 6¼ 0). Thus, systematic errors can affect not
only the strength but also the direction of an effect. Systematic errors could be
responsible for either detecting artificial relationships in cases in which there is no
true relationship (i.e., Type I error) or masking existing relationships (i.e., Type II
error) (Baumgartner and Steenkamp 2001; Homburg et al. 2012c). Huang and
Sudhir (2021) provide compelling empirical evidence for the latter. They show
that systematic biases in survey research can lead to conservative estimates, that is,
an underestimation of true effect sizes.

Sources of Systematic Errors in Survey Research: Measurement
Errors

In this section, we review key sources of systematic biases that may affect the
validity of survey research. A bias is “any force, tendency, or procedural error in
the collection, analysis, or interpretation of data which provides distortion” (Crisp
1957, cited in Tortolani 1965, p. 51). Knowledge regarding these threats is important
because, to a certain extent, researchers can safeguard against them when designing
the survey instrument.

In the following, we describe the most commonly discussed biases in survey
research. Following prior investigators, we categorize those biases into measurement
errors and representation errors (e.g., Baumgartner and Steenkamp 2006). Measure-
ment errors reflect tendencies of respondents to answer to survey questions on some
grounds other than the item content. Specifically, we discuss common method bias
(section “Common Method Bias”), key informant bias (section “Key Informant
Bias”), social desirability bias (section “Social Desirability”), and response patterns
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(section “Response Styles”). Representation errors reflect biases due to the selection
of the sample of respondents. These biases could follow from unrepresentative
sampling frames – non-sampling bias (section “Non-sampling Bias”) – or partici-
pants’ unwillingness or inability to respond – unit non-response bias (section “Non-
response Bias”).

Common Method Bias
Conceptualization. Common method bias (CMB) – one of the most frequently
discussed threats to survey research – can largely undermine the validity of a study’s
findings (Hulland 2019; Palmatier 2016). However, no agreement on a definition of
CMB presently exists. CMB definitions differ widely in scope. Podsakoff et al.
(2003, p. 880) favor a broad definition and refer to CMB as “variance that is
attributable to the measurement rather than the construct of interest.” Under this
definition, CMB can be regarded as an umbrella term for various biases that can be
classified into four categories (Podsakoff et al. 2003, p. 882):

• Common source rater: for example, consistency motif, social desirability (Section
“Social Desirability”), response patterns (section “Response Styles”), or a ten-
dency toward satisficing

• Item characteristics: for example, item ambiguity (section “Decisions About the
Question Wording”), common scale formats or anchors (section “Decision About
the Question Format”)

• Effects due to item context: for example, item embeddedness (section “Decisions
About the Question Sequence”)

• Measurement context: for example, independent and dependent variables mea-
sured at the same point in time

A narrow definition of CMB focuses on the last category and attributes the
distortion of the sample’s covariance structure to the use of the same data source
to measure both independent and dependent variables (e.g., Klarmann 2008;
Rindfleisch et al. 2008). We adopt this definition and discuss other biases that
Podsakoff et al. (2003) mention separately.

CMB can emerge when a single informant provides information on the indepen-
dent and dependent variables. As we elaborate below, the severity of CMB will then
depend on various factors, such as the type of collected measure (lower CMB threat
for objectively verifiable measures), the complexity of the tested relationships (lower
CMB threat for quadratic and interactive relationships), whether a time lag occurs in
data collection (lower CMB threat when independent and dependent variables are
collected at different points in time), or the response format (lower CMB threat if the
independent and dependent variables are measured in different scale formats).

CMB can undermine the validity of survey research in two ways. First, it can lead
to biases in estimates of construct reliability and validity, as it can inflate reliability
and validity measures by 18 to 32% (Podsakoff et al. 2012, p. 543). Thus, CMB can
lead researchers to mistakenly believe that they have validly measured the constructs
of interest when in reality they have captured method artifacts.
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Second, CMB can bias the parameter estimates between two constructs. Notably,
however, investigators document vastly different results when quantifying the
impact of CMB: some evidence indicates that, on average, CMB inflates correlation
coefficients between constructs by approximately 45%, with a range of 27% to 304%
(MacKenzie and Podsakoff 2012, p. 543; Podsakoff et al. 2012, p. 545). However, a
meta-analysis of 42,934 correlation coefficients showed correlations based on sin-
gle-source self-reports to be on average only 0.02 higher than correlation coefficients
from different sources (Crampton and Wagner 1994).

Reasons for occurrence. To effectively address CMB, understanding the reasons
for its occurrence is important. Given the pivotal role CMB assumes in marketing
research projects, the literature not surprisingly offers plenty of explanations for why
CMB may occur (Podsakoff et al. 2003 provide a detailed discussion). In the
following, we highlight selected explanations.

First, when reading the questions, respondents may start developing implicit
theories of the relationships between the constructs. In effect, their answers then
represent reflections of these theories. For instance, managers might be asked to
evaluate the innovativeness of their business unit and their competitive position. If
the participating managers develop the implicit theory that innovativeness represents
a focal driver of performance, then their answers referring to the business unit’s
innovativeness might be influenced by prior answers on the unit’s competitive
position (e.g., Podsakoff et al. 2003).

Second, respondents strive for consistency in their cognitions. Therefore, they
may try to provide answers that they think are consistent. They may search for
similarities in the questions and adapt their answers accordingly. As a consequence,
stated answers may not truly reflect their behaviors or opinions.

While these two explanations in general outline why CMB can emerge, an
important question is, in which situation is CMB more likely to occur? Empirical
evidence suggests that two factors drive potential CMB concerns: (1) the nature of
the constructs under investigation and (2) the complexity of the investigated
relationships.

The literature rather consistently states that the likelihood of CMB to occur
depends on the nature of the questions. For example, the percentage of common
method variance is lower in marketing (16%) than in psychology or sociology (35%)
(Cote and Buckley 1987). Constructs investigated in psychology or sociology are
likely to be abstract and complex and thus be harder to answer and may trigger
cognitive processes that increase covariation between systematic error components
(MacKenzie and Podsakoff 2012; Podsakoff et al. 2012; section “Psychology of
Survey Response”). Empirical evidence confirms these expectations. In general,
concrete, externally oriented, and verifiable constructs are less prone to CMB than
are abstract, internally oriented, and non-verifiable constructs (Chang et al. 2010;
Rindfleisch et al. 2008).

Second, with increasing complexity of the investigated relationships, CMB is less
likely to occur. Analytical evidence demonstrates that CMB can deflate quadratic
and moderating relationships but cannot create them (Siemsen et al. 2010). For such
complex relationships, participants are unlikely to develop corresponding implicit
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theories that affect their responses. Therefore, if the main interest of research lies in
identifying quadratic relationships or interaction effects, CMB is not likely to
undermine researchers’ findings (Vomberg et al. 2020).

Procedural remedies. A general recommendation is that investigators should
favor procedural remedies over statistical remedies when addressing potential biases
in survey research. While statistical controls are rather symptom-based – that is, they
target the consequences of CMB only in the analysis stages – procedural remedies
try to eliminate sources of CMB in the moment of collecting the data. Naturally, in
many situations researchers will not be able to completely alleviate CMB concerns
with procedural remedies, and in these cases, statistical remedies can help to elevate
the credibility of the findings. In the following, we discuss four procedural remedies:
(1) use of different data sources, (2) temporal separation, (3) proximal separation,
and (4) psychological separation of scale of scale formats.

(1) Different data sources. An investigator nullifies the risk of CMB when relying
on different data sources for the independent and dependent variables (Rindfleisch
et al. 2008, p. 274; Ostroff et al. 2002). This approach makes it impossible for
participants to develop implicit theories between independent and dependent
variables.

First, researchers can survey different respondents to evaluate the independent
and dependent variables (Gruner et al. 2019) – that is, use dyadic data: one portion of
the sample is used to estimate the independent variables and the remaining portion
evaluates the dependent variables. Empirical evidence supports the effectiveness of
dyadic data to attenuate CMB. Correlations of independent and dependent variables
when rated by one respondent (r ¼ 0.359) dropped by 49% when different respon-
dents evaluated them (r ¼ 0.184) (Podsakoff et al. 2012).

Although this procedure appears promising, it requires large sample sizes, and
therefore is not appropriate for all kinds of surveys. Particularly in organizational
research, researchers observe generally declining response rates, making it espe-
cially challenging to recruit additional respondents (section “Non-response Bias”). It
might also be problematic in small companies where the owner is in charge of most
of the decisions (Rindfleisch et al. 2008).

Second, researchers can rely on a combination of secondary data and survey data.
Most commonly, researchers collect independent variables via a survey study and
evaluate performance outcomes from profit and loss statements (e.g., Vomberg et al.
2020). Research suggests that this approach is also effective. Obtaining independent
and dependent variables from different data sources can reduce their correlations by
49% (Podsakoff et al. 2012, p. 548).

However, relying on different sources might not be feasible in several settings.
For instance, use of different data sources is not viable when the two variables cannot
be validly inferred from different sources (e.g., self-referential attitudes and percep-
tion constructs; Johnson et al. 2011), when archival data cannot adequately represent
the construct, or when such data are available only for prohibitively high costs in
terms of money or time.

(2) Temporal separation of measurement. An alternative might be to separate
the collection of independent and dependent variables temporally by including a
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time lag (e.g., Homburg et al. 2020; Jansen et al. 2005; Vomberg et al. 2020).
Empirical research indicates that temporal separation of measurement can be
effective for reducing potential CMB. However, effectiveness depends on the
length of the time lag, with longer time lags triggering the possibility that inter-
vening events might introduce new sources of biases (Podsakoff and Organ 1986;
Chang et al. 2010). While some research indicates that temporal separation is
effective for same point in time versus two weeks later (Johnson et al. 2011) and
same point in time versus one month later (Ostroff et al. 2002), other work finds no
significant improvement with relatively long time lags (30 vs. 36 months)
(Rindfleisch et al. 2008).

(3) Proximal separation. Researchers can increase the proximal distance between
independent and dependent variables in the questionnaire. As we elaborate in section
“Decisions About the Question Sequence,” separating measures significantly
reduces shared variance (Weijters et al. 2009). For instance, concern regarding
CMB can be alleviated by first measuring the dependent and then the independent
variables.

(4) Psychological separation of scale formats. Researchers frequently rely on
common scale formats for a variety of questions within a questionnaire. While
common scale formats make answering the survey questions easier, they enhance
the probability that cognitions formed when answering one question may be
retrieved when answering another question. However, relying on different scale
formats when assessing the independent and dependent variables reduces potential
CMB (e.g., Vomberg et al. 2020), as different formats disrupt potential consistency
bias (Feldman and Lynch 1988; Podsakoff et al. 2012; Rindfleisch et al. 2008).

Initial empirical evidence supports the effectiveness of using different scale
formats. For instance, labeling anchor points differently for independent and depen-
dent variables shrinks CMB by 18% (Johnson et al. 2011). Even larger decreases of
38% or 60% occur when the scale format is changed completely (Arora 1982;
Kothandapani 1971).

Statistical remedies. The literature contains discussions of several statistical
remedies for reducing CMB. Since these remedies are beyond the scope of the
article, we briefly mention only a few. Podsakoff, MacKenzie, and Podsakoff
(2012) provide a detailed overview of several statistical techniques, and Hulland
et al. (2018) outline how to test for CMB. Hulland et al. (2018) discuss the
correction-based marker variable technique, which is one of the most frequently
applied approaches to address CMB in marketing research. This approach suggests
that a marker variable that is theoretically unrelated to the constructs under investi-
gation resembles the amount of CMB (Lindell and Whitney 2001). Grayson (2007,
Appendix B) intuitively summarizes this approach.

Other approaches include (1) the measured latent factor technique, or measured
response style technique, in which the researcher directly measure sources of CMB
(e.g., Wathne et al. 2018), (2) the unmeasured latent factor technique, in which
researchers model a method factor in structural equation models (e.g., Homburg et
al. 2011), and (3) endogeneity-correction approaches, in which researchers employ
instrument-free techniques (e.g., Vomberg et al. 2020).
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Key Informant Bias
Conceptualization. Survey participants can act either as respondents providing
self-reports or as key informants. While respondents describe their own beliefs,
attitudes, opinions, or feelings, key informants generalize about patterns for a
higher social unit (e.g., a company’s culture) on the basis of their experiences
(Seidler 1974). For example, in an employee satisfaction survey, employees act as
respondents when they evaluate their own job satisfaction level. However, they act
as key informants when they assess an organizational culture (higher social entity).
Key informant bias can occur in the latter case; it comprises the distortion of the
sample’s covariance structure that arises because the data collection has taken place
through key informants. As we elaborate below, the severity of key informant bias will
depend on various factors, most pressingly on the expertise of the key informant (less
bias if the key informant is knowledgeable, has a higher hierarchical position, and has
longer job tenure) and the type of collected data (less bias for objectively verifiable
measures).

To the best of our knowledge, only two studies systematically evaluate the
occurrence of key informant bias (Homburg et al. 2012b; Kumar et al. 1993), and
the two studies deliver conflicting conclusions. Kumar, Stern and Anderson (1993,
p. 1646) report high levels of key informant disagreement, whereas Homburg et al.
(2012c, p. 605) find in their meta-analytical study high levels of key informant
agreement (0.872).

In addition, Homburg et al. (2012c) investigate how large the systematic error
provoked by key informant bias needs to be to create artificial effects or to mask true
effects. They demonstrate that the requisite size depends largely on the study’s sample
size and the strength of the effect, and conclude that in the studies of their meta-analysis
there is a risk that small and medium-sized effects were not correctly identified.

Reasons for occurrence. Key informant bias can emerge if investigators have
unrealistic expectations about the key informant’s knowledge. For instance, it might
not be feasible for key informants to provide complex judgment about organizational
characteristics that may result in random measurement error. In addition, key
informant bias may emerge owing to positional bias or knowledge deficiencies
(Phillips 1981). For instance, key informants’ backgrounds can substantially influ-
ence the answers they provide (Homburg et al. 2005). When marketing and sales
managers were asked to evaluate the marketing function (same higher social entity),
mean values differed considerably between key informants from the two depart-
ments (Fig. 2). Sales managers perceive marketing managers (on a scale from 0 to
100) to have a rather low level of customer know-how (mean value ¼ 37), whereas
marketing managers on average consider themselves to have rather high levels
customer know-how (mean value ¼ 59).

In addition, in line with empirical findings on CMB, the risk of key informant bias
largely hinges on the nature of the studied constructs. Key informant reports are
reliable for objective and salient issues from the present (e.g., performance out-
comes). However, for more abstract measures (e.g., organizational culture) key
informants tend to be less accurate. Furthermore, a higher hierarchical position and
tenure also increase reliability (Homburg et al. 2012c; Kumar et al. 1993).

Crafting Survey Research: A Systematic Process for Conducting Survey Research 79



Procedural remedies. The most important and effective remedy to alleviate
concerns regarding key informant bias is the careful selection of key informants.
The investigator needs to carefully align the contacted key informants with the
objective of the study. Typically, key informants are not chosen randomly and are
not deemed representative for the population. Instead, researchers select respondents
who have special qualifications, such as their position in the company or their
knowledge (Phillips 1981; Kumar et al. 1993).

The question of whom to contact as key informants depends primarily on the
research context. For instance, if the research objective focuses on strategic issues,
high-ranked key informants are probably appropriate. However, if the study inves-
tigates operational aspects, such as specific sales approaches used, then key infor-
mants with regular customer contact are more promising.

In addition, questions that require less demanding social judgments and
instead are impersonal and focus on objective and observable phenomena seem
preferable (Phillips 1981; Homburg et al. 2012c; Klarmann 2008). However,
whether this condition is realistic depends largely on the context of the study.
Nevertheless, even if more complex or abstract constructs are the focus of the
study, the researcher might lower the risk of key informant bias with careful
wording of the questionnaire items (section “Decisions About the Question
Wording”).

Finally, if key informant response accuracy is expected to be low or empirical
evidence for reliability is scarce in the particular research domain, the researcher may
use triangulation – that is, combining methods in the study of the phenomenon. For
instance, investigators can try to survey multiple key informants per company.
However, since triangulation is costly, sometimes difficult to implement (Rindfleisch
et al. 2008), and devoid of substantial additional value if the responses of the first
respondent have been accurate (Homburg et al. 2012c), this option should be
carefully chosen.

Fig. 2 Marketing and sales managers’ evaluations of the marketing function – comparison of mean
values (Homburg et al. 2005, p. 14, reproduced with the kind permission of the publisher)
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Statistical remedies. Statistical procedures address either the reliability or validity
of the key informant study. They aim either to establish or enhance reliability or
validity (Homburg et al. 2012c) provide a systematic overview of various
approaches). For instance, authors can establish reliability by demonstrating key
informants’ job tenure or experience with the company (Kumar et al. 1993) or by
measuring their perceived knowledge level (e.g., Ghosh and John 2005; Kumar et al.
2011). In the case of triangulated data, researchers can also employ correlational
approaches, such as intraclass correlation ICC(1) (Bliese 2000; chapter ▶ “Multi-
level Modeling” Haumann et al. in this handbook) or the absolute deviation agree-
ment index (Burke and Dunlap 2002; LeBreton and Senter 2008). To enhance
validity, researchers can integrate factors representing the data sources into a struc-
tural equation model, allowing estimation of trait relationships while controlling for
systematic error (e.g., Cote and Buckley 1987).

Social Desirability
Conceptualization. As one researcher noted over 20 years ago, “One well-known
phenomenon in survey research is overreporting of admirable attitudes and behav-
iors and underreporting of those that are not socially respected” (Krosnick 1999, p.
545). This phenomenon is called social desirability and represents the distortion of
the sample’s covariance structure that arises owing to the tendency of respondents to
reply in a manner that others will view favorably (e.g., De Jong et al. 2010). For
instance, in a study on consumer innovativeness, 41% of the respondents indicated
they owned, had repurchased, or had seen products that did not actually exist in the
market (Tellis and Chandrasekaran 2010).

While social desirability is often considered a source of bias in survey research
(e.g., Podsakoff et al. 2003), surprisingly few investigators explicitly address it in
their studies (Steenkamp et al. (2010) and Tellis and Chandrasekaran (2010) repre-
sent some notable exceptions). As a consequence, knowledge about the impact of
social desirability on survey results is scarce.

Reasons for occurrence. Theory proposes two factors to explain the occurrence of
socially desirable responding: the level of awareness (self-deception vs. impression
management) and the domain of content (agency-based vs. communion-based
contexts). Self-deception occurs when participants unconsciously dissemble, and
impression management occurs when participants consciously dissemble (e.g.,
Krosnick 1999; Paulhus 1984).

Regarding the domain of content, some respondents are more likely to engage in
socially desirable responding because they have a need to be perceived as more
powerful than others (egoistic response tendencies, arising in agency-based set-
tings). Other respondents offer socially desirable responses because they have a
need to be perceived as exceptionally good members of society (moralistic response
tendencies, emerging in communion-based contexts) (Paulhus and John 1998;
Paulhus 2002; Steenkamp et al. 2010).

Procedural remedies. Self-deception and impression management are particularly
important in controlling or reducing potential social desirability bias. Socially
desirable responding owing to self-deception might be part of a respondent’s
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personality, and therefore should not be controlled for to prevent elimination of a
central component of individual differences in personality. However, the impression
management component should be controlled for because this component embodies
a conscious bias (Paulhus 1984).

Several methods are available to prevent or at least reduce socially desirable
responses to questionnaires. Survey researchers should assure respondents that their
answers are anonymous, reinforce that the items have no right or wrong answers,
emphasize that people hold different opinions about the issues addressed in the
questionnaire, and encourage respondents to answer as honestly as possible. Para-
doxically, socially desirable responding remains an issue under anonymous condi-
tions when there is no one to impress (Mick 1996).

Another remedy is to allow respondents to report on the external world rather than
answering questions about themselves. The solution is to ask indirect questions in
the neutral third-person form that are not affected by the social desirability bias. This
approach is based on the assumption that respondents project their opinion onto
others and consequently give more honest answers, an assumption that Fisher (1993)
demonstrates empirically. In addition, the social distance between interviewer and
respondent should be reduced (Nederhof 1985), and socially sensitive questions
should be eliminated or placed at the end of the questionnaire to avoid carry-over
effects (Baumgartner and Steenkamp 2006).

Finally, a third way to deal with a social desirability bias is through randomized
response techniques (e.g., De Jong et al. 2010, 2015; Himmelfarb and Lickteig 1982;
Warner 1965). In this approach, respondents are asked a sensitive question (e.g.,
“Are you willing to pay higher prices for sustainable products?”) with response
options of “yes” and “no.” Prior to answering the question, they flip a coin and adapt
their answers following the outcome of the coin flip. If the coin flip returns “heads,”
respondents should answer the question with “no” regardless of whether they truly
engaged in the questioned behavior. However, if the flip returns “tails,” respondents
should answer the question truthfully with “yes” or “no.” Since investigators cannot
see the outcome of the coin flip, they cannot tell whether a particular “no” response
denotes a negative answer that reveals the respondent’s true attitude or a coin flip that
has come up heads (or both). Note that in this simplistic illustration, only the socially
less desirable answer (i.e., “no”) is concealed (De Jong et al. (2010) describe more
advanced designs). In theory, this technique should counteract a social desirability
bias. However, initial empirical evidence indicates that randomized response tech-
niques can also deliver worse results than directly asking participants (Holbrook and
Krosnick 2010; John et al. 2018).

Statistical remedies. The literature offers two main approaches to check or control
for social desirability: (1) including a measured latent factor capturing social desir-
ability in the empirical model (e.g., Podsakoff et al. 2003) or (2) correlating separate
survey measures with a measured social desirability score (Steenkamp et al. (2010)
develop a systematic process to check for social desirability concerns). The latter
approach demonstrates whether a social desirability bias likely affects the constructs
in the study and the first approach is intended to control for social desirability in
empirical models. However, both approaches require the investigator to measure the
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social desirability construct. To do so, literature suggests relying on Paulhus’s (2002)
Balanced Inventory of Desirable Responding (e.g., Steenkamp et al. 2010).

Response Styles
Response styles lead to a distortion of the sample’s covariance structure that arises
because, regardless of the question content, respondents favor certain response
categories (e.g., Van Rosmalen et al. 2010). The most frequently discussed response
styles are respondents’ tendency to select specific subsets of response options such
as disproportionately favoring the positive side of a response scale (acquiescence
response style, or yay-saying).

Response styles can compromise the comparability of the data: the same
responses can have different meanings for different respondents. Participants may
display different response styles between countries (e.g., Tellis and Chandrasekaran
2010) or between different modes of data collection. Response style biases are
higher in telephone interviews than in written and online surveys (Weijters et al.
2008). Response styles thus undermine the ability to validly compare mean values.
Furthermore, response styles can also influence construct variances and correlations
between constructs. For instance, researchers found that response styles account for
8% of construct variance in their sample and for 27% of the variance in the observed
correlations (Baumgartner and Steenkamp 2001).

However, despite their potentially biasing effects, response styles have not
received much attention in the marketing literature. In the following, we discuss
two common groupings of response styles: (1) acquiescence, disacquiescence, and
net acquiescence and (2) extreme responding, midpoint responding, and response
range.

Acquiescence, disacquiescence, and net acquiescence. Acquiescence, also called
yay-saying, is the respondent’s tendency to agree with items regardless of their
content, whereas disacquiescence, or nay-saying, is the respondent’s tendency to
disagree with items regardless of their question content (Baumgartner and
Steenkamp 2001; Tellis and Chandrasekaran 2010). Net acquiescence is acquies-
cence minus disacquiescence and reflects the tendency to show greater yay- than
nay-saying (Baumgartner and Steenkamp 2001; Tellis and Chandrasekaran 2010).
However, many researchers do not distinguish between acquiescence and net acqui-
escence (e.g., Greenleaf (1992) uses the label acquiescence but actually measures net
acquiescence). We focus on acquiescence and disacquiescence.

Acquiescence poses problems for segmentation research because it can lead to the
emergence of clusters that reflect response styles rather than attitudinal information
(Greenleaf 1992). In addition, it may falsely heighten correlations among items that
are worded in the same direction (Winkler et al. 1982). Remarkably, although
acquiescence and disacquiescence appear to be opposites, empirical evidence dem-
onstrates only small- to medium-sized negative correlations between them
(Baumgartner and Steenkamp 2001: r ¼ �0.16; Tellis and Chandrasekaran 2010:
r ¼ �0.31).

Dispositional (e.g., personality traits) and situational factors (e.g., item ambigu-
ity) may explain why the three response styles occur (Knowles and Condon 1999).
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Regarding dispositional factors, research has demonstrated inconsistent results for
demographic variables (particularly gender). For instance, research shows that
respondents with an acquiescence response style tend to be extroverted, impulsive,
emotional, and undercontrolled. Respondents prone to a disacquiescence response
style are likely to be introverted, cautious, rational, and overcontrolled. Acquies-
cence may be evoked by a desire to please, to be agreeable in social situations, or to
display deference to the researcher (e.g., Krosnick 1999).

However, findings on the participants’ cultural backgrounds are more consistent.
Respondents from countries scoring high on collectivism (uncertainty avoidance)
tend to display more (less) acquiescence in their response style (Tellis and
Chandrasekaran 2010).

Regarding situational factors, participants are more likely to display an acquies-
cence response style if response categories are fully labeled (Weijters et al. 2010a), if
response categories contain a neutral point (Weijters et al. 2010a), or if items are
ambiguous (Podsakoff et al. 2003). Similarly, the personal situation of the participant
can provoke an acquiescence response style. An acquiescence response style is
likely to occur if participants read items uncritically (Messick 2012), if they expe-
rience time pressure (Baumgartner and Steenkamp 2006), or if their cognitive
capabilities are exceeded (e.g., items at the end of a long questionnaire) (MacKenzie
and Podsakoff 2012).

Extreme responding, midpoint responding, and response range. A respondent
with an extreme response style tends to favor the most extreme response categories
regardless of the item content. Midpoint responding refers to the tendency to use the
middle-scale category regardless of the question content. Response range refers to
the tendency to use a wide or narrow range of response categories around the mean
response (Baumgartner and Steenkamp 2001).

Thus far, few conceptual and empirical investigations have focused on midpoint
responding and response range. Current knowledge suggests that response ranges
(and also an extreme response style) may relate to the characteristics of the respon-
dent; they concern rigidity, intolerance of ambiguity, and dogmatism and are asso-
ciated with higher levels of anxiety and possibly deviant behavior (Hamilton 1968).

In the last few years, investigators have become increasingly interested in
extreme responding, with research linking it to personality (Cabooter et al. 2012;
Naemi et al. 2009), scale format (Weijters et al. 2020), language (De Langhe et al.
2011; Weijters et al. 2013), and culture (De Jong et al. 2008) – although these papers
do not necessarily use the term extreme response style (e.g., De Langhe et al. (2011)
talk about “anchor contraction”). In addition, a recent literature stream on item
response trees (IRTree) models investigated extreme (and midpoint) responding
(e.g., Böckenholt 2012, 2017; Zettler et al. 2015).

Procedural remedies. Thus far, few procedural remedies have been identified for
addressing biases from response styles. To the best of our knowledge, the literature
provides only initial remedies for midpoint responding and for an acquiescence and a
disacquiescence response style.

First, to address midpoint responding, some authors suggest eliminating the
middle response category or including a “don’t know” category (Baumgartner and
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Steenkamp 2006; Schuman and Presser 1996). Second, since acquiescence is more
likely for positively worded items and disacquiescence for negatively worded items
(Baumgartner and Steenkamp 2001), investigators suggest introducing doubly bal-
anced scales (Tellis and Chandrasekaran 2010). However, researchers need to
carefully evaluate this option since negatively worded items may lead to mis-
response (Weijters et al. 2010b; section “Decisions About the Question Wording”).

Finally, response patterns are often problematic in international market research.
Our recommendation is that researchers should make sure that all respondents
receive a similar response format with equally familiar labels, preferably in their
native language.

Statistical remedies. To investigate whether response styles likely bias the survey
results, investigators should correlate the focal constructs of interest with measures
of the different response styles – that is, use a measured response style technique. If
this analysis does not demonstrate potential biases, then the investigators should
proceed as planned. However, if potential threats to validity emerge, the authors
should include measures of different response styles in their models (e.g., Weijters
et al. 2008).

The literature proposes various ways in which response styles can be measured.
For example, response styles can be calculated on the basis of items that are included
in the survey – it is not necessary to add items to specifically measure response styles
(Weijters et al. 2008, 2010b; Tellis and Chandrasekaran 2010). Alternatively, a
latent-class model can identify different response styles (Rosmalen et al. 2010).

Sources of Systematic Errors in Survey Research: Representation
Errors

Non-sampling Bias
Conceptualization. Investigators in many research projects are interested in gener-
alizing findings to an overall population. Therefore, representativeness of the sample
is important. That is, the sample needs to display approximately the same charac-
teristics as the overarching population. However, as Fig. 3 illustrates, two biases may
threaten representativeness: non-sampling bias and nonresponse bias. Non-sampling
bias refers to the distortion of the sample’s covariance structure that arises because
the population is not adequately represented in the original sample (i.e., the sample
that received the questionnaire does not resemble the overall population). Non-
response bias is a distortion of the sample’s covariance structure that arises because
the structure of the final sample does not correspond with the structure of the original
sample. We discuss non-sampling bias and nonresponse bias in section “Non-
response Bias.”

Whether non-sampling bias represents an important threat to a study depends on
the research objective. If the researcher is interested in making generalizations to a
particular target group, then non-sampling bias represents a severe threat. Thus, in
the language of experimental research, if the research objective focuses on external
validity, representative heterogeneous samples are required. However, if the
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researcher is interested in testing the veracity of proposed theoretical effects, non-
sampling bias is a lesser issue. Stated differently, when the emphasis lies on internal
validity, homogeneous samples can be adequate.

Short, Ketchen, and Palmer (2002) study the effects of non-sampling bias
systematically. They link CEO duality, in which a firm’s CEO concurrently chairs
the board of directors, to a company’s return on equity. The authors draw on
different sampling frames, for which they observe substantially different effects:
no effects in two cases, a positive effect in one case, and a negative effect in one
case.

While sampling biases can have important consequences for research findings,
the issue of sampling is often not systematically addressed. A review of studies
published in leading management journals revealed that less than 40% of the studies
included a discussion of representativeness (Short et al. 2002). Similarly, a review of
marketing studies found that only 55% used an explicit sampling frame (Hulland
et al. 2018). Finally, an important finding is that in general, samples chosen in social
science are biased toward Western, educated, industrialized, rich, and democratized
countries (Henrich et al. 2010).

Reasons for occurrence. Like resource constraints, the lack of suitable sampling
frames can be a principal reason for non-sampling bias. For instance, while past
consumer research could rely on telephone books for sampling frames, telephone
books no longer validly resemble the population of interest (Iacobucci and Churchill
2010).

Similarly, for organizational studies, identification of adequate sampling frames
can be challenging. For example, companies can be classified along numerous
criteria (McKelvey 1975). In addition, the question arises regarding the organiza-
tional level at which the study should be conducted. A focus on strategic business
units or product groups may present additional challenges for identifying adequate
sampling frames (Sudman and Blair 1999).

o

o
o

o
o

o

o

o

Objects Original
Sample

Final
SamplePopulation

Non-
response

bias

Non-
sampling

bias

Modeling
opportunities

Testing
strategies

Test for structural
equality of population
and original sample

Sample weights
Job stress as control
Response time as control

Test for structural equality of
final sample and original sample

Comparing incentivized
vs. non-incentivezed response

Comparing early vs.
late responders

Heckman selection
models

Types of
bias

Fig. 3 Illustration of non-sampling and nonresponse bias. (Adapted from Homburg and Krohmer
2008)
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Procedural remedies. The only procedural remedy is to base the sample on a
sampling frame that is representative of the overall population. However, as
mentioned, various reasons may obstruct knowledge of the overall population.
Investigators may rely on sampling frames provided by data bases (e.g.,
COMPUSTAT), commercial mailing lists (e.g., Heide et al. 2014), or releases
from Federal Statistical Offices regarding industry compositions (e.g., Vomberg
et al. 2020). Nexis Uni (previously LexisNexis) may also serve to define the
population for a study (Homburg et al. 2020). Nexis Uni has the advantage of
including private companies, which are common for the business-to-business
sector.

Statistical remedies. Statistical remedies can comprise methods to establish and to
enhance representativeness. First, researchers can establish representativeness of
their sample by comparing the structural equivalence of the original sample and
the population (e.g., Vomberg et al. 2020). For instance, a χ2 test may demonstrate
the representativeness of the sample (Homburg et al. 2020).

Even if the distribution in the population is not known, researchers may compare
the composition of two samples. For instance, Homburg et al. (2015b) compared the
structural equivalence of samples obtained in two waves of data collection (years
1996 and 2013) in terms of industry sectors, sales volume, and number of
employees.

Second, researchers may rely on Heckman selection models to control for non-
sampling bias (Vomberg et al. 2020). Certo et al. (2016) provide a detailed discus-
sion of Heckman selection models in the context of strategic management and also
provide Stata code. Third, researchers may rely on sampling weights to enable the
generalizability of their findings (Andreß et al. 2013; McElheran 2015; Raval 2020).

Non-response Bias
Conceptualization. In contrast to non-sampling bias, which refers to structural
differences between the population and the original sample, non-response bias refers
to structural differences between the original and the final sample (Fig. 3). Non-
response bias may result from participants’ failure to answer the survey (i.e., unit
nonresponse) or from return of incomplete questionnaires (i.e., item nonresponse)
(Klarmann 2008).

Analysis of reported response rates from leading management and organizational
journals for the years 1975, 1985, and 1995 showed that the average response rate
reported in these journals was 55.6% (with a large standard deviation of 19.7%)
(Baruch 1999). However, responses have declined substantially over time – a trend
that has been observed in various settings such as household studies (De Heer and
De Leeuw 2002) or online surveys (Cook et al. 2000). Since the average US
consumer receives more than 550 unsolicited surveys per year (compared with 50
to 100 for Germany, the UK, or France) (Iacobucci and Churchill 2010, p. 192),
“oversampling” likely (partly) explains the dramatic reduction in response rates
since Baruch’s study. Today, response rates over 20% in organizational studies
constitute the exception (Heide et al. 2007, 2014) and response rates around 10%
represent the rule (Klarmann 2008).
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In addition, response rates differ substantially between target groups. Top man-
agement studies in particular typically yield low response rates (Anseel et al. 2010).

However, participant drop-out does not necessarily threaten the results of a study.
Non-response bias is a threat only when the reason for drop-out is related to the
survey content (e.g., customers take part in a customer satisfaction survey depending
on their satisfaction levels, or people with less discretionary time are less satisfied
and less likely to respond to a satisfaction survey) and when sources that positively
and negatively relate to survey content are not balanced (e.g., only unsatisfied
customers do not reply in a customer satisfaction survey) (Thompson and Surface
2007).

Reasons for occurrence. Unit non-response is typically the result of respondents’
refusal to participate in a survey. A review of factors that may drive unit non-
response revealed personal factors, organizational factors, and survey-related factors
(Klarmann 2008):

• Personal factors: Personal attitudes toward the survey (e.g., Helgeson et al. 2002;
Rogelberg et al. 2001), involvement with the research topic (e.g., Groves et al.
2004), authorization (e.g., Tomaskovic-Devey et al. 1994; Gupta et al. 2000), and
demographic criteria (e.g., Gannon et al. 1971; Gupta et al. 2000) have a strong
impact on response rates.

• Organizational factors: Organizational factors such as industry profitability,
dependence (i.e., subsidiary), and company size also influence the response rate
(Tomaskovic-Devey et al. 1994).

• Survey-related factors: Number of contacts with participants (i.e., pre-notifica-
tions and reminder) (e.g., Yu and Cooper 1983), personalization of the survey
(Yu and Cooper 1983), incentives (Church 1993; Yu and Cooper 1983;
Yammarino et al. 1991), and length of the questionnaire (Yammarino et al.
1991) affect respondents’ decisions to participate.

Procedural remedies. In the literature, four measures are discussed to diminish
unit non-response bias (e.g., Klarmann 2008; Rogelberg and Stanton 2007; Anseel et
al. 2010 for an in-depth review and evaluation of which techniques are effective for a
particular target group):

• Activities that increase the opportunity to participate in the survey: These mea-
sures include (1) a deadline that can be determined by the participant (e.g., have
the survey run for sufficient time so that vacation time does not impede response),
(2) reminder notes, and (3) different modes of participation (e.g., written, online,
per telephone)

• Activities that emphasize the importance of the survey: Emphasis can be achieved
by (1) pre-notifying participants personally that they will receive a survey in the
future, (2) reflecting participants’ interests (e.g., an engaging title), (3) informing
the participants about the survey goals.

• Activities that decrease the perceived costs of the participation: Researchers
should (1) manage survey length and (2) carefully consider the survey design
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• Activities that raise the perceived utility of participation: Researchers may pro-
vide incentives to participants. Common incentives in business-to-business con-
texts include social incentives (e.g., researchers donate of 10–15€ per participant
for a social cause; Vomberg et al. 2020) and reports which outline the study results
or benchmark a firm to sample averages; the latter two are more suitable incen-
tives if participants are interested in the survey content. In business-to-consumer
contexts payments (e.g., 5€ per participant; Homburg et al. 2019b), advance
incentives (e.g., small gift included with the survey such as a pen), or a raffle
(e.g., ten randomly chosen participants win a gift coupon from Amazon.com)
represent commonly selected incentives. Thereby, the former two are likely
effective even if participants are not involved with the survey content.

Statistical remedies. Researchers can use several different approaches to detect
and to address a potential nonresponse bias (Rogelberg and Stanton 2007;
Klarmann 2008). To establish that the final sample resembles the original sample,
investigators can conduct a χ2 goodness-of-fit test (Homburg et al. 2012b). If
incentives are used for only a subset of respondents, then investigators could
compare the answers of incentivized to non-incentivized participants. Researchers
can also conduct follow-up interviews with non-respondents using a short version
of the questionnaire (i.e., focal constructs) to determine the reasons for non-response
(e.g., Groves 2006; Homburg et al. 2007). Finally, if researchers suspect that factors
like job stress influence a participant’s likelihood to respond, then they should also
measure such variables and add them as control variables in their statistical models
(Homburg et al. 2010).

Survey Research Process

In this section, we outline the general phases of survey research. Figure 4 shows that
the typical survey research process starts with selection of research variables and
ends with data analysis. Since we focus on the design of survey research in this
section, we discuss questionnaire design in greater detail and comment only briefly
on issues such as data analysis.

Selection of Research Variables

Which Relationships Are of Particular Interest?
In the first stage, the most important question is which relationships should be
investigated. The answer is obviously determined by the research question the
investigator wants to address. For instance, researchers might be interested in the
role of formal and informal organizational elements for reacquiring customers
(Vomberg et al. 2020). In this case, their conceptual model could contain formal
reacquisition policies and an informal failure-tolerant organizational culture (Fig. 5).
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Importantly, the identification of variables requires familiarity with the
research topic and is informed by prior research, conceptual considerations, or,
for instance, in-depth interviews with practitioners. The conceptual model should

1. Selection of research variables

2. Selection of survey method

3. Questionnaire design

4. Data collection 

5. Measurement evaluation 

6. Data analysis

Phase Illustrative questions

How can the results be illustrated?

Which relationships are of particular interest?

How can data be collected in an onine context?

Should data be collected personally, by telephone,
in written form or as an online survey?

How are the examined phenomena related?

To what extend do the survey questions measure
What they are supposed to measure?

How can we achieve a high response rate?

What is the ideal structure of the sample?
How large should the sample be?

In what order should the questions be asked?

What questions should be asked?
How should the questions be worded?

Fig. 4 Phases of the typical survey process
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Fig. 5 Illustrative conceptual model (Vomberg et al. 2020, p. 121, reproduced with the kind
permission of the publisher)
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be as coherent and complete as possible, encompassing potential mediating and/
or moderating effects if they are of interest for the subsequent analysis (e.g.,
Koschate-Fischer and Schwille (chapter ▶ “Mediation Analysis in Experimental
Research”) in this handbook).

Selection of Survey Method

Should Data be Collected Personally, by Telephone, in Written Form, or
as an Online Survey?
We discuss data collection modes only briefly because our focus is on written and
online surveys. The personal interview takes place face-to-face between the inter-
viewer and the interviewee. The interviewer reads out the items on the questionnaire
to the interviewees and collects their answers. The telephone interview can be a
short, cold-call interview or a planned interview. The written survey usually involves
sending questionnaires to the respondent by mail, with the respondent then returning
the completed questionnaire. The online survey can be conducted in various ways –
as a questionnaire attached to an e-mail or as a link provided on a website, in an
e-mail, or in a QR-code.

Table 1 which is based on Homburg (2020) systematically compares
the appropriateness of the four survey methods with regard to the (1) suitability
for the object of study, (2) extent of data, (3) quality of data, and (4) length and costs
of the project. These general evaluations may differ according to the survey context.
In addition, the four forms of survey method likely differ in the sources of biases that
may relate with them. Usually, personal interviews and telephone surveys are more
prone to social desirability bias or acquiescence compared to self-administered
questionnaires (i.e., written and online surveys) (Krosnick 1999; MacKenzie and
Podsakoff 2012). In telephone interviews, midpoint response styles are less common
than in mail or online surveys. In addition, telephone surveys tend toward acquies-
cence. Compared to mail surveys, online surveys display fewer disacquiescence and
extreme response styles (Weijters et al. 2008; section “Response Styles”).

How Can Data Be Collected in an Online Context?
Current trends in consumer research suggest that researchers increasingly rely on
crowdsourcing platforms to obtain convenient and inexpensive samples. Mechanical
Turk (MTurk), which was launched by Amazon in 2005, currently is the prevalent
option. On MTurk, researchers act as employers and hire and compensate workers for
participation in surveys, giving MTurk several likely advantages. Since incentives are
comparably low on MTurk, researchers can conduct studies at lower costs without
necessarily compromising data quality. In addition, participants likely have strong
incentives to fill in the survey with due diligence, since they receive compensation
only after passing screening and attention questions. Finally, MTurk allows researchers
to implement their studies quickly (e.g., Chandler and Paolacci 2017; Levay et al. 2016).

However, skepticism regarding the use of MTurk is increasing. First, while
MTurk samples are likely more heterogeneous than student samples, they are not
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necessarily representative of the overall consumer population. Second, participants
on MTurk can be experienced survey takers who answer differently than less
experienced survey respondents. Third, participants on MTurk can misrepresent
themselves to participate in attractive studies with high payouts. However, misrep-
resentation is a general threat to online research (Goodman et al. 2013; Goodman
and Paolacci 2017; Hulland and Miller 2018; Wessling et al. 2017).

TurkPrime and Prolific Academic (ProA) have recently emerged as alternatives to
MTurk. TurkPrime is a website that utilizes MTurk but claims to overcome potential
disadvantages of MTurk (e.g., participant misrepresentation) (Litman et al. 2017).

Table 1 Comparison of different survey methods

Criteria
Standardized
verbal survey

Standardized
telephone
survey

Standardized
written
survey

Standardized
online survey

Suitability for the object of study

Possibility to explain a
complex issue

Very good Good Rather low Rather low

Possibility to use complex
scales and filter questions
in the questionnaire

Only when
computer-
aided

Only when
computer-
aided

Low Very good

Possibility to demonstrate
trial product samples

Very good Rather low Rather low Rather low

Possibility to include
multimedia (e.g., video and
sound)

Rather good Medium Low Very good

Extent of data

Subjective length of the
survey evaluated by the
interviewee

Short Medium Long Very long

Possibility to question a
large sample

Low Medium Very high High

Response rate High Medium Low Low

Risk of aborting the
interview

Low Medium High Very high

Quality of data

Possibility of inquiries
when comprehension
problems occur

Very good Good Very low Very low

Possibility of distortion due
to the social interaction
with the interviewer

Very high High None None

Possibility to modify the
research instruments during
the field phase

Very good Good Low Good

Length and costs of the project

Length of the field phase Medium Short Long Long

Costs Very high High Low Low
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Graduate students from Oxford and Sheffield Universities launched ProA (http://
www.prolific.co) in 2014. ProA provides several demographic details about its
participant pool. Peer et al. (2017) who compare ProA with MTurk note that ProA
participants are less experienced with research paradigms and provide more honest
answers than MTurk participants. Marketing researchers increasingly rely on ProA
for their studies (e.g., Castelo et al. 2019; Hagen 2020).

Qualtrics, Survey Sampling, Inc. (SSI), or Critical Mix, whose samples are likely
more representative than MTurk samples, are other potential ways to collect data.
However, these platforms are also more expensive. Finally, for short surveys (up to
10 questions) Google Surveys may offer a valid option. On Google Surveys,
respondents take part because they want to read an article, lowering the likelihood
of misrepresentation threats (Wessling et al. 2017; Hulland and Miller 2018).

Questionnaire Design

The design of the questionnaire usually represents the crucial stage in the collection
of survey data. Mistakes that occur in this stage are normally hard to revise in later
stages. Figure 6 outlines the phases of questionnaire design and presents examples of
questions during the different phases.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

How can scientific terms be translated into the language of the respondents?
How can the unambigousness of questions be secured?

Are open-ended or closed questions more appropriate?
For closed questions, what answer options should be provided?

Are the questions neutrally worded?

Do the respondents understand the questions?
Do the respondents go through specific cognitive patterns?

Does the questionnaire have a professional appearance?
Does the format of the questionnaire lead to easy completion?

Does the sequence of questions create a pattern of certain answers?
Do the introductory questions motivate respondents participate in the survey?
Does the questionnaire seem structured?

What questions about a certain phenomenon should be asked?
Are the respondents sufficiently knowledgeable to answer the questions?
Is it better to ask one or several questions about a certain phenamenon?

What are the key phenomena that should be addressed in the survey?

Pretest of the
questionnaire

Decision about the
survey layout

Decision about the
question sequence

Decision about the
question wording

Decision about the
question format

Decision about the
question content

Decision about the
survey content What phenomena should be measured for control purposes?

How many phenomena can be included?

Fig. 6 Phases of the typical questionnaire design process
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Decision About the Survey Content
Three fundamental questions determine survey content: What key phenomena
should the survey address? What phenomena should be measured for control
purposes? How many phenomena can be included in the survey?

What Are the Key Phenomena that Should Be Addressed in the Survey?
The key phenomena are provided by the research questions and the formulated
hypotheses. Drawing on the conceptual framework (section “Selection of Research
Variables”), investigators decide on the phenomena/constructs that should be
included in the survey. In our example (Fig. 5), investigators would include variables
that capture formal reacquisition policies, failure tolerance, and reacquisition per-
formance. If financial performance cannot be obtained from archival data bases, then
measures of financial performance should also be collected.

What Phenomena Should Be Measured for Control Purposes?
Besides including variables for substantive reasons, researchers should include
theoretically motivated control variables to reduce “noise” in the independent and
dependent variables. More importantly, however, survey researchers rely on control
variables to account for non-randomness in their data. In contrast to experimental
data, survey data are a form of observational data, and thus effects observed from
survey data might be correlational and not causal in nature. To increase survey
researchers’ ability to infer causality, control variables serve to rule out rival
explanations (section “Endogeneity in Survey Research”). For instance, in our
example (Fig. 5), customer orientation may represent an important control variable.
Theory suggests that customer-oriented companies might be more successful in
winning customers back (i.e., customer orientation may affect the dependent vari-
able) and also are more likely to have formal reacquisition policies in place (i.e.,
customer orientation may influence the independent variable). However, additional
variables have been included to account for further potential differences.

To systematically collect control variables, researchers should review prior litera-
ture, follow theoretical considerations, and rely on their own plausibility considerations.
They should then store the identified variables in a long list, such as an Excel sheet
containing potentially relevant variables. However, in many cases, researchers end up
with a list that captures toomany variables to be assessed in one questionnaire and have
tomake a trade-off between questionnaire length and the completeness of the variables.

How Many Phenomena Can Be Included?
Consideration of questionnaire length is essential to reducing potential biases.
Excessive length of the questionnaire can lead to respondent fatigue, resulting in
careless and biased responses (MacKenzie and Podsakoff 2012) and contributing to
an acquiescence response style (section “Response Styles”). In addition, long ques-
tionnaires can lead to survey non-response (section “Non-response Bias”), which
may threaten the representativeness of the survey or lead to sample sizes that are too
small for statistical analysis. As rules of thumb, we recommended the following:
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• Telephone interview: 20–30 mins (planned interview; less for a cold call)
• Pop-up online survey: 25 questions
• Written survey: 100 questions

Researchers should also carefully evaluate options discussed in section “Sources of
Systematic Errors in Survey Research: Measurement Errors” on how to control for
biasing effects, such as using dedicated variables to account for potential CMB through
the measured latent factor approach. However, this approach requires that the ques-
tionnaire becomes longer and that other substantially important variables be dropped
from the questionnaire. Therefore, when designing their surveys, researchers need to
critically reflect which biases are likely to present threats to the validity of their findings.

However, we point out that these rules of thumb are general, as situational factors
also influence the length of questionnaires. For instance, questionnaires for high-level
corporate decisionmakers need to be shorter, whereas surveys of lower-level employees
might be longer. In addition, whether participants are willing to answer longer ques-
tionnaires depends heavily on their involvement with the research topic. If participants
consider the survey interesting, they may be willing to answer longer questionnaires
(section “Nonresponse Bias” discusses measures to stimulate involvement).

Decisions About the Question Content
A next critical step is to decide on the question content. Typical questions in this step
are: What questions about a certain phenomenon should be asked? Are the respon-
dents sufficiently knowledgeable to answer the questions? Is it better to ask one
question or more about a certain phenomenon? Which questions should be selected?

What Questions about a Certain Phenomenon Should Be Asked?
To determine which questions are appropriate for certain phenomena, researchers
first need to conceptually define their constructs of interest. These definitions
logically precede the operationalization of the construct – that is, the process of
coming up with items for their measurement.

The next important decision is whether to rely on new or established scales to
measure the constructs. For many constructs, various established scales already exist
in the literature. Researchers can find scales in the following ways:

• Manuals such as the Handbook of Marketing Scales (Bearden and Netemeyer
1999) provide an overview of established scales.

• The website inn.theorizeit.org allows online search for established measurement
scales

• Articles published in leading journals typically provide the items for the scales
they used (e.g., Homburg et al. 2011).

Researchers can systematically collect these established questions with appropri-
ate references in an Excel sheet.

An important advantage of relying on existing scales is that they enjoy wide
acceptance in the academic community because prior research has rigorously
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demonstrated their psychometric properties (e.g., Homburg et al. 2015a). In addition,
development of original questions can sometimes lead to problems in evaluating
their reliability and validity in later stages (section “Measurement Evaluation”), as
even after rigorous pretesting, newly developed scales may not display required
psychometric properties in this handbook).

However, a middle way is possible: researchers can combine newly developed
items with established items to better fit their research context. In addition,
researchers can adapt established items to the context of their study. For instance,
Kumar et al. (1995) relied on established items from Price and Mueller (1986) but
adapted them to context of their study (e.g., established item: “To what extent are
you fairly rewarded for the amount of effort you put forth” vs. adapted item: “How
fair are your firm’s outcomes and earnings compared to the contributions we make to
this supplier’s marketing effort”).

Are the Respondents Sufficiently Knowledgeable to Answer the Questions?
When selecting questions for the constructs of interest, researchers need to have their
target respondent characteristics in mind (e.g., educational background). Researchers
should especially evaluate whether respondents are sufficiently knowledgeable to
respond to the questions – a pivotal concern in key informant studies (section “Key
Informant Bias”). If respondents lack the ability to answer the particular questions,
they may take on an acquiescence response style (section “Response Styles”).

Is it Better to Ask One Question or Several about a Certain Phenomenon?
When deciding about the questions’ content, researchers need to determine the
number of questions they intend to ask per variable because adding redundant or
unnecessary questions increases the questionnaire’s length, perhaps squeezing out
questions to collect information on other constructs or evoking the respondent’s
refusal to participate in the survey (Bergkvist and Rossiter 2007). However, relying
on too few questions may result in problems regarding the reliability or validity of
the measurement (section “Reliability and Validity: Fundamentals”).

In the marketing literature, debate is ongoing as to whether and when single items
can be used (Bergkvist and Rossiter 2007; Diamantopoulos et al. 2012). Usually,
single items are sufficient when a construct can be precisely captured (e.g., demo-
graphic information, revenues). However, in the case of less concrete constructs
(e.g., customer satisfaction, company culture, and leadership styles) multiple-item
scales offer several benefits. First, multiple-item scales help to control random
measurement error. Addition of further items to the measurement of one construct
typically increases the overall reliability of the scale (section “Measurement The-
ory”). Second, multiple-item measures are more likely to capture all facets of the
construct of interest (Baumgartner and Homburg 1996). For instance, the construct
transformational leadership, which captures leader behaviors that make followers
more aware of the importance of their job and that inspire employees to strive for the
benefit of the company, is composed of facets such as “identifying and articulating a
vision,” “providing an appropriate model,” or intellectually stimulating employees,
thus requiring multiple items for its measurement (Podsakoff et al. 1990). Third,
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multiple-item measures enable evaluation of the psychometrics properties for the
respective scales (section “Measurement Evaluation,” in this handbook).

In the following, we provide analytical evidence that increasing the number
of items can enhance the overall reliability of a construct (Moosbrugger 2008).
Equation 3 formally defines the reliability of a construct (x) measured with a
single item (e.g., the researcher measures customer satisfaction with a single
question).

Rel xð Þ ¼ Var tð Þ
Var xð Þ ¼

Var tð Þ
Var tþ eð Þ : ð3Þ

The observed variance of the construct x (customer satisfaction) is split into a true
value t and a random error component e. Recall that reliability refers to random but not
to systematic errors (section “Reliability and Validity: Fundamentals”). Therefore, we
do not include a systematic error in Eq. 3. The resulting reliability measure from Eq. 3
ranges from 0 to 1, with larger values indicating higher levels of reliability.

When measuring a construct with multiple items (x1, x2,. . ., xk), the overall
reliability of the scale (e.g., reliability of the overall customer satisfaction measure)
can be calculated according to Eq. 4. For simplicity, Eq. 4 assumes that each
individual item has the same individual reliability Rel(x).

Relk�x ¼ k � Rel xð Þ
1þ k � 1ð Þ � Rel xð Þ : ð4Þ

Table 2 is based on Eq. 4 and demonstrates that the overall reliability of a
construct increases with the number of items. To be more precise, Table 2 demon-
strates the reliability of a scale depending on the number of items and individual
reliability of an item (i.e., Rel(x) ¼ 0.40 and Rel(x) ¼ 0.60). For instance, if an
individual item has a reliability of Rel¼ 0.40 and the researcher uses this single item

Table 2 Illustration of how number of items increases construct reliability

Scale reliability

Individual item reliability

# Items 0.40 0.60

1 0.40 0.60

2 0.57 0.75

3 0.67 0.82

4 0.73 0.86

5 0.77 0.88

6 0.80 0.90

7 0.82 0.91

8 0.84 0.92

9 0.86 0.93

10 0.87 0.94
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to measure a construct, then the overall reliability of the scale is also Rel1 � x¼ 0.40.
However, if the investigator asks five items to measure one construct (i.e., the
questionnaire contains five different questions that all measure customer satisfac-
tion) and each item has an individual reliability of Rel(x) ¼ 0.40, the overall
reliability of the scale increases to Rel5 � x¼ 0.77 – a result that clearly demonstrates
the advantage of using multiple items. In addition, Table 2 demonstrates that scale
reliability does not increase linearly with the number of items (i.e., moving from one
to two items increases scale reliability more than moving from nine to ten items).

Diamantopoulos et al. (2012) replicate the analytical evidence in a simulation
study and demonstrate that in most instances multiple-item scales outperform single-
item scales. Situations in which single items outperform multiple items are not
realistic in applied research, as researchers would not have a priori knowledge
about which item is most adequate in the specific context.

Against these observations, we recommend relying on single items for concrete
constructs (e.g., Carson and Ghosh 2019) but using multiple items for complex
constructs (Diamantopoulos et al. 2012; Hulland et al. 2018). In the case of multiple
items, as a general rule, researchers should select between four to six items (Table 2).
In addition, to avoid reactance from respondents when evaluating similar questions,
in the beginning of the survey researchers should point out the necessity of repeating
similar questions.

Which Questions Should Be Selected?
A final and important decision is which questions should be selected. The domain-
sampling model addresses this question theoretically. The domain-sampling model
postulates that a given construct has a broad universe of possible items, behaviors,
and responses that can serve as its observable markers or indicators (Nunnally 1967).
Relying on concepts from sample selection theory (e.g., the concept of representative-
ness), the domain sampling model proposes that a valid representation of a construct is
achieved when representative items are selected. Representative items can be identified
through random sampling – that is, researchers randomly pick items from their list of
items that could be used to measure the construct. However, when a given domain is
adequately specified (e.g., through prior research or conceptual considerations), the
researcher can deliberately select (rather than sample) a set of items (Little et al. 1999).

Decision About the Question Format
The important issue in this step is whether open-ended or closed questions are more
appropriate, and for closed questions, what answer options should be provided?

Are Open-Ended or Closed Questions More Appropriate?
Open-ended questions allow participants to freely articulate their thoughts and
opinions, while closed questions require participants to choose answers from a
given list. Closed questions can have important advantages particularly for written
and online surveys. First, the meaning of provided answers to closed questions might
be clearer to the researcher than answers to open-ended questions, which likely
require subjective interpretation. Relatedly, many statistical techniques
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(e.g., regression analysis) require quantitative and structured data (however, the
automated analysis of qualitative data is evolving; e.g., Humphreys (chapter
▶ “Automated Text Analysis”) in this handbook). Second, open-ended questions
require great effort on the part of the respondent and may lead to participant refusal.
Third and as a consequence of the aforementioned, researchers typically are able to
ask more closed questions than open-ended questions – an aspect particularly
relevant in organizational studies, for which participants are hard to recruit.

However, open-ended questions offer two potential benefits. First, participants
can provide unusual and spontaneous answers to open-ended questions whereas
their ability to respond is constrained by closed questions – if the investigator’s list of
questions and answer options omits important aspects, participants cannot deliver
insights in this regard. Second, open-ended questions require less in-depth knowl-
edge than closed questions, and participants can provide insights into topics the
investigator has not considered.

However, we question whether these potential benefits arise for written or online
surveys. First, we doubt that in all domains participants can better evaluate than the
investigator what could be relevant for the research question (Schuman and Presser
1981). Second, investigators can rely on pretesting to discover and fix omissions in
their closed questions. Schuman and Presser (1979) demonstrate that answers to
closed and open-ended questions are comparable when closed questions are adapted
to insights from pretests (section “Pre-test of the Questionnaire”).

Our experience mirrors this discussion. We have noted that the quality of answers
to open-ended questions in written surveys tends to be low. Consequently, we
recommend focusing on closed questions in written and online surveys. However,
we recommend that if possible, researchers change scales between dependent and
independent variables to alleviate potential CMB (section “CommonMethod Bias”).
We also recommend including an open-ended question at the end of the question-
naire allowing participants to provide further insights (e.g., “Are there additional
issues you want to address?”).

Relatedly, including an open-ended question has an additional advantage: it
lowers the probability that respondents engage in response substitution, which
occurs when respondents want to express attitudes and beliefs that the researcher
has not asked about. Informing respondents at the beginning of the questionnaire
that they will have an opportunity to express any other thoughts in an open-ended
format can reduce the biasing effects of response substitution (Gal and Rucker
2011).

For Closed Questions, What Answer Options Should Be Provided?
When selecting answer categories for closed questions, researchers have various
options. For instance, closed questions can be multichotomous (e.g., automotive
industry, financial industry, consumer durables), dichotomous (e.g., purchase vs.
no purchase), or measured on a scale (e.g., Likert scale, frequency scale). When a
Likert scale is chosen, a frequently asked question is how many response catego-
ries should be provided. The empirical evidence on this matter demonstrates that
reliability tends to increase with an increasing number of scale options. However,
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the marginal utility also tends to decrease. For instance, the quality of the provided
answers is better for six than for four response categories (Preston and Colman 2000),
and indicators with more response categories tend to display higher reliability (Alwin
and Krosnick 1991). However, for more than seven response categories very few
additional gains are observed. Thus, we recommend relying on five to seven answer
categories.

In addition, participants can adapt their responses to seemingly arbitrary choices of
scale labeling. For instance, Schwarz et al. (1991a) relied on two different labels for the
same scale. In the first case, the scale ranged from 0 (“not at all successful”) to 10
(“extremely successful”). In the second, the anchor values ranged from�5 (“not at all
successful”) to +5 (“extremely successful”). The result was that 34% of the respondents
selected values between�5 and 0 on the scale from�5 to +5, but only 13% chose the
equivalent values between 0 and 5 on a scale from0 to 10. Since such behaviors are hard
to anticipate, this example emphasizes the need for conducting pretests (section “Pretest
of the Questionnaire”).

Decisions about the Question Wording
Ambiguous question formulations can obviously bias the responses to question-
naires. If respondents do not comprehend the question, they cannot provide adequate
information (Baumgartner et al. 2018). Thus, to ensure comprehension, question
wording should be (1) simple, (2) unambiguous, and (3) neutral.

Simplicity is important, as complex items likely encourage respondents to
develop their own idiosyncratic understanding of questions and/or to use biased
response styles. In this regard, researchers need to decide whether to rely on item
reversals. Item reversal can be achieved in two ways (Baumgartner et al. 2018;
Weijters and Baumgartner 2012; Weijters et al. 2009):

• Negations: using “not” (“I see myself as someone who is. . .” talkative vs. not
talkative), affixal negation of adjectives (e.g., dishonest), or using negative
adjectives or adverbs (e.g., seldom) or the negation of a noun with “no.”

• Polar opposite items: e.g., “I enjoy taking chances in buying new products”
versus “I am very cautious in buying new products” or “talkative” versus “quiet.”

We recommend that researchers avoid negations and use polar opposite items
carefully. Reversed items can offer advantages: they can inhibit stylistic responding
(e.g., acquiescence bias; section “Response Styles”), act as cognitive “speed bumps,”
and disrupt non-substantive response behaviors. However, and more pressingly, they
might also lead to respondent confusion, lowering the quality of the collected data (e.g.,
Baumgartner et al. 2018; Weijters et al. 2009; Wong et al. 2003).

Simplicity can also be achieved when investigators

• Use rather short sentences and refrain from pyramiding (e.g., through relative
clauses), as pyramiding or longer sentences can lead to complexity

• Avoid unnecessary variations in the format and structure of the questions
• Translate scientific language into the participants’ language
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• Avoid requiring participants to do computations: for example, instead of directly
asking “how much do you spend on average in a focal supermarket per month,”
investigators should ask two simpler questions (e.g., “how often do you go to the
focal supermarket per month?” and “How much do you spend on average per
shopping trip at the focal supermarket?”)

Unambiguousness also avoids biases. Item ambiguity impairs the respondent’s
ability to comprehend the question’s meaning and clearly undermines the respon-
dent’s ability to provide accurate answers. When respondents are uncertain about
how to respond to the item’s content, systematic response patterns are likely evoked
and respondents are more likely to rely on their own implicit theories.

Strategies to avoid item ambiguity include the use of precise and concise lan-
guage. For instance, universal expressions (e.g., “all,” “always”) or vague quantifiers
(e.g., “often,” “many”) mean different things to different respondents. Thus, expres-
sions such as “I read many books” would be less valid than “I read ten books a year”
(Johnson 2004). Churchill and Iacobucci (2005, p. 248) summarize further aspects
which need to be considered in this regard (e.g., “about” could mean “somewhere
near” or “almost,” “like” distracts the attention of participants to the specific
examples, and answers to the word “often” largely depend on the respondent’s
frame of reference).

Importantly, researchers should use the same words for the same issues. In
addition, they should clearly define terms that respondents might interpret differ-
ently. For instance, in research on customer reacquisition management in business-
to-business markets, in-depth interviews revealed that customer defections can be
defined differently. For some companies, only customers who completely stopped
purchasing qualified as defected. For other companies, customers that had lowered
their purchasing volume represented defectors. Thus, in designing a subsequent
questionnaire, the researchers defined customer defection in the beginning of the
questionnaire to avoid ambiguity (Homburg et al. 2019a).

Neutrality is also important when formulating questions. To achieve neutrality,
researchers should avoid suggestive formulations and anticipations of answers (e.g.,
“Do you also agree?”). Finally, researchers should avoid loaded words (e.g., market
economy vs. capitalism) that are likely to bias participants’ answers.

Decisions about the Question Sequence

Does the Sequence of Questions Foster a Pattern of Certain Answers?
As noted earlier, participants may form their opinions while answering the question-
naire (section “Psychology of Survey Response”). That is, answers provided to
initial questions may activate information to answer questions at later points in the
questionnaire (Schwarz 2003). Thus, researchers need to avoid generating survey
data that yields only “self-generated validity” (Feldman and Lynch 1988, p. 421).

A prominent example from the field of political science that has been repeatedly
affirmed since 1948 illustrates the effects of question sequence. In this example,
participants were asked two questions:
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• Question A: Do you think the United States should let Communist newspaper
reporters from other countries come in here and send back to their papers the news
as they see it?

• Question B: Do you think a Communist country like Russia should let American
newspaper reporters come in and send back to America the news as they see it?

In randomized experiments, the share of “yes” answers pertaining to Question A
largely depended on the order of the two questions. The group who saw Question A
and then Question B agreed to question Question A in 44% of the cases. However,
the group that was asked in reversed sequence (firstQuestion B then Question A) had
higher agreement with Question A (70% agreement) (Schuman et al. 1983; Schwarz
et al. 1991b report similar examples).

These sequence effects also become important in customer satisfaction surveys. A
central decision in customer satisfaction surveys usually is at which point the
investigator should ask participants to rate their overall level of satisfaction (e.g.,
“Overall, please indicate how satisfied you are with the company”). Should the
rating be solicited before or after asking specific customer satisfaction questions
(e.g., “Please indicate your satisfaction regarding the products,” “Please indicate
your satisfaction regarding the after-sales service”)?

Researchers observed that depending on the sequence, different psychological
processes set in. If overall customer satisfaction is measured at the beginning of
the survey, emotions typically dominate the assessment (e.g., gut feeling). How-
ever, if total customer satisfaction is measured at the end of the survey, the same
question will trigger cognitive rather than emotional processes. Particularly in this
case, the answers to the overall customer satisfaction question will likely depend
on the replies to the specific customer satisfaction responses participants provided
before.

Which order is the most appropriate largely depends on the research context.
Researchers may measure overall customer satisfaction at the beginning (end) of the
questionnaire for low (high) involvement products. As emotions (cognitions) are
likely to be an important factor when purchasing low (high) involvement products, a
more emotional (cognitive) response to overall customer satisfaction might be more
insightful.

The literature discusses some measures researchers can employ to reduce the
effects of question sequence. One approach could be to randomize the question
order, which can easily be achieved in online surveys: researchers present the same
questions in different orders to participants. Although this approach might seem
intuitively appealing, the downside is that it cannot prevent order effects from
occurring on the individual level. In addition, randomization may disrupt the logical
order of the questions. An alternative might be to simply tell respondents that the
order of presentation is random and therefore of no relevance (Krosnick et al. 1990).

The inclusion of buffer questions might also help to reduce sequence effects. For
instance, researchers can include buffer questions between items they expect to
evoke a large sequence effect – a tactic that likely lowers artificial correlations
among items (Weijters et al. 2009).
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Do the Introductory Questions Motivate Respondents to Participate in the
Survey? Does the Questionnaire Seem Structured?
In general, we recommend that researchers start with an interesting opening ques-
tion. This question should motivate participants to take part in the survey, and its
importance increases in light of the declining response rates for questionnaires
(section “Non-sampling Bias”). After the opening question, researchers should
move from general to specific questions and ask sensitive questions later in the
survey. Rapport is established as respondents answer general and nonthreatening
questions early in the survey. Finally, when researchers cannot access different
sources for evaluating independent and dependent variables, they should first assess
the dependent and then the independent variables. Thereby, they lower potential
demand effects (section “Common Method Bias”).

Decisions About the Survey Layout and Pretest of the Questionnaire

Does the Questionnaire Have a Professional Appearance? Does the Format of
the Questionnaire Lead to Easy Completion?
The layout of the questionnaire is a critical success factor. Participants perceive the
questionnaire to represent the net of the asked questions, layout and design, and logical
structure and architecture. All these aspects may affect the effort participants put into
answering the survey and thus affect the likelihood of biases to occur (Presser et al. 2004).

In general, the questionnaire “should look as sharp as your résumé” (Iacobucci and
Churchill 2010, p. 221). A clean appearance signals interest for the topic and also
emphasizes the researcher’s trustworthiness. A questionnaire’s layout may also create
the impression of short processing time and thereby increase response rates, lowering
the threat of non-response bias (section “Non-response Bias”). Finally, the instructions
should be clearly articulated and the question flow should be evident and supportive.

Pretest of the Questionnaire

Do Respondents Understand the Questions? Do Respondents Engage in
Specific Cognitive Patterns?
While textbooks on the development of a survey are plentiful, there are “no silver
bullets of questionnaire design” (Schwarz 2003, p. 593), and even experts struggle to
anticipate all potential difficulties that arise when participants address the survey
questions. Thus, “there is no substitute for in-depth pretesting” (Weijters and
Baumgartner 2012, p. 565) and “all researchers should use pretests prior to running
their main studies” (Hulland et al. 2018, p. 104, emphasis in original).

The goals an investigator may want to achieve when running a pretest are varied
and include the following:

• Identification of ambiguous questions and problems of understanding
• Detection of incompleteness of answer categories
• Identification of potential information gaps of respondents
• Verification of the time required to complete the questionnaire
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• A preliminary indication of validity and reliability of the measurement (but taking
the pretest sample size into account)

Three methods usually pertain to pretests. First, the debriefing method permits pre-
testers to complete the questionnaire and then discuss potential issues (for instance,
online surveys allow participants to make notes that can be discussed afterwards).
Online pretests allow investigators to track pre-tester behaviors, which they can
discuss in debriefing meetings. For instance, they could track response time or employ
eye-tracking software to identify problematic survey sections (Baumgartner et al.
2018). Second, the protocol method allows pre-testers to raise questions when filling
out the questionnaire. Third, the think-aloud method (also referred to as cognitive
interviews) require pre-testers to verbalize their thoughts when filling out the ques-
tionnaire (Ericsson and Simon 1980; Presser et al. 2004; Weijters et al. 2009).

Data Collection

As our focus is on the design aspect of survey research, we do not discuss in detail
various data collection methods but confine our discussion to the importance of sample
structure, sample size, and sample response rate. In this handbook, Bornemann and
Hattula (chapter ▶ “Experiments in Market Research”) provide a more detailed
discussion of sampling procedures.

What Is the Ideal Structure of the Sample?
Sampling designs can be divided into probability and non-probability samples.
Probability samples are random samples. For instance, a simple random sample
assumes that observations are selected by chance from the population. While most
statistical tests assume probability sampling, applied researchers often rely on non-
probability sampling since random samples are often hard to obtain (Short et al.
2002). As already mentioned, in many situations the population of interest is hard to
define (section “Non-sampling Bias”), which limits investigators’ ability to draw
random samples.

Literature distinguishes four principal ways of non-probability sampling. First,
researchers might rely on convenience samples – that is, they select a sample on the
basis of accessibility. Convenience samples are the most typical sampling form in
marketing and management research (Short, Ketchen, and Palmer (Short et al. 2002)
report 42%, and Hulland et al. (2018) report 43%). However, convenience samples
are likely to be unrepresentative of the overall population. Importantly, in consumer
research debate is ongoing about the use of a particular type of convenience sample –
student samples (Peterson 2001).

Second, researchers may apply quota sampling where units are drawn to approx-
imate known proportions found in a population. Third, investigators may rely on
snowball sampling, in which researchers identify a few participants from the
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population of interest and ask them to forward the questionnaire. This technique is
useful when determining the population of interest is highly challenging (e.g., as
when market research focuses on extreme sports). Fourth, sampling may be based on
typicality. Here, researchers do not focus on representative participants but on
participants from whom they expect valuable input. This sampling approach is
often used during pretests (section “Pretest of the Questionnaire”; Iacobucci and
Churchill 2010; Short et al. 2002).

How Large Should the Sample Be?
The question of sample size is hard to answer without considering the specific research
setting.A rule of thumb for regression analysis is to rely on 10 observations per parameter
(Hair et al. 2010). However, in applied research projects, this ratio is usually larger. For
instance, the ratio of sample size to variables could be 70.63 (Short et al. 2002).

Small samples can have important disadvantages. Smaller samples can lead to
less reliable test statistics, as standard errors may increase. In addition, small samples
may limit the types of statistical techniques that can be applied effectively. However,
large samples can also be problematic, as negligible effects might become statisti-
cally significant owing to high statistical power.

Finally and importantly, no clear relationship exists between sample size and the
sample’s representativeness. Opinion polls have revealed that if researchers invest
substantial effort in acquiring large samples, representativeness of the final sample
might suffer. Therefore, sampling should prioritize representativeness over sample
size (Assael and Keon 1982; Krosnick 1999; Rogelberg and Stanton 2007).

How Can we Achieve a High Response Rate?
In section “Non-response Bias,”we discussed several techniques for countering poten-
tial non-response bias. As the same techniques should help to increase the response rate
(Anseel et al. 2010), we do not describe these actions here. However, we note that the
size of a response rate does not indicate the representativeness of a sample. In some
instances, lower response rates can lead to more accurate results than higher response
rates (Visser et al. 1996). Recent evidence confirms this observation and emphasizes
that the assumed positive relationship between response rate and survey quality does
not always hold (The American Association for Public Opinion Research 2016).

Measurement Evaluation

To What Extent Do the Survey Questions Measure What they Are
Supposed to Measure?
After the questionnaires have been returned to the researcher, the quality of their
measurement can be evaluated. In-depth discussions of how survey researchers can
demonstrate the reliability and validity of their constructs appear elsewhere in this
handbook (chapter▶ “Structural EquationModeling” by Baumgartner andWeijters).
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In the following, we briefly mention which statistics researchers typically report to
provide initial guidance. All of the presented techniques require researchers’ use of
multiple-item scales (section “Decisions About the Question Content”).

Researchers can demonstrate the reliability of their constructs by reporting
Cronbach’s alpha and/or composite reliability values (both have threshold values
of >0.70). Both estimate the squared correlation between a construct and an
unweighted sum of its items; composite reliability represents a generalization of
Cronbach’s alpha because it does not assume equal loading across items.

Through confirmatory factory analysis, investigators can demonstrate convergent
and discriminant validity. Convergent validity (which affirms that the items correlate
with other concepts they should be related to) can be established for individual items
by squaring the individual standardized factor loadings (threshold value: >0.40). At
the construct level, researchers calculate the average variance extracted (threshold
value: >0.50) (Baumgartner and Weijters (chapter ▶ “Structural Equation
Modeling”) offer more flexible cut-off values).

Researchers can rely on the Fornell-Larcker criterion (1981) to establish discrim-
inant validity (which affirms the items are uncorrelated with concepts they are not
related to). For each pair of constructs, the square root of the average variance
extracted for each construct needs to exceed the correlation between them.

Data Analysis

How Are the Examined Phenomena Related? How Can the Results Be
Illustrated?
Analysis of the acquired data is the final step in the typical survey research process.
We mention this step only briefly for two reasons. First, important decisions in
survey research precede the statistical analyses. Hence, the careful design of the
questionnaire is a necessary condition for the empirical analysis to yield valid results.
Second, many statistical techniques can be used to analyze survey data and their in-
depth discussions appear in designated method chapters of this handbook: most
commonly, researchers rely on regression analysis (chapter ▶ “Regression Analysis”
by Skiera et al.), structural equation modeling (Baumgartner and Weijters 2017),
partial least squares structural equation modeling (chapter ▶ “Partial Least Squares
Structural Equation Modeling” by Sarstedt et al.), or analysis of variance (chapter
▶ “Analysis of Variance” Landwehr).

Endogeneity in Survey Research

Addressing endogeneity concerns is typically important when investigators rely on
observational data such as survey data (Sande and Ghosh 2018). For instance, the
study of Huang and Sudhir (2021) demonstrates the need for survey researchers to
address endogeneity concerns. Their study shows that not accounting for endo-
geneity leads to an underestimation of the true effect of service satisfaction on
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customer loyalty. Such underestimation likely leads to less than optimal investment
decisions in business practice. While an in-depth discussion of endogeneity is
provided elsewhere in this handbook (chapter ▶ “Dealing with Endogeneity: A
Nontechnical Guide for Marketing Researchers” by Ebbes et al.), we highlight
several aspects that might be particularly important for survey researchers.

Conceptually, endogeneity concerns refer to alternative or rival causal explana-
tions of the findings. Statistically, endogeneity concerns arise if the explanatory
variables correlate with the error terms, for example in regression analyses. Litera-
ture distinguishes three sources of endogeneity: (1) omitted variables, (2) measure-
ment error, and (3) simultaneity (e.g., Cameron and Trivedi 2005; Kennedy 2008;
Rossi 2014).

First, with regard to omitted variables, survey research has an important advan-
tage over secondary data. In principle, survey researchers can rule out omitted
variable bias by including control variables (section “Decision About the Survey
Content”). If researchers are able to identify all potentially omitted variables when
collecting the data, they can estimate a “rich data model,” through which they
directly address endogeneity concerns and meet the “standard recommendation for
limiting omitted variable bias” (Rossi 2014, p. 657). However, although these
endeavors in theory may lower or rule out concerns of omitted variable bias, the
success of a rich data approach depends on the researchers’ ability to identify all
relevant control variables. If all potentially omitted variables cannot be identified or
if such variables cannot be measured, survey researchers can employ the procedures
Ebbes et al. (chapter ▶ “Dealing with Endogeneity: A Nontechnical Guide for
Marketing Researchers”) outline.

Second, while measurement error in the dependent variable is absorbed in the
residual error term, measurement error in the independent variables represents a
principal form of endogeneity (Kennedy 2008; Vomberg and Wies (chapter
▶ “Panel Data Analysis: A Non-technical Introduction for Marketing Researchers”)
in this handbook). If survey researchers rely on multiple-item measures of their
independent variables, they are able to directly evaluate measurement error and
through structural equation modeling can directly rule out such concerns (e.g.,
Grewal et al. 2013; Baumgartner and Weijters (chapter ▶ “Structural Equation
Modeling”) in this handbook).

Measurement error may also arise in the form of biases in surveys. For instance,
CMB (section “Common Method Bias”) or key informant bias (section “Key
Informant Bias”) also lead to correlation between the independent variables and
the residual error term. Therefore, the procedures we outlined in the previous
sections can also serve as ways to account for endogeneity (e.g., procedural remedies
to deal with CMB in section “Common Method Bias”).

Third, simultaneity – for instance, in the formof reverse causality –may affect cross-
sectional survey data. Potential simultaneity concerns should be considered in the
development stage of the questionnaire. In this regard, potential instrumental variables
can be included. For instance, Homburg et al. (2012a) studied the influence of com-
prehensive market performance measurement systems on market knowledge. To alle-
viate simultaneity concerns (i.e., market knowledge drives companies’ use of
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comprehensive market performance measurement systems), the authors relied on an
instrumental variable approach and directly measured an instrumental variable in their
questionnaire.

Conclusion

Surveys are flexible and powerful ways to address research questions. Indeed, in
many situations it is hard to imagine how topics can be studied without directly
asking participants questions. However, effective survey research requires careful
survey design. As respondents usually develop answers to surveys in the course of
completing a survey, investigators must craft their surveys meticulously to avoid
potential biases.

To help researchers construct their surveys, we first outlined the psychology of
survey response and discussed important biases. Awareness of these biases helps
survey researchers develop surveys that are less susceptible to biases. We have also
described the general survey process and discussed important decisions investigators
face in each step, and in Table 3, we connect those insights: we delineate the types of
biases and link these biases to steps in the survey process where researchers can
alleviate these biasing effects.

In closing, we note that many of the issues we discussed arise in other forms of
research. For example, decisions regarding question content and data collection are
equally important for experimental studies (chapter ▶ “Experiments in Market
Research” by Bornemann and Hattula; chapter ▶ “Field Experiments” by Valli
et al.), and our discussion of CMB is applicable when experimental studies measure
mediating variables (chapter ▶ “Mediation Analysis in Experimental Research” by
Koschate-Fischer and Schwille).

Cross-References

▶Analysis of Variance
▶Automated Text Analysis
▶Challenges in Conducting International Market Research
▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶Experiments in Market Research
▶Measuring Customer Satisfaction and Customer Loyalty
▶Mediation Analysis in Experimental Research
▶ Partial Least Squares Structural Equation Modeling
▶Regression Analysis
▶ Structural Equation Modeling
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Abstract

This chapter explains the need to conduct international market research, identifies
the main challenges researchers face when conducting marketing research in
more than one country and provides approaches for addressing these challenges.
The chapter examines the research process from the conceptual design of the
research model to the choice of countries for data collection, the data collection
process itself, and the data analysis and interpretation. Challenges identified
include differentiating between etic and emic concepts, assembling an adequate
research unit, ensuring data collection equivalence, and reducing ethnocentrism
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of the research team. We draw on the extant literature to determine methods that
address these challenges, such as an adapted etic or linked emic approach, to
define the concept of the culti-unit, and to identify prominent approaches to
cultural dimensions and collaborative and iterative translation and statistical
methods for testing equivalence. This chapter provides researchers with the
methods and tools necessary to derive meaningful and sound conclusions from
research designed to guide international marketing activities.

Keywords

International research · Cross-cultural research · Emic/etic constructs · National
indicators · National culture · Data equivalence · Culti-unit · Ethnocentrism ·
Back-translation

Introduction

Multinational companies are increasingly finding major opportunities for expansion
outside their home markets. The transformation of planned economies into market
economies and increasing demand from emerging middle classes in transition
countries present new opportunities for firm growth, and rapid advances in technol-
ogy facilitate access to these markets. As a consequence, many companies generate a
large portion of their sales abroad. For example, the US giant Intel generated more
than 80% of its overall sales in 2014 outside the US, BMW generated 81% of its
sales outside Germany, and Sony generated 72% of its sales outside Japan. In the first
quarter of 2012, Porsche sold more cars in China than in its German home market for
the first time. Many start-up companies today are even “born global,” generating
substantial sales outside their home nations from their founding or soon after (Knight
and Cavusgil 2004).

These developments have important implications for marketing science. Practi-
tioners expect advice about whether marketing knowledge and practices that are
successful in their home markets (such as how to facilitate a firm’s market orientation,
how consumers make purchasing decisions, and how promotion messages work) work
in other nations (Katsikeas et al. 2006), as some highly successful companies (e.g.,
Disney with Disneyland Paris and Walmart in Germany) have experienced problems
and even failures in expanding outside their home markets. These blunders have been
traced back to failure to understand the new context and to adapt marketing activities
to the host country, among other causes (Ghauri and Cateora 2010).

What, then, must marketing science do so it can provide useful recommenda-
tions? Single-country studies may be a first step, but they do not permit sound
comparisons of phenomena between countries (Craig and Douglas 2005). Instead,
multi-country studies that involve data collection in two or more nations are neces-
sary to identify the generalizable similarities and differences in marketing-related
insights between countries that marketing managers can use as guidelines for
international marketing decisions.
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Multi-country studies also contribute to marketing as an academic discipline.
Steenkamp (2005) points out that marketing research has traditionally been driven
by US researchers, so its constructs, theories, and relationships implicitly reflect the
cultural predispositions of these researchers and the respondents in their empirical
studies. Steenkamp claims that marketing science has to get out of the “US silo” and
either show the cross-national generalizability of marketing phenomena or identify
the contingencies that are related to national characteristics. National characteristics
are valuable for marketing science since they allow constructs, theories, and relation-
ships to be tested in diverse settings, similar to those that natural scientists create in
their experiments (Burgess and Steenkamp 2006). Two nations, such as the US
(a highly developed nation) and Cambodia (a developing nation), can provide
extreme situations for testing constructs, theories, and relationships that other fre-
quently used external contingency factors, such a firm’s industry, cannot provide. If
constructs, theories, or relationships hold in such diverse conditions as those offered
in the US and Cambodia, a high level of generalizability can be assumed (Triandis
1994), and differences can be incorporated into theories and research models to
make them more complete.

As a result, increasing numbers of multi-country studies have been published in
leading marketing journals like Journal of Marketing (e.g., Petersen et al. 2015) and
in journals that are dedicated to international marketing topics, such as Journal of
International Marketing and International Marketing Review. While growing in
number, multi-country marketing studies are often criticized for how they address
the challenges that emerge when data is collected from more than one country
(Cadogan 2010; Engelen and Brettel 2011; He et al. 2008; Nakata and Huang
2005). A multi-country research project has much in common with a project that
focuses on one country (e.g., in terms of choice between primary and secondary
data), but additional challenges render multinational studies more complex. From the
conceptual design of the research model to the choice of countries for data collection,
the actual data collection process, the data analysis and interpretation, pitfalls must
be circumvented, and challenges faced in order to avoid limitations that can render
an international marketing study all but useless. When differences in constructs,
theories, or relationships between nations emerge, marketing researchers must
ensure that they reflect the phenomena of interest and are not artifacts of poor
research design and execution. The present article presents an overview of the
challenges along the steps of the research process and state-of-the-art approaches
to addressing these challenges so international marketing studies provide sound
recommendations to practitioners and sound conclusions for marketing science.

Challenges in the Research Process

In order to capture comprehensively and in a structured way the particular challenges
of international research projects in marketing, we break the typical research process
into five steps, as depicted in Fig. 1: finding a conceptual framework (Phase 1),
defining the research unit and identifying the unit’s drivers (Phase 2), conducting the
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data collection in multiple nations (Phase 3), performing the data analyses (Phase 4),
and interpreting the findings (Phase 5). The concept of data equivalence, in addition
to other issues, assumes a major role in each of these steps, manifesting in terms of
various facets of the concept (Hult et al. 2008). Data equivalence ensures that the
differences between nations that are identified are actual differences in terms of the
phenomena of interest and not artifacts that are due to conceptual and methodolog-
ical shortcomings that ignore the particularities of multi-country studies.

Conceptual Framework (Phase 1)

A typical starting point of a multi-country study in marketing is the particular
constructs, theories, or relationships to be tested. For example, a marketing
researcher of Western origin might want to investigate whether the relationship
between a firm’s market orientation and the firm’s performance, measured as the
firm’s profitability, holds across national contexts. Before collecting data for the
research model, the researcher should determine whether the constructs and theories
that link them are universal across nations, as the theory that guides the research
might not be salient in all research contexts, and even if it is, the constructs might not
hold the same meaning in one country as they do in another (Douglas and Craig
2006).

If this challenge is ignored at the beginning of a research process, implications
drawn from findings in later phases can be misleading. In our example, while firm
profitability might be the primary performance measure in the Western nations,

Differences in how nations
understand and apply
constructs and frameworks

National borders as units of
research:

Homogeneity within a
country
Cross-border influences
Drivers that explain
differences among
nations

Equivalence of data across
countries in terms of:

measurement
data collection

Influence of the researcher’s 
own culture (ethnocentrism)

Conceptual framework

Research units and
drivers of differences

International data
collection

Major Challenge(s)

Conduct a literature review and qualitative fieldwork.
Include researchers from all researched countries (e.g., via an adapted
etic or linked emic approach).
Establish construct equivalence (functional equivalence, conceptual
equivalence, and category equivalence).

Analyze heterogeneity within nations and define the adequate culti-unit
of research.
Research subcultures in nations (e.g., China’s nine subcultures).
Choose an appropriate set of cultural dimensions, not only relying on
Hofstede’s dimensions but also taking Schwartz’ and GLOBE’s
dimensions into account.
Include formal and informal institutions at the national level.

Collect data in a sufficient number of nations. 
Consider alternative explanations for possible nation-level differences.
Avoid mixed-worded, multi-item measures.
Check conversions of measurement units.
Apply collaborative and iterative translation techniques.
Select equivalent samples and data-collection procedures. 
Ideally, combine direct-inference and indirect-inference techniques.

Include researchers from all nations being researched.

Possible approaches

Interpretation

International research
process steps

Data analysis Correct for different response styles across nations.
Conduct sound statistical analyses of equivalence.
Consider multicollinearity issues in regression models.

1

2

3

4

5

Fig. 1 Summary of challenges along the international research process; own illustration
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Asian cultures put more emphasis on group-oriented harmony than on achievement
and consider employee satisfaction an important outcome of a market orientation,
maybe even at the expense of some degree of profitability (Braun and Warner 2002).
Leaving out this effect of a firm’s market orientation would lead to an incomplete
research model from the Asian perspective.

The degree to which research models, including their constructs, theories, and
relationships, allow for country-specific adaptations is captured in the differen-
tiation between an etic and emic approach (Berry 1989). These terms were coined
by the linguistic anthropologist Pike (1967), who draws on an analogy with the
terms “phonemic” (referring to language-specific sounds) and “phonetic” (refer-
ring to sounds that exist in multiple languages). An etic approach in cross-
national research assumes that a research model from one national or cultural
background can be applied and replicated in other nations and cultures, so it
views the elements of the research model as universally valid. The emic view
proposes that theories and constructs are specific to the context in which they are
applied and are not universal. By using their own domestic situations as frames of
reference that are then, without due reflection, applied to and tested in other
nations, researchers often implicitly apply an “imposed-etic” approach. While
this approach often leads more easily to comparable results (“comparing apples to
apples”), the results might be influenced by a pseudo-etic perspective or bias
(Triandis 1972) (“apples only relevant in country A, but not in country B”) that
leads to misguided or prejudiced findings. Schaffer and Riordan (2003) find that
more than 80% of all published multi-country studies implicitly take such an
“imposed-etics” approach.

Douglas and Craig (2006) propose two alternative approaches to designing the
conceptual framework of a research model in a multi-country study: the adapted etic
model and the linked emic model, whose differences are illustrated in Fig. 2. The
adapted etic model starts with a conceptual model from a base culture and adapts it to
other nations, while the linked emic model uses the various nations as a starting point
and then incorporates the insights gained from the nations into one overall concep-
tual framework. Both approaches decenter the research perspective from the
researchers’ own national perspective by requiring extensive study of local literature
on the topic, an international research team, and close consultation with researchers
from the other nations.

The “adapted etic model” assumes that the conceptual framework applies to all
nations, with some adaptations to local contexts. As a first step, the conceptual
framework, its constructs, theories, and relationships are tested in terms of their
applicability and relevance to other national contexts. For example, a market orien-
tation may not be relevant in a planned economy. Next, the relevant constructs and
hypotheses are checked with support from local researchers. For example, when a
researcher is interested in determining whether a particular kind of corporate culture
fosters a market orientation across nations (Deshpandé and Farley 2004), it may be
necessary to ask local researchers to identify the values (as elements of a corporate
culture) that are particularly relevant in their nations. This approach focuses on
the similarities among nations, as even when modifications are made, it is likely that

Challenges in Conducting International Market Research 125



the base nation’s perspective dominates, while the unique specifics of other nations
may be ignored.

The “linked emic model” addresses this weakness by starting the process of
defining a conceptual research model in multiple countries simultaneously, ideally
with the support of a host country-based researcher for each setting. As a first step,
the researchers from the various nations agree on the scope of the conceptual
framework, which serves as input for the subsequent individual work on a concep-
tual model for each researcher in his or her national setting. Next, the researchers
identify similarities among the locally developed models and factors at the national
level that explain differences. Ideally, an overarching conceptual model is derived
that covers all identified elements and differentiates between emic and etic elements.
Nation-specific factors can be integrated into the model as contingencies to capture
the nations’ emic particularities. Assuming a researcher is interested in understand-
ing what drives a firm’s market orientation, collaboration among departments may
be more important in collectivistic cultures than in individualistic cultures. This
process puts a strong emphasis on the local perspective and is facilitated by effective
cooperation among researchers from the nations in which the research takes place.

The efforts required in developing the adapted etic or linked emic model are
targeted toward ensuring construct equivalence, a major facet of data collection
equivalence that refers to whether constructs, theories, and relationships have the
same purpose and meaning in all of the nations under investigation. Construct
equivalence has three facets (Bensaou et al. 1999): functional equivalence,

Basic assumption

Process

Starting
point

Emphasis

Definition
of

conceptual
model

Result

Adapted etic

Theory and conceptual frameworks are
pancultural (can be adapted to fit other
nations)

One base theory and framework and a
uni-national/cultural research team

• Explicate the underlying theory and
conceptual model in multiple settings.

• Examine the relevant constructs and
hypotheses and modify them to fit to
other national settings.

• Involve local researchers (e.g.,
develop different ways of
operationalizing and measuring).

Similarities across cultures

Adaptations of one conceptual
framework to local conditions

Linked emic

Theory and conceptual framework are
context-and culture-specific (cannot
be fit directly into other cultures).

Several nation-specific frameworks and
researchers from (ideally) each nation

• Agree on a common scope and key
research questions.

• Individual researchers work on each
conceptual model.

• Identify similarities and differences
between conceptual models.

• Define an overarching conceptual
model that covers all identified
elements and differentiate between
emic and etic elements.

Differences and the local perspective

Culture-specific definition of the
conceptual framework that best
addresses the key research questions

Fig. 2 Adapted etic and linked emic research approaches; own illustration based on Douglas and
Craig (2006)
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conceptual equivalence, and category equivalence. Functional equivalence refers to
the degree to which phenomena or objects have the same function across nations. For
example, a car provides family transportation in a highly developed country while a
motor bike performs the same function in an emerging economy. Conceptual
equivalence relates to the degree to which the phenomena are interpreted similarly
across nations. For example, in a study of the antecedents of market orientation, local
interpretations of the “amount of market-related information transferred between
departments” can be tested in exploratory fieldwork. Category equivalence captures
the degree to which the same classification scheme can be applied to a phenomenon
across nations. For example, a particular market orientation’s primary stakeholder
group can be customers in one nation and government institutions in another.

Research Units and Drivers of Differences (Phase 2)

Once the conceptual framework has been established, the next step is to identify a
research unit and the drivers of the differences between research units. We investi-
gate the concept of the unit of research (section “Definition of the Unit of Analysis”)
and discuss potential drivers of differences between units of research (section
“Identifying Drivers of Differences Between Nations”).

Definition of the Unit of Analysis
In cross-national research, a unit of analysis must be established that defines the
geographic scope and the group of the people or organizations to be examined within
it. A good research unit has a high degree of homogeneity in terms of the members’
behaviors and values among the members of this group, which are heterogeneous to
other groups and is as free of influence by other groups as possible (Craig and
Douglas 2006; Lytle et al. 1995).

Literature reviews on international marketing research indicate (e.g., Engelen and
Brettel 2011; Nakata and Huang 2005) that nations are the primary unit of research.
Some of the reasons for a focus on nation as the unit are practical and pragmatic.
Nations have clear and defined boundaries, and sampling frames are available at the
nation level or for defined geographic areas in countries, such as regions and cities.
In addition, multinational firms are often organized on a country basis and are
interested in formulating strategies in multiple countries, for which they must assess
the similarities and differences among countries. This focus carries through to
academic researchers’ interest. For example, empirical cross-national marketing
research often focuses on comparing phenomena of interest between the Western
nations – often the US – and Asian countries – often China (Sheng et al. 2011).
However, whether national borders are the best criterion with which to define the
unit of research in international marketing may be questioned.

Nations and cultures are increasingly influenced by other nations and cultures. A
primary mechanism is the global flows identified by Appadurai (1990). Five primary
global flows blur the borders between nations: mediascapes (flow of images and
communication, such as by screening US-made films in other countries),
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ethnoscapes (flows of tourism, student exchanges, and migrants), ideoscapes (flows
of political impacts and ideologies, such as democratization and views of equality),
technoscapes (flows of technology and expertise), and finanscapes (flows of capital
and money). These global flows, which will only grow because of the increasing
ease and decreasing cost of data transfers and travel, lead to multicultural market-
places (Demangeot et al. 2015), so the view of cultures as localized and determined
only by national boundaries has lost much of its validity. These flows can cause
changes in a country’s cultural elements through cultural contamination (adopting
foreign cultural elements), pluralism (individuals in one culture exhibiting features
of multiple cultures), and hybridization (fusion of two cultural elements into one
new) (Craig and Douglas 2006). For example, the US culture is presented to
customers in most other countries via products that are seen as typical of the
American lifestyle (e.g., McDonalds, Levis, Marlboro), and it exerts cultural influ-
ence via a globally dominant movie industry. Consequently, at least part of many
countries’ populations adopt these cultural elements and values, leading to the
“Americanization” of other nations’ cultures.

Further, many nations and their cultures are not homogeneous units but contain
subgroups (Cheung and Chow 1999) that may be driven by migration, ethnic
heritage (e.g., Chinese in Malaysia, the Dutch heritage of South African immi-
grants), religious beliefs (e.g., US Jews, Chinese Catholics), or the nation’s size
(e.g., Russia, China, India). For example, studies find cultural subgroups in Singa-
pore (Chen 2008) and several South American nations (Lenartowicz and Johnson
2002). The frequent presence of such subgroups poses a challenge to international
marketing research that seeks specificity in the differences between nations, as
findings will depend on the subgroup sampled in such heterogeneous nations.

Given the influences that nations exert on each other and the heterogeneity in
most nations, it follows that researchers must examine the homogeneity of the
nations or regions they want to analyze. While some countries, such as Belgium,
India, and Switzerland, are inherently heterogeneous in terms of behaviors, attitudes,
and/or language, some studies provide concrete empirical evidence of this hetero-
geneity. Based on World Values Survey data, Minkov and Hofstede (2012) identify
299 in-country regions in terms of cultural values in twenty-eight countries that
cluster on national borders, even for potentially heterogeneous countries like Malay-
sia and Indonesia. Intermixtures across borders are rare, even in cases of culturally
similar African neighbors, such as Ghana and Burkina Faso. While this study
validates empirically that nations can be good approximations for cultures, other
studies that focus on a single nation find that there are substantial cultural differences
within one nation. For example, Cheung and Chow (1999) use empirical research to
find nine distinct subcultures in China, and Dheer et al. (2015) identify nine distinct
subcultural regions in India and provide guidance on how these subcultures differ.
(For example, the far-eastern and southwestern regions are lower in male dominance
than the other parts of India.)

Given these diverse findings, it follows that researchers should consider whether
using national borders is an appropriate way to define a unit of research. If there is no
homogenous national culture or if there is doubt that homogeneity is present,
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researchers should focus instead on subcultures, or “culti-units,” as the units of
research (Douglas and Craig 1997). Naroll (1970) introduces the concept of culti-
units as the relevant unit for studying cultural phenomena when homogeneous
nations cannot be assumed, while a prominent definition is presented by
Featherstone (1990; p. 385):

A culti-unit is [. . .] defined in terms of the racial, ethnic, demographic or social-economic
characteristics or specific interests (e.g., ecologically concerned consumers) of its members
which provide a common bond and establish a common ethnie, a core of shared memories,
myths, values and symbols woven together and sustained in popular consciousness.

A commonly shared ethnie distinguishes the members of one culti-unit from
others. This ethnie can be a national culture, a shared religion (e.g., Jewish heritage),
or a strong interest (e.g., the hacker community of Anonymous). A major merit of the
culti-unit concept is that it incorporates the concept of nation when the nation is
sufficiently homogeneous, but it can also be applied to other ethnies. Researchers
can benefit from the culti-unit construct since it makes ruling out alternative expla-
nations for a theory or relationship easier than does a broader concept like nations.
The ethnie core can be revealed by means of qualitative research. By taking the culti-
unit as a starting point in defining the unit of research, researchers are forced to
define their units of research unit cautiously and not to use national borders without
careful reflection.

Sometimes the country or larger region is the appropriate sampling frame and
serves as the culti-unit, particularly when culture has relatively little influence on the
product or topic being researched. For example, compared to food and clothing,
automobiles and consumer electronics do not have a strong cultural component.
However, whenever there is likely to be considerable within-country heterogeneity
or when the researcher is interested in understanding culture’s influence on a
particular outcome, the researcher should either sample from the culti-unit or be
able to identify the various cultural or ethnic groups and conduct analysis to
determine their affect. For example, Petruzzellis and Craig (2016) examine the
concept of Mediterranean identity across three European countries (Spain, France,
and Italy) and find elements of an ethnie core related to Mediterranean identity that
transcends national borders.

Research on subcultures within a larger culture illustrates the importance of a
culti-unit. For example, Vida et al. (2007) conduct research in Bosnia and
Herzegovina, where there are three major cultural/ethic groups: Croats, Serbs, and
Bosnians. The research analyzes responses by cultural group and finds that ethnic
identity influences the dependent variables. Studies that examine a particular sub-
culture face challenges in obtaining a sampling frame, but they can view a homo-
geneous group of respondents. Within-country differences can also be examined
geographically. Lenartowicz et al. (2003) find significant within-country and
between-county differences among managers on the Rokeach Value Survey,
suggesting that using the country as the unit of analysis would mask important
within-country variations.
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Ultimately, the selection of the unit of analysis will be a function of practical
considerations and the research’s theoretical underpinnings. If a particular theory is
being tested in multiple countries, the respondents in each country must reflect the
ethnie core of the culture of interest. Ideally, the research would be able to locate
appropriate sampling frames to focus on the specific groups, but if such sampling
frames are not available, questions should be included that allow for a fine-grained
examination so the entire sample can be analyzed and then broken down by specific
cultural/ethnic groups. If there are significant differences between groups, the one
(s) most relevant to the research can be examined more closely. A related concern is
determining what factors account for the observed differences, whether they are
contextual factors like the level of economic development or the influence of other
cultures. The use of covariates in the analysis will often help in identifying which
factors affect the culture.

Identifying Drivers of Differences Between Nations
When several nations are compared,1 one of the key questions that arises concerns
the underlying drivers between nations that account for the difference and that may
even be generalized to explain variations from other nations. Assuming that nations
are appropriate units of research for a particular purpose and we find differences
(e.g., in the strength of the relationship between market orientation and firm perfor-
mance between the US and Indonesia). An explanation for these differences can lie
in the differing degrees of cultural individualism versus collectivism (Hofstede
2001), but the US and Indonesia also have differences in their economic (e.g.,
GPD per capita) and development levels (e.g., Human Development Indicator or
HDI), which may be the key drivers of the observed differences.

In their review of empirical cross-national and cross-cultural research, Tsui et al.
(2007) find that national culture – typically defined as the values and norms that
guide a group’s behavior (Adler 2002) – is the most frequently investigated driver of
differences between nations. National culture can be conceptualized along national
cultural dimensions that relate to how societies resolve the problems that all societies
face (e.g., whether the individual person is more important than group equality and
harmony and how much privacy is granted to individuals). Various schemes of
cultural dimensions have been proposed, but the four original dimensions from
Hofstede (2001) – power distance, individualism versus collectivism, uncertainty
avoidance, and masculinity versus femininity – are the most prominent. Later,
Hofstede and colleagues added the dimensions of long-term orientation and indul-
gence versus restraint. The latter, originally proposed by Minkov (2007), has been
identified by means of World Value Survey items (Hofstede et al. 2010). Societies
that are strong on indulgence allow free gratification of natural human desires, while

1For the sake of simplicity, we will subsequently refer to nations as the unit of research, acknowl-
edging that other culti-units may be more appropriate as outlined in section “Conceptual Frame-
work (Phase 1).”
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societies that are strong on restraint prefer strict norms that regulate such
gratification.

International marketing research focuses on Hofstede’s dimensions, as the liter-
ature review from Engelen and Brettel (2011) indicates. One might argue that the
country scores that Hofstede initially developed at the end of the 1960s/beginning of
the 1970s are outdated, but Beugelsdijk et al. (2015) show that cultural change is
absolute, rather than relative. By replicating Hofstede’s dimensions for two birth
cohorts using data from the World Values Survey, Beugelsdijk et al. (2015) find that
most countries today score higher on individualism and indulgence and lower on
power distance compared to Hofstede’s older data, but cultural differences between
country pairs are generally stable. Further, to circumvent the threat of using outdated
country data, international marketing researchers can apply the updates provided on
Hofstede’s website (http://geert-hofstede.com/). These updated data have been used
in some recent cross-national marketing studies, such as Samaha et al. (2014). Other
studies, such as the meta-analytical review from Taras et al. (2012), also provide
updated country scores for Hofstede’s dimensions.

Several authors criticize Hofstede’s approach in terms of its theoretical founda-
tion and the limited number of cultural dimensions (Sondergaard 1994). Schwartz
(1994) and the GLOBE study address some of these criticisms. Siew Imm et al.
(2007) find that the cultural dimensions from Schwartz (1994) are broader than those
from Hofstede (2001), as Schwartz (1994) covers all of Hofstede’s dimensions and
adds the dimensions of egalitarianism and hierarchy. Steenkamp (2001) also high-
lights Schwartz’ (1994) theoretical foundations, concluding that “given its strong
theoretical foundations, [Schwartz’s approach] offers great potential for international
marketing research” (p. 33).

Javidan et al. (2006) point out that the GLOBE study adopts a theory-based
procedure and formulate a priori dimensions based on Hofstede (2001) dimensions,
values that Kluckhohn (1951) and McClelland (1961) described, and the interper-
sonal communication literature (Sarros and Woodman 1993). In addition to
Hofstede’s cultural dimensions of power distance and uncertainty avoidance, the
GLOBE study adds performance orientation, assertiveness, future orientation,
human orientation, institutional collectivism, in-group collectivism, and gender
egalitarianism (House et al. 2001). Some of these novel dimensions are more fine-
grained than are Hofstede’s (2001) dimensions. For example, the dimensions of
assertiveness and gender egalitarianism reflect two major facets of Hofstede’s
masculinity dimension (Hartog 2004). Cross-cultural marketing studies often
neglect or even ignore the potential offered by Schwartz (1994) and the GLOBE
study. International marketing researchers should be sure to justify their choices of
national cultural dimensions as the most appropriate for their purposes.

A marketing researcher who needs to choose one approach should consider the
following thoughts: Hofstede’s and GLOBE’s dimensions and country scores have
been derived theoretically and/or empirically in the workplace setting, so organiza-
tional marketing topics might rather build on their dimensions. Schwartz’ dimen-
sions have their theoretical origin in psychological research on individual values and
have been empirically analyzed by Schwartz in a cross-national sample of teachers
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and students. Therefore, these dimensions are rather appropriate when investigating
the decisions of private persons across cultures (such as in international consumer
studies).

Further, the targeted nations in an international marketing study can lead to the
use of the one or other approach. Schwartz generated data in some regions which
have not been covered to the same extent in Hofstede’s and the GLOBE survey (e.g.,
some former Eastern European bloc countries and some countries in the Middle
East). There are also some countries (e.g., some African countries) which have been
covered by GLOBE and not the other approaches. So, the individually targeted
countries in a research project may determine the choice of dimensions.

In addition, researchers should take into consideration that the cultural dimen-
sions differ between the approaches. Steenkamp (2001) factor analyzes the dimen-
sions from Hofstede (the original four dimensions) and Schwartz and identifies four
factors – three related to both Hofstede’s and Schwartz’s dimensions and one, a
factor related to egalitarianism versus hierarchy that refers to how people coordinate
with other people and to what degree they take the other people’s interests into
account, that emerged in the Schwartz data. Steenkamp (2001) argues that, when a
researcher investigates cross-nationally whether the consumption of products that
could harm other nonusers is accepted (e.g., cigarettes), this factor is represented in
Schwartz’s dimensions, not in Hofstede’s dimensions, and is highly relevant. There-
fore, Schwartz’s dimensions might be the best choice. The GLOBE dimensions are
also broader than Hofstede’s dimensions, breaking down Hofstede’s dimension of
masculinity versus femininity into gender egalitarianism and assertiveness and
differentiating between two versions of Hofstede’s individualism versus collectivism
dimension (in-group and institutional collectivism), which enables more fine-
grained analysis on this dimension. Building on the GLOBE scores, Waldman
et al. (2006) differentiate between in-group and institutional collectivism and find
that institutional collectivism is positively related to corporate social responsibility in
a firm’s decision-making, while in-group collectivism has no impact. Using one
score for a broader collectivism dimension may have masked these cultural depen-
dencies, so depending on what a marketing researcher wants to examine, the more
fine-grained GLOBE dimensions might be more appropriate. Figure 3 provides a
summary of the three approaches to cultural dimensions.

In their literature review on cross-national and cross-cultural research, Tsui et al.
(2007) conclude that extant research has focused too much on national cultural
dimensions while neglecting other drivers of the differences between nations. As a
result, the findings of multination studies that focus only on national cultural
dimensions may be misleading. Tsui et al. (2007) and researchers like Glinow
et al. (2004) call for a polycontextualization of international research in order to
accommodate the complexity of the context and avoid misleading conclusions about
what drives the differences between nations. Beyond national culture, the physical
context (e.g., climate, typology), the historic context (e.g., sovereignty, coloniza-
tion), the political context (e.g., the political and legal systems), the social context
(e.g., religion, family structure), and the economic context (e.g., economic system,
technology) may be the reason for differences (Saeed et al. 2014). Sound
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international marketing research must not neglect these contextual drivers (see
Douglas and Craig (2011) for a discussion of the role of contextual factors).

International Data Collection (Phase 3)

After the conceptual framework and the research unit are defined, data collection can
begin. A key decision for the researcher is to decide in which and how many nations
to collect empirical data. The key challenge is to take steps to ensure that the data are
comparable and equivalent across all countries. This is a critical step as sound data
provide the foundation for inferences and interpretation. The three pillars that guide
data collection relate to the constructs that underlie the research, the actual measure-
ment of the constructs and other variables of interest, and the procedures used to
collect the data across multiple countries. These steps are summarized in Fig. 4. In
addition, steps need to be taken to ensure translation equivalence, sampling frame
equivalence, and data collection procedure equivalence (Hult et al. 2008).

Extant international marketing research is often built on data from only two
nations (Cadogan 2010; Engelen and Brettel 2011). However, this approach has
serious limitations, particularly since countries typically differ in terms of more than
one cultural dimension, as well as in such contextual areas as the macroeconomic
development stage or the educational system (Geyskens et al. 2006). As a positive
example, Steenkamp et al. (1999) draw on responses from more than 8000

Origin

Dimen-
sions

Criticism

• Ethnocentrism of
researcher

• Nations as cultural
boundaries

Country
scores

Hofstede (2001, 2010)

Deduced from a large-scale survey
among IBM employees in 40
countries (1967−1973); extended
to wider population in the following
decades

• Power Distance
• Uncertainty Avoidance
• Individualism vs. Collectivism
• Femininity vs. Masculinity
• Long-Term-Orientation
• Indulgence vs. Restraint

• Originally only IBM employees; 
later extended, but not 
representative of the general 
population

• Lack of theoretical foundation

• Scores from 0 to 120 for 93 
nations

Survey of more than 17.000
managers in 62 countries on
prevalent values and practices
from the mid-1990s on

House et al. (2001); GLOBE 
study

• Power Distance
• Uncertainty Avoidance
• In-Group Collectivism
• Institutional Collectivism
• Performance Orientation
• Assertiveness
• Gender Egalitarianism
• Humane Orientation
• Future Orientation

• Not representative of the
general population, only
managers

• Differences of scores on values
and practices in some countries
are questionable

• Scores from 1 to 7 for values
and practices for 62 nations

Schwartz (1994)

Main data collection from 1988 to
1992, primarily among teachers
and students in 41 cultures
(covering 38 nations)

• Embeddedness
• Intellectual Autonomy 
• Affective Autonomy
• Egalitarianism
• Harmony
• Hierarchy
• Mastery 

• Not representative of the 
general population; 85% of 
respondents are teachers and 
students

• Scores for 76 cultures in 74 
nations

• Limited number of
cultural dimensions 

Fig. 3 Comparison of prominent approaches to cultural dimensions; own illustration based on
Hofstede (2001), Schwartz (1994), and House et al. (2001)
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consumers in 23 countries to isolate the effects of the regulatory system, the moral
system (national identity), and the cultural system (degree of individualism) on the
perceived value of websites. These effects could not have been separated on the
national level with a two-country comparison.

To address what is a meaningful number of nations in which data should be
collected and how these nations should be chosen, Sivakumar and Nakata (2001)
develop an approach to guide researchers in defining the number of nations for data
collection. In their approach, when cultural differences are expected to be due to
one cultural dimension (e.g., the degree of power distance), two nations that have
strong differences in terms of this dimension and few differences in the other
cultural dimensions should be chosen, and when differences are expected to be due
to two cultural dimensions, four national cultures should be used to represent all
four combinations of the two levels (high and low) for each cultural dimension,
while the four national cultures are similar in terms of the remaining cultural
dimensions.

While this approach can help researchers determine the appropriate number of
nations for identifying the role of cultural dimensions, the procedure does not
provide guidance on how to deal with rival and confounding drivers at the national
level, such as the stage of macroeconomic development (Ralston et al. 1997). In
order to exclude rival explanations for differences between nations, even more
nations should be included. For example, Tan (2002) creates a hybrid, quasi-
experimental design to determine whether national cultural or contextual effects
prevail by drawing on three samples from two subcultures and two countries:
mainland Chinese, Chinese Americans, and Caucasian Americans.

Type of equivalence Possible approaches

Translation Collaborative and iterative translation
techniques

Configural, metric, and scalar Multiple group confirmatory factor
analysis

Functional

Sampling frame Selection of equivalent samples across
nations

Data collection procedure Similar data-collection time and
procedures, allowing for different levels of
literacy and infrastructure

Sampling comparability Statistical control with socio-demographic
variables as covariates

Conceptual Literature review, qualitative fieldwork, and
adapted etic or linked emic approach

Category

Con-
structs

Measure-
ment

Data
collection

Fig. 4 Overview of types of data collection equivalence; own illustration based on Hult et al.
(2008)
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In order to identify the roles that national cultural or contextual factors at the
national level play, the number of nations for data collection must be extended, as
long as identified differences can be traced back to either one of the national cultural
or contextual factors, while controlling for alternative explanations at the national
level.

Once the national settings are defined but before the data collection begins, three
equivalence challenges must be addressed in order to generate sound empirical
findings: translation equivalence, sampling frame equivalence, and data collection
procedure equivalence (Hult et al. 2008). Collecting data in several countries in
which more than one language is involved requires ensuring translation equivalence.
Simple back-translation is the dominant approach in international marketing studies,
where a questionnaire in the researcher’s native language is translated into another
language by a bilingual person (Brislin 1980). This translated questionnaire is then
back-translated to English by another bilingual person. Only when the researcher
compares the original and the back-translated questionnaire and finds no relevant
differences can translation equivalence be assumed. While this approach is the most
widely applied in international marketing literature, it has some limitations, as it does
not necessarily ensure equivalence in meaning in each language (Douglas and Craig
2007). Referring to the “emic versus etic” debate, assuming that a simple translation
from the base language that does not take the particularities of the other language
into account (e.g., words or idioms that exist in only one language) is inherently etic
or even “imposed-etic.”

Douglas and Craig (2007) propose a collaborative, iterative approach that finds
meanings of the source language in the other languages, thereby integrating emic
elements into the questionnaires. Given the complexity of languages, the authors hold
that researchers and translators with linguistic skills and skills in questionnaire design
collaborate for this purpose. This approach has five major steps, as Fig. 5 shows.

The process starts with the translation, where a questionnaire in one language is
translated independently to all target languages by at least two translators. Trans-
lators should especially pay attention to items that deal with attitudes since linguistic
research indicates that the connotations of words like “happiness” and “mourning”
can differ from language to language. The translation of mix-worded multi-item
measures – that is, measures that contain positive-worded statements and reverse-
worded statements – is a major challenge since empirical studies have found
problems with the internal consistency and dimensionality of these measures,
which are mostly of US origin, when applied cross-nationally. Wong et al. (2003)
identify two reasons for these problems: how languages indicate negation differ such
that reverse-worded statements may be difficult or even impossible to translate
appropriately, and respondents’ cultural predeterminations affect how they respond
to reverse-worded statements. When the dominant norm is to be polite and agree-
able, as is the case in some Asian cultures (Child and Warner 2003), respondents
may tend to agree with any statement, leading to low internal consistency and
disruption of the dimensionality of mixed-worded measures. Therefore, Wong
et al. (2003) suggest employing only positively worded statements cross-nationally
or replacing Likert statements with questions.
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The second step of Douglas and Craig’s (2007) approach is a review meeting with
the translators and an independent researcher in order to agree on a preliminary
version of the questionnaire in each language. In the third step, adjudication,
inconsistencies are resolved and whether the questionnaire actually measures the
same meaning in each country is determined. In the fourth step, the questionnaire is
pretested with native respondents in each language to ensure comprehension, and
issues are referred to the team of researchers and translators to start a new round of
iterations. Finally, in the fifth step, if more than one round of data collection is
planned, such as may be the case with longitudinal data collected yearly, insights
gained during the initial data collection are reported to the team of researchers and
translators so they can improve the questionnaires for successive rounds of data
collection (without compromising year-to-year comparability).

Sampling frame equivalence refers to the extent to which the samples drawn
from the various nations parallel one another (Hult et al. 2008). For example, if
high school students from the middle class in India are compared to public high
school students from all social classes in the US, the discrepancy in social class
could distort the findings. Researchers must select equivalent samples among the
various research units while allowing variations in the sample on the factors to be
analyzed. For example, individuals of similar income, education level, and gender
(equality of sample) are selected from nations whose cultural values (variation to
be researched) differ. Hult et al. (2008) consider sample equivalence a major
prerequisite for sound cross-cultural comparisons and recommend that
organization-level studies match samples in terms of potentially confounding
factors like company age, size, and industry sector. Although sample equivalence
does not guarantee that findings can be generalized to the participating countries, it
helps to ensure that comparisons are not confounded by other factors and that
differences can be traced back to the cultural dimensions or contexts under study
(van Vijver and Leung 1997).

Two or more
translators
translate the
questionnaire
independently
into the target
languages
(parallel
translation).

Two (or more)
translators and
at least one
independent
reviewer
discuss the
translations and
decide on a
version for final
review.

Adjudicators
(e.g., the
researchers)
examine the
final translation,
resolve
inconsistencies,
and adapt to
ensure that the
same meaning
is captured. 

Translation Review Adjudi-
cation Pre-testing Administration

The translation
is tested in the
target group
and setting to
evaluate the
equivalence
qualitatively and
quantitatively.

Revision
FeedbackRetranslation

Fig. 5 Collaborative and iterative translation; own illustration based on Douglas and Craig (2007)
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Data collection procedure equivalence combines administrative equivalence
(e.g., telephone, face-to-face, email) and time equivalence in terms of the time
between data collection in the participating countries (Hult et al. 2008). While a
completely standardized and parallel data collection procedure in all units of
research is ideal, regulations (e.g., national rules and regulations against telephone
interviews), cultural norms (e.g., nonconformity of impersonal surveys with the
cultural preferences related to personal interactions), and infrastructure (e.g., avail-
ability of high-speed internet lines) often prevent data collection procedures from
being perfectly equal (Hult et al. 2008). Even so, researchers must seek equivalent
data collection procedures and keep unavoidable differences (e.g., different survey
settings and different times) in mind as a possible explanation for findings.

Finally, in the international data collection phase, researchers must decide on
which level to measure cultural properties. Cultural properties can either be directly
measured in the surveyed sample at the individual level of each respondent (“direct
value inference”) or captured by means of typically nation-related secondary data
(e.g., the Hofstede country scores) according to the surveyed individuals’ or firms’
national identity (“indirect value inference”). Direct value inference measures indi-
viduals’ cultural properties and derives cultural properties for data analyses by
aggregating these cultural properties to the relevant group level (e.g., the national
level). Researchers can directly measure the surveyed individuals’ individual values
or ask about their perceptions of their environment’s cultural values. This approach
ensures that the actual culture of the surveyed individuals is measured. However, the
questions concerning whether the surveyed individual can assess the cultural prop-
erties correctly and whether there are any bias in the assessments remain. Indirect
value inference assigns existing values on cultural dimensions (e.g., from the
Hofstede data) to surveyed individuals according to their group membership – that
is, surveyed individuals from Germany receive the score for Germany on the
relevant cultural dimension as reported by Hofstede or other researchers. In this
case, however, a measurement error might occur since the researcher assumes that
the surveyed sample’s cultural properties comply with the cultural properties of the
samples used in the earlier studies that report country scores (Soares et al. 2007).
Given the benefits and perils of both approaches, Soares et al. (2007) recommend a
multi-method approach that combines the indirect and direct value inference
approaches.

Whether direct or indirect value inference is pursued, Brewer and Venaik (2014)
recommend that researchers that are determining the right level of analysis ensure a
fit between the levels at which the constructs (e.g., cultural properties) are theorized
and empirically validated. Conceptualization of theories, measurement of constructs,
and data collection should be conducted consistent with the underlying research
question. Brewer and Venaik (2014) refer to the danger of an ecological fallacy when
researchers assume that group-level relationships automatically apply to the individ-
ual level. Some recent studies use cultural dimensions explicitly at the individual
level (e.g., individual power orientation) to make clear that cultural properties at the
level of the surveyed individual are theorized and measured (e.g., Auh et al. 2015;
Kirkman et al. 2009). When only group-level data on cultural properties is available,
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Brewer and Venaik (2014) recommend that higher-level constructs (e.g., cultural
dimensions at the national level) be cross validated with measures at the level at
which the construct is theorized (e.g., at the individual level of a consumer).

Data Analysis (Phase 4)

Data analysis starts with analyses which are not specific to international marketing
research but have to be done in any data analysis. Such checks and tests include
establishing the reliability and validity of the measures and ruling out biases in the
survey data like common-method bias, nonresponse bias, and informant bias
(Bagozzi et al. 1991; Podsakoff et al. 2003). However, the particularities of interna-
tional marketing research impose additional challenges related to the data analysis
based on how differences in national response styles can affect findings. A response
style refers to a person’s tendency to respond systematically to questionnaire items
on some basis other than what the items are designed to measure (Jong et al. 2008).
For example, in the US school grading systems range from A+ (best) to F (worst) or
points up to 100 (best) and down to 0 (worst), while the German grading system is
the other way around, ranging from 1 (best) to 5 or 6 (worst). Therefore, Germans
who are used to “lower is better” might unwittingly answer incorrectly on US
surveys that range from 1 (worst) to 5 (best). While these scale definition issues
might be resolved easily, national cultural predeterminations based on deeply rooted
values and preferences may have more subtle effects on a participant’s response style
(Clarke III 2001).

Two major response styles have been shown to be subject to the respondent’s
national culture: An extreme response style (ERS) is the tendency to favor the end
points of rating scales, regardless of the item’s content, while an acquiescence
response style (ARS) refers to the tendency to agree with all items, regardless of
the item’s content. Chen (2008) reports that US respondents are much more inclined
to show an ERS than are respondents from China. In cultural terms, respondents
from low-ERS cultures may wish to appear modest and nonjudgmental, whereas
members of high-ERS cultures may prefer to demonstrate sincerity and conviction.
Regarding ARS, Riordan and Vandenberg (1994) report that a response of 3 on a
5-point Likert-type scale means “no opinion” to American respondents but “mild
agreement” to Korean respondents, so a Korean’s “3” may be equivalent to an
American’s “4,” and a Korean’s “4” may be equivalent to an American’s “5.” A
strong response bias is problematic because whether differences are caused by
differences in response styles or differences in the factor of interest remains uncer-
tain. If relationships are compared, differences in response styles lead to variances in
the dependent and independent variables that result in unintended and confounding
differences in correlations.

Differences in response styles belong to a larger group of issues when measure-
ment models are applied in more than one nation. A major threat to sound multi-
nation marketing research occurs when respondents do not interpret the constructs
that link relevant relationships or that build theoretical frameworks similarly such
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that identified differences in relationships are actually due to systematically different
interpretations of constructs and measurement models (Mullen 1995). While some
countermeasures can be taken in the pre-data collection phase, such as ascertaining
translation equivalence, quantitative tests on the actual data collected are necessary.

In particular, measurement equivalence, which relates to whether measurement
models are understood similarly across nations, must be established. Steenkamp and
Baumgartner (1998) provide a multigroup confirmatory factor analysis approach for
reflective multi-item measurement models, which approach consists of configural,
metric, and scalar equivalence analyses (for applications, see, e.g., Homburg et al.
(2009) and Zhou et al. (2002)). Configural equivalence indicates that respondents
from all nations under analysis conceptualize and understand the basic structure of
measurement models similarly. Metric equivalence indicates that groups of respon-
dents understand scale intervals similarly. Scalar equivalence indicates that the
systematic response style among respondents from the nations under study does
not differ.

Configural equivalence, which is tested by running a multigroup confirmatory
factor analysis that allows all factor loadings to be free across the national samples, is
given when the factor loadings are significant in all samples and the model’s fit is
satisfactory. Partial metric equivalence is given when at least one item (in addition to
a marker item) for each measurement model has equivalent factor loadings across
nations. Metric equivalence models must be specified with at least two factor
loadings per measurement model that are kept equal across nations while not
constraining the remaining factor loadings. Full metric equivalence is given when
all factor loadings are equal across groups, although Steenkamp and Baumgartner
(1998) indicate that partial metric equivalence is sufficient in most cases. By means
of a χ2-difference test, this metric equivalence model is compared with a model in
which all factor loadings are free across samples, and metric equivalence is con-
firmed when the two models do not differ significantly. Finally, scalar equivalence,
which is tested by comparing means, ensures that differences in observed and latent
means between national samples are comparable. The procedure for testing scalar
equivalence is the same as the χ2-difference test for metric equivalence except that
item intercepts are constrained across national samples. Steenkamp and
Baumgartner (1998) point out that, in most cross-national comparisons, only partial
scalar invariance is realistic.

Since establishing measurement equivalence across a high number of countries
would require extremely large sample sizes, some studies have created set of
countries with similar cultural and economic conditions between which measure-
ment equivalence is established (e.g., Hohenberg and Homburg 2016; Tellis et al.
2009). For example, Hohenberg and Homburg (2016) cluster their 38 surveyed
countries into four categories, differentiating among English-speaking countries,
European countries, Asian countries, and Latin American countries.

Once measurement equivalence is established, the relationships of interest can be
empirically investigated. When national constructs are integrated as moderators in
theoretical frameworks, group comparisons (e.g., in structural equation modeling)
and interaction term models (e.g., in regression models) can be applied (Engelen and
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Brettel 2011), although some challenges specific to international marketing projects
must be considered. Most multinational studies investigate a particular relationship
(e.g., the effect of top management’s attention on a firm’s market orientation) in
multiple nations, for which the researchers have a national dependency in mind, such
as a particular national cultural dimension (e.g., the degree of national cultural power
distance). However, to accommodate the multiplicity of possible drivers at the
national level (section “Identifying Drivers of Differences Between Nations”),
researchers should add controls for alternative explanations in their models, an
approach that is particularly feasible in regression models (Becker 2005). For
example, by integrating a broad set of national cultural dimensions into their
model, Samaha et al. (2014) show that national culture has a more multifaceted
role in relationship marketing than earlier studies that focus on just one national
cultural dimension suggest. Adding several cultural dimensions into a regression
model is likely to lead to multicollinearity since the cultural dimensions are often
correlated. Individualism versus collectivism and power distance are often strongly
correlated. Samaha et al. (2014) circumvent this problem by not adding these two
dimensions simultaneously in their regression models, leaving out the individualism
versus collectivism dimension in their power distance model and leaving power
distance out of all other models.

Interpretation (Phase 5)

While interpretation is an important element in all five steps of the research process –
before, during, and after data collection – it manifests particularly at the end of the
research process, when the actual findings are available. Of course, interpretation is
by no means a particularity of international marketing research projects, but one
particular challenge emerges with these kinds of studies. A major assumption of
cross-national research projects is that drivers at the national level can lead to
differences in marketing relationships, constructs, and theories, and since national
drivers, especially national culture, affect everyone living in a nation or culture
(Hofstede 2001), the researcher himself or herself is also subject to national or
cultural predetermination. Thus, the researcher’s cultural values can affect his or
her interpretation of the findings (Berry 1980). This bias, called ethnocentrism,
occurs when one person’s or group’s frame of reference is applied in interpreting
other groups’ responses without adaptation to other national cultures. If, in our
example, we find that the attention of top management to market-related issues
drives a firm’s market orientation more strongly in Asia than in Western nations,
coming from a Western perspective, we could easily assume that power distance,
which is particularly strong in Asian cultures, is the driving force. However, Asian
researchers might relate this finding to particularities of the Confucian teachings. To
exclude such an ethnocentric bias, researchers in international studies should build
and use cross-national research teams during the entire research process, but espe-
cially in the last step of interpreting the findings (Hofstede and Bond 1988), and
document nation- or culture-specific interpretations of findings.
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Summary

As firms from developed and developing economies continue to expand outside their
home markets, marketing research is essential to guide development and execution
of marketing strategy. An implicit challenge is for management to appreciate that
there are potentially a wide range of differences between their home market and the
foreign markets they currently operate in or are planning to enter. Well-constructed
research will not only identify differences but also reveal important similarities.
Regardless of the specific purpose of the research, it is essential that valid and
reliable research be designed and executed. This is the critical challenge and applies
whether the research is to guide management decisions or test the applicability of
theories and constructs across multiple countries.

However, international marketing research is more complex and time consuming
than single country research. Advances in technology, particularly ready access to
internet samples in multiple countries has greatly facilitated rapid collection of
multi-country data. However, unless careful attention is paid to the design and
execution of the research to achieve equivalence on all dimensions across the units
studies, the results may be misleading or meaningless. Careful attention to all the
steps outlined in this chapter is essential to ensure that the results of international
marketing research are reliable and valid and can be used to make meaningful
inferences and advance the state of our knowledge about markets outside our own.
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Abstract

This chapter introduces readers to applications of data fusion in marketing
from a Bayesian perspective. We will discuss several applications of data
fusion including the classic example of combining data on media viewership
for one group of customers with data on category purchases for a different
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group, a very common problem in marketing. While many missing data
approaches focus on creating “fused” data sets that can be analyzed by others,
we focus on the overall inferential goal, which, for this classic data fusion
problem, is to determine which media outlets attract consumers who purchase
in a particular category and are therefore good targets for advertising. The
approach we describe is based on a common Bayesian approach to missing
data, using data augmentation within MCMC estimation routines. As we will
discuss, this approach can also be extended to a variety of other data structures
including mismatched groups of customers, data at different levels of aggre-
gation, and more general missing data problems that commonly arise in
marketing. This chapter provides readers with a step-by-step guide to devel-
oping Bayesian data fusion applications, including an example fully worked
out in the Stan modeling language. Readers who are unfamiliar with Bayesian
analysis and MCMC estimation may benefit by reading the chapter in this
handbook on Bayesian Models first.

Keywords

Data fusion · Data augmentation · Missing data · Bayesian · Markov-chain Monte
Carlo

Introduction

The Classic Data Fusion Problem in Marketing

Like many other fields, numerous situations arise in marketing where the ideal data
for analysis is not readily available. For example, in media planning, marketers want
to know whether viewers of a particular media (e.g., television channels or shows,
magazines, websites, etc.) purchase a particular product (e.g., breakfast cereal or
video games), so that they can decide where to place advertising or estimate the
association between exposures to ads and purchases. (See the chapter in this
handbook on Return on Media Models for more on marketing response modeling.)
Ideally, we would like a data set where the media consumption and purchase
behavior are tracked for the same set of customers. However, such data is seldom
available. Typically, a media tracking firm (e.g., Comscore, Rentrak) collects data on
media usage for one set of consumers, while another firm tracks data on product
purchases (e.g., IRI, Niesen, or Dunnhumby for CPG products, Polk for automobiles
in the USA, or IMS Health for pharmaceuticals in the USA). Even when media and
purchase data are collected by the same firm, it is often impractical to collect that
data for the same group of customers, and so firms like Nielsen and Kantar, which
collect both purchase and media usage data, typically maintain separate panels
for media tracking and purchase tracking. Thus, fusing these separate data sources
is a classic problem in marketing analytics (cf. Kamakura and Wedel 1997; Gilula
et al. 2006).
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While the goal is to measure the relationship between media usage and product
purchase, the data structure that we are faced with is like that shown in Fig. 1, where
each row (indexed by i) in data set 1 represents a user in the media panel and the
variables in data set 1 describe which content (e.g., channels, shows or websites) user
i views. (We let yi1 denote the vector of observed variables for each user in data set 1).
Data set 2 describes a different set of customers in a purchase panel with observed
variables describing which products each consumer has purchased (denoted as yi2).
The marketing objective is to estimate what types of products the viewers of some
content purchase. The key that makes this possible is a vector of common linking
variables which are observed both for customers in data set 1 and customers in data
set 2 (yib), where the subscript b indicates “both.” These variables are often demo-
graphics that are collected for users in both data sets. Typically, these demographics
are correlated with both media consumption and product purchases (i.e., new parents
may be more likely to visit a parenting website and more likely to buy diapers),
which enable data fusion.

Beyond the media and purchase data fusion problem, the data structure depicted
in Fig. 1 arises in many other contexts in marketing where we observe one set of
variables for one group of customers and another set of variables for another group
of customers. For example, two retailers considering a co-branding agreement might
want to fuse their separate customer lists to estimate how often customers purchase
both brands. And even within companies, growing privacy concerns have led firms
to avoid maintaining data sets with personal identifiers (e.g., names or addresses)
for individual customers. The data fusion methods we describe here can be used to
link two data sets which have been de-identified to protect user privacy (Qian and
Xie 2014).

In some cases marketing analysts may even plan to create such unmatched data;
for instance, in split questionnaire design, marketing researchers minimize the
burden on survey respondents by creating a pair of complementary surveys which
each can be answered by a subset of the respondents and later fused back together
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Fig. 1 The traditional data
fusion problem is to combine
two multivariate data sets with
different, but overlapping, sets
of variables. This data
structure occurs in a number
of marketing settings and can
be addressed as a Bayesian
missing data problem
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(Adigüzel and Wedel 2008). Beyond marketing, in educational testing, the data
structure in Fig. 1 occurs when data set 1 is students who take the SAT in 2015,
data set 2 is those who take it in 2016, and linking variables are test questions (items)
that overlap between the two tests.

In all of these examples, the analysis goal is to understand the multivariate
relationships between yi1 and yi2. The key to linking the two sets of survey data is
a set of questions that is common to both surveys, providing the linking variables
described in Fig. 1 (yib).

There are also several closely related data settings where similar methods can be
employed including survey subsampling and time sampling (cf. Kamakura and
Wedel 2000). In subsampling, some of variables are only collected for a subset of
the population, often because those variables are more difficult to collect, e.g.,
expensive medical tests in population health surveys. In time sampling, a subset of
respondents answer a repeated survey at each point in time, avoiding potential
respondent fatigue while still collecting data at the desired time interval.

Early approaches to data fusion tackled it as a database integration problem,
where in a first stage we match records in data set 1 with records in data set 2 to
create a complete database. Statistical modeling and estimation can then proceed as
usual with the now-complete data set. For example, the hot deck procedure (Ford
1983), and its more sophisticated variants, can be used to match records in the two
data sets using a set of ad hoc rules to match customer i in data set 1 with a customer j
in data set 2 who has the same values of yib. If there are more than one candidate
match, the match is selected randomly. If there are a large number of common
variables yib, such that a perfect match to customer i is not always available, then a
nearest neighbor approach can be used to match to customers who are similar. In
both hot deck and nearest neighbor, once all the customers i in data set 1 are matched
to a customer j in data set 2, analysis proceeds as if yi1 and yj2 were observed from the
same customer.

A challenging and often ignored aspect of these two-step imputation-then-anal-
ysis approaches is that the uncertainty in the imputation is not propagated forward to
the statistical modeling stage (Andridge and Little 2010). In marketing, two-step
approaches have become largely superseded by approaches which cast data fusion as
a Bayesian missing data problem (Kamakura and Wedel 1997; Gilula et al. 2006;
Qian and Xie 2014), which is the approach we will focus on in this chapter.

We focus on analyzing data like that in Fig. 1 as a Bayesian missing data problem:
yi2 are missing for individuals in data set 1 and yi1 are missing for data set 2. Thus,
while this chapter resides in the section of this book on data, the approach is more of
“a modeling method to handle data that is less than ideal.”

A critical step in analyzing any missing data problem is to consider the process by
which the missing data came to be missing. Ideally, data is Missing Completely at
Random (MCAR), which means that missingness is unrelated to the observed data or
the values of the missing data. When data is MCAR, we can ignore the missing data
mechanism in data fusion problems.

In data fusion, this assumption would be violated if one or both of the data sets
was a biased sample from the target population. For instance, if a media usage data
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set contains mostly lower-income respondents and the relationship between media
usage and product usage is different for low- and high-income respondents, then the
missing data in Fig. 1 would not be ignorable for overall population-level inferences.
This can happen due to poor sampling methods or survey non-response in one or
both of the panels. Respondents frequently avoid answering sensitive questions
particularly when the true answer is socially undesirable, e.g., viewing content that
one might be embarrassed to admit watching. In these instances, the likelihood of a
particular survey response being missing depends on the missing response. In these
cases, the process that created the missingness can be modeled to avoid bias
(Bradlow and Zaslavsky 1999; Ying et al. 2006).

When fusing two data sets that have been carefully sampled from the same target
population, we can assume the data is missing by design, which is a special case of
Missing Completely at Random (Little and Rubin 2014, Chap. 1). In this case,
inference can proceed without explicitly modeling the process that led to the
missingness. We are not aware of any published examples of data fusion in market-
ing where sampling bias or non-response is modeled, although this is a potential area
for future research.

The procedure for handling the missing data in Fig. 1 is as follows. If f (yi|θ) is the
model for the complete vector of responses yi = (yi1, yi2, yib) with parameters θ, our
inference is based on the likelihood of the observed data yobs, which is given by:

f yobsjθ� � ¼ ð
ymis
1

ð
ymis
2

Y
i

f yijθð Þdymis
2 dymis

1 (1)

where ymis
1 is the missing observation of yi2 in data set 1 and ymis

2 is the missing
observation of yi1 in data set 2.

One way to estimate θ in Eq. 1 is to create a Bayesian MCMC sampler that
samples simultaneously from the posterior of θ and the posteriors of the missing data
elements ymis

1 and ymis
2 . This approach is referred to as data augmentation (Tanner and

Wong 1987). We will illustrate data augmentation for two alternative specifications
of f (y|θ) in section “Developing and Estimating Fusion Models,” but first we
introduce another closely related missing data problem that occurs when merging
data from separate sources.

Mixed Levels of Data Aggregation

A second problem that can arise when trying to combine data from two data sources
is that the data is provided for individual customers in one data set but is only
available in aggregate in another. In analyzing media usage data, this problem occurs
because usage of some media channels like websites and mobile apps are easily
tracked and linked at the user level, while data on exposure to broadcast media like
radio, television, or outdoor signage is only available in aggregate. For example, we
might know from a representative panel (e.g., Nielsen People Meter) that approxi-
mately 5.3% of a group of users watched a television show, but we do not know
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exactly which users those were. Media planners would like to understand the co-
usage of media channels – are users who watch some content on TV also likely to
watch it on mobile or the web – but we cannot directly observe the co-usage at the
consumer level (Feit et al. 2013).

The resulting mixed aggregate-disaggregate data structure is depicted in Fig. 2
where we observe one set of disaggregate variables, yi1t at the individual-level and
only totals, Y2t, for a set of aggregate variables. The managerial goal is to infer the
correlations across users between the aggregate and the disaggregate variables,
which requires repeated observations of yi1t and Y2t over t.

Beyond the media-planning problem described above, this mixed aggregate-
disaggregate data structure occurs in other marketing settings, often due to the
limitations of tracking systems. For example, a retailer may have detailed cus-
tomer-level data on visits to an online store, but only aggregate counts of
customer visits in physical stores. Even though this data is deficient, one can
still use it to infer how many multichannel customers there are and often which
customers those are. Similarly, retailers often have customer-level data on cou-
pon redemption (tracked as part of the transaction), but only aggregate data on
how many coupons are in circulation. Musalem et al. (2008) show how to use
a Bayesian missing data approach with this data to infer “who has the coupon?,”
in turn leading to more accurate inference about the effect of coupons on
purchases.

Inference for the mixed aggregate-disaggregate data structure described in Fig. 2
can also be viewed as a missing data problem, where the individual-level observa-
tions for the aggregated variables, yi1t, are missing; we only observe a total Y2t = �
yi2t for each period t. As with the traditional data fusion problem, the yi2t is missing
by design, and inference can be based on specifying a likelihood for the complete
data and then integrating out the missing observations. Specifically, if f (yi1t, yi2t|θ) is

totalstotalstotals
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variablesFig. 2 In mixed aggregate
and disaggregate data, only
marginal totals are observed
for some variables. Repeated
observations of the marginal
totals make it possible to
identify the individual-level
correlations, even when they
are not directly observed
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the likelihood for the complete individual-level observations that we do not observe,
then inference is based on:

f y1t,Y 2tjθð Þ ¼
Y
i

ð
Yi2t

f yi1t, yi2tjθð Þdyi2t s:t:
X
i

yi2t ¼ Y 2t (2)

The key nuance in Eq. 2 is that the integral over the missing data must conform to
the constraint implied by the observed marginal totals � yi2t = Y2t. By observing
covariation between media channels over time, and posing a model limiting the
covariation structure in the model so that it is driven by user-level behavior, one can
estimate the user-level covariation in media usage and make inference about which
customers are most likely to have been consuming the aggregated media channel on
a given day. By contrast, if we were to aggregate all the data and fit an aggregate
time-series model with � yi1t = Y1t and � yi1t = Y1t, it would be impossible to
attribute covariation in aggregate media usage to co-usage by individual users.

An MCMC sampler can be developed to sample from the posterior of the model
in Eq. 2 by developing a way to sample the missing individual-level yi2t such that
they conform to the constraint. Thus the method is closely related to the approach
used to estimate choice models from aggregate data proposed by Chen and Yang
(2007) and Musalem et al. (2008). In fact, in this case, the aggregated data (i.e.,
constraint) provides information that makes the imputed yi2t even more plausible.

Developing and Estimating Fusion Models

This section provides readers with a step-by-step guide to developing and estimating
fusion models by walking the reader through the computation for two examples.
These examples are intentionally simplified to allow the reader to focus on the core
ideas in data fusion. Our hope is that readers who master these examples will be
well-prepared to move on to the more sophisticated examples we discuss in the
literature review in section “Summary of Related Literature.”

Ex. 1: Fusing Data Using a Multivariate Normal Model

We begin with an example of data like that in Fig. 1, where a vector of K1 variables,
yi1, are only observed in the first data set, while another vector of K2 variables, yi2,
are only observed in second data set. As we discussed in the introduction, this is the
data structure for split questionnaire designs (where data set 1 and data set 2
represent sub-surveys administered to separate people) and for the classic problem
of fusing media consumption data with product purchase data. While creating a
complete fused data set (i.e., imputing the missing data in Fig. 1) is often an
intermediate step in the analysis, it is important to recognize the ultimate inferential
goal in both of these examples is to understand the association between yi1 and yi2
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despite the fact that those variables are never observed together for the same
respondent.

The key to making this inference is that there is a vector of Kb variables that are
observed in both data sets, yib. As we will illustrate, it is vital that these linking
variables be correlated with yi1 and yi2. If they are independent, then the observed
data provide no information about the association between yi1 and yi2.

The first step in building a fusion model is to specify a likelihood for the complete
observation that we wish we had for all respondents yi = (yi1, yi2, yib). One simple
model for a vector response like this is a multivariate normal distribution:

yi � N K1þK2þKbð Þ μ,Σð Þ (3)

where NK denotes the multivariate normal distribution of dimension K and μ and Σ
are the mean vector and covariance matrix to be estimated from the data. The
multivariate normal model is computationally convenient to work with and so is
commonly used in the statistical literature (Little and Rubin 2014; Rässler 2002). It
also allows us to estimate correlations between elements of yi through the covariance
matrix Σ. In data fusion problems, we are particularly interested in the correlations
between elements of yi1 and yi2, which are never observed for the same subject. For
example, when combining media consumption and purchase data, these correlations
tell us that users who use a particular media channel are likely to purchase a
particular product.

While we begin with the simpler multivariate normal model, we should note that
the variables we observe in marketing are often binary or discrete, which may not be
suitably modeled with a multivariate normal model. In most real cases, an appropri-
ate model is chosen such as a latent cut point model. However, these other models
are a relatively straightforward extension of the multivariate model as we will show
in Ex. 2.

The core idea of fusion modeling is to estimate the model in (3) using Bayesian
methods. Bayesian inference readily handles missing data, including the missing
data that is created here due to the fact that some elements of yi are unobserved for
each respondent in the data set. Of course, it would be impossible to follow the
approach of estimating the model in (3) using only complete cases, as there are no
complete cases.

While our goal is to evaluate the likelihood in Eq. 1, we handle the integral by
treating the missing data as unknown and computing the joint posterior of the
missing data and the model parameters. In Bayesian inference, all unknown param-
eters, missing data, and latent variables are treated similarly. Conditional on the
model and priors, we compute a posterior distribution for each unknown quantity
based on Bayes theorem. Once this joint posterior is obtained, the marginal poste-
riors of the parameter Σ can be evaluated to understand the correlations in the data.
The posteriors of the missing data elements in yi can also be used to generate a fused
data set, if that is desired.

It should be emphasized that by fitting a Bayesian fusion model, we simulta-
neously obtain estimates for both the parameters of interest – in this case μ and
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Σ – and impute the missing values in yi for each respondent, i. Unlike other
approaches to missing data which impute in a first stage (often using ad hoc
methods) and then estimate parameters in a second stage, the posteriors obtained
using Bayesian inference use all the information available in the data and reflect all
of the posterior uncertainty resulting from the imputing the missing data.

For all but the most simple Bayesian models, the posterior is obtained by
developing an algorithm that will generate random draws from the joint posterior
distribution of all unknown parameters. These random samples are then analyzed to
estimate the posterior distributions for both the model parameters and the missing
data. There are a variety of algorithms for sampling from the posterior distribution
that can be adapted to any model including the broad class of Markov-chain Monte
Carlo (MCMC) algorithms. When writing MCMC samplers for a fusion model, it is
necessary to work out the full conditionals for the missing data and create Gibbs
steps to explicitly draw them. An alternative to building the sampler directly is to use
a tool like Stan (Carpenter et al. 2016), which allows the user to specify a likelihood
using a modeling language and then automatically produces an MCMC algorithm to
generate posterior draws from that model. We will illustrate this example using Stan.
This code can be run in R, after the Stan software and the RStan R package are
installed; see the RStan Getting Started guide (Stan Core Development Team 2016)
for installation instructions.

The first step in estimating the fusion model using Stan is to lay out the Stan
model code, which describes the data and the likelihood. We provide this code in
Fig. 3.

The data block in the code in Fig. 3 tells Stan what data is observed: N1
observations of a vector of length K1 called y1, N2 observations of a vector of
length K2 called y2, and N1 + N2 observations of a vector of length Kb called yb.
These correspond to the variables observed only in data set 1, the variables observed
only in data set 2, and the common linking variables.

The parameters block in Fig. 3 defines the variables for which we want to
obtain a posterior. This includes the parameters mu, tau, and Omega, where mu is
the mean vector for yi, tau is a vector of variances, and Omega is the correlation
matrix. (This is the preferred parameterization of the multivariate normal in Stan.
Note that other MCMC tools like WinBUGS (Spiegelhalter et al. 2003) parame-
terize the multivariate normal with a precision matrix, the inverse of the covari-
ance matrix.) The parameters block also defines the missing elements of yi:
y1mis for the missing variables in data set 1 and y2mis for the missing variables
in data set 2. In Stan, the term parameters is used for any unknown quantity
including both traditional parameters and missing data; following the Bayesian
approach to inference, Stan makes no distinction between these two types of
unknowns.

In the transformed parameters block, there is a bit of code that maps the
observed data and the missing data into the full y array. This is simply bookkeeping;
the known and unknown elements of y from the data and parameters blocks
are mapped into a single vector. (Note that WinBUGS does not require this step and
instead simply assumes that any declared data that is not provided is missing data.)
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Stan requires the user to explicitly declare the observed and missing data and then
use the transformed parameters block to define the combined “wished for”
data.

data {
int<lower=0> N1; //observations in data set 1
int<lower=0> N2; //observations in data set 2
int<lower=0> K1;
int<lower=0> K2;
int<lower=0> Kb;
vector[K1] y1[N1];
vector[K2] y2[N2];
vector[Kb] yb[N1 + N2];

}
parameters {

// mean of complete vector
vector[K1 + K2 + Kb] mu;
// correlation matrix for complete vector
corr_matrix[K1 + K2 + Kb] Omega;
// variance of each variable
vector<lower=0>[K1 + K2 + Kb] tau;
// missing elements in data set 1 (observed in y2)
vector[K2] y1mis[N1];
// missing elements in data set 2 (observed in y1)

vector[K1] y2mis[N2];
}
transformed parameters{

// create the complete data
vector[K1 + K2 + Kb] y[N1 + N2];
for (n in 1:N1) {

for (k in 1:K1) y[n][k] = y1[n][k];
for (k in 1:K2) y[n][K1 + k] = y1mis[n][k];
for (k in 1:Kb) y[n][K1 + K2 + k] = yb[n][k];

}
for (n in 1:N2) {

for (k in 1:K1) y[N1+n][k] = y2mis[n][k];
for (k in 1:K2) y[N1+n][K1+k] = y2[n][k];
for (k in 1:Kb) y[N1+n][K1+K2+k] = yb[N1+n][k];

}
}
model {

//priors
mu ˜ normal(0, 100);
tau ˜ cauchy(0,2.5);
Omega ˜ lkj_corr(2);
//likelihood
y ˜ multi_normal(mu, quad_form_diag(Omega, tau));

}

Fig. 3 Stan code for multivariate normal data fusion model
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In the final model block, the model is specified, along with priors for the
parameters. The complete y vector is modeled as a multivariate normal with mean
vector mu and covariance matrix quad_form_diag (Omega, tau), which trans-
forms Omega and tau to the covariance matrix Σ. The prior on mu is the conjugate
normal prior, and the priors on tau and Omega are the Cauchy and the LKJ prior for
correlation matrices, as recommended by the Stan Modeling Language User’s Guide
and Reference Manual (Stan Development Team 2017). Note that Stan provides a
wide variety of other possible models and priors, and the code in Fig. 3 can be easily
modified. More details on how Stan models are specified can be found in the User’s
Guide.

To estimate the model, the Stan code above is saved in a file and then called using
the stan function from the RStan package in R. (Alternatively, Stan can be called
from other languages including Python, MATLAB, Mathematica, and Stata.) In R,
the data is passed to Stan as an R list object of elements with the same names and
dimensions as defined in the data block in the Stan model code, i.e., d1 is a list
with N1, N2, K1, K2, Kb, y1, y2, and yb. For example, if the data is stored in the R
object d1$data, its structure would be as follows:

> str(d1$data)

List of 8

$ K1: num 1

$ K2: num 1

$ Kb: num 2

$ N1: num 100

$ N2: num 100

$ y1: num [1:100, 1] 1.037 -0.798 0.318 -0.322 0.323 ...

$ y2: num [1:100, 1] 0.401 -1.821 -1.701 0.726 -0.228 ...

$ yb: num [1:200, 1:2] 0.607 0.53 1.759 0.49 0.406 ...

In this example, the combined vector yi consists of four variables where the y1i
vector is a single variable observed for 100 respondents, y2i is a second single
variable observed for a different 100 respondents, and ybi consists of two variables
observed for all 200 respondents. Complete code to generate synthetic data and run
this example is included in the Appendix and is available online at https://github.
com/eleafeit/data_fusion.

If the code above is saved in the file Data_Fusion.stan in the working directory of
R, then we can obtain draws from the posterior distribution of all unknowns with the
following command in R:

library(rstan)

m1 <- stan(file="Data_Fusion.stan", data=d1, iter=10000,

warmup=2000, chains=1)

The result is a set of samples from the posterior distribution for mu, tau, Omega,
and the missing values of yi, which are called y1mis and y2mis. Note the inputs
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iter and warmup, which specify that Stan should throw away the first 2000 draws
(warmup) and then treat the next 10,000 � 2000= 8000 draws as samples from the
posterior. See the chapter in this handbook on Bayesian models for more details.

Once this call to Stan from R is completed, the posterior draws are stored in the
m1 object in R. Note the computation may take minutes or hours depending on the
size of the data set and the speed of the computer; MCMC algorithms tend to be quite
computationally intensive. These draws can be analyzed (typically within R) to
make statements about the posteriors of the parameters and the missing data. For
instance, a summary of the estimated correlations can be produced with the
command:

> summary(m1, par=c("Omega"))

which results in the output:

$summary

stats

parameter mean sd 2.5% 25% 50% 75% 97.5%

Omega[1,1] 1.00000000 0.000000e+00 1.00000000 1.00000000 1.00000000 1.00000000 1.0000000

Omega[1,2] 0.41684930 2.061013e-01 0.02423465 0.26268973 0.41374668 0.57872494 0.7835050

Omega[1,3] -0.28081755 7.906684e-02 -0.42740820 -0.33640737 -0.28380772 -0.22730667 -0.1226349

Omega[1,4] 0.64837176 5.226765e-02 0.53581533 0.61582170 0.65217926 0.68441334 0.7424671

Omega[2,1] 0.41684930 2.061013e-01 0.02423465 0.26268973 0.41374668 0.57872494 0.7835050

Omega[2,2] 1.00000000 8.368726e-17 1.00000000 1.00000000 1.00000000 1.00000000 1.0000000

Omega[2,3] -0.69550156 4.772961e-02 -0.77889871 -0.72881140 -0.69929899 -0.66573197 -0.5916050

...

In this example, the primary inferential goal is to understand the correlation
between y1i and y2i, which are the first two elements in the vector y. This corresponds
to the Omega[1,2] correlation reported in the second row of the above summary.
The summary shows that the correlation has a posterior mean of 0.417 with a
standard deviation of 0.206, suggesting that the correlation is between 0.024 and
0.784, which is fairly diffuse, but clearly suggests a positive correlation between yi1
and yi2. While this correlation is the key parameter of interest in the data fusion
problem, posterior summaries of other parameters can be obtained with similar
commands. See the R code in the Appendix for details.

The posterior distributions for μ and Σ are shown graphically in Figs. 4 and 5, and
code to produce these graphs is included in the Appendix. The posterior distribution
of the key correlation between yi1 and yi2 is shown in the bottom of the plot in Fig. 5,
labeled Omega.12. Again, the figure clearly shows that the posterior of this
correlation is quite diffuse. However, despite the fact that we never observe y1i and
y2i for the same individual, we can infer that that y1i and y2i are positively correlated,
which was precisely the goal of our data fusion. Since we generated this data
synthetically, we happen to know that the true correlation is 0.3, which the model
has recovered reasonably well, despite the fact that y1i and y2i are never observed for
the same i and the data set is rather small.

Another important feature to notice in Fig. 5 is that the posterior for the correla-
tion between yi1 and yi2 (labeled Omega.12) is much more diffuse than the other
correlations. Since the first two elements of yi are never directly observed together,
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the data contains only indirect information about the correlation. The other correla-
tions are directly observed and therefore better identified resulting in narrower
posteriors for the other correlations in Fig. 5. This can be understood by noting
that for the correlations where the variables are never observed together, the MCMC
sampler is integrating over possible missing values which creates greater diffuseness
(appropriately so) in the posterior.

Although our primary goal is to understand the association between yi1 and yi2
which can be assessed with the posterior of Omega.12, the MCMC sampler also
produces posterior samples for the missing elements of yi. An example of one of
these posterior distributions is shown in Fig. 6. Although the overall mean of yi1
across all respondents (observed and unobserved) is around 0.1 (see Fig. 4), the
posterior for this particular respondent is substantially lower and is centered at�1.22
(2.5%-tile = �2.45, 97.5%-tile = 0.00). Even though we don’t observe yi1 for this
respondent, the posterior for the missing data tells us the likely range of reasonable
values of yi1 for this respondent, based on his or her observed values for yi2 and yib.
The posterior of yi1 can be summarized by the mean or median to obtain a “best

Fig. 4 Posterior distribution of mu (means of multivariate normal for yi) and tau (variances of yi)
in Ex. 1
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estimate” of the missing data for this respondent. These estimates depend on the
observed data for individual i, as well as the estimated mean and covariance across
the population.

Importantly, because the posterior for the unobserved elements of yi and the
parameters are evaluated simultaneously, the posterior uncertainty in the missing
elements of yi fully accounts for the posterior uncertainty in μ and Σ, and, similarly,
the posterior uncertainty in μ and Σ fully accounts for posterior uncertainty in the
unobserved elements of yi. That is, we can say that there is a 95% chance that the
missing value of yi1 for this respondent is between �2.45 and 0.00, conditional on
the model and our priors.

The MCMC sampler has produced posterior samples for all 100 missing values of
yi1 and 100 missing values of yi2, and the posterior draws could be summarized to
produce a fused data set where the missing values are imputed with posterior means
or medians. Although this is unnecessary, if the inferential goal was to measure the
correlations in Σ, we can interpret the posteriors for Σ directly. If the goal is to
produce a fused data set, then to carry forward the posterior uncertainty into any
future analysis, the missing values should be multiply imputed (Rubin 1996), simply
by sampling a subset of the posterior draws to create multiple fused data sets. We
strongly recommend this approach as opposed to plugging in posterior means or
medians (even when appropriately obtained) as biased estimates of nonlinear param-
eters would occur.

Depending on the context, the imputed individual-level data may also be used to
target individual customers. For instance, if y2i represents usage of a particular
product, then the imputed values of y2i could be used to target specific customers
who are likely to use the product, even if we have never observed those customers’
product usage. This scoring application is useful in any CRM application where the

Fig. 6 Posterior distribution
for one of the unobserved
elements of y
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customers in the data set can be re-targeted, such as fusing the product purchase data
between two retailers to identify customers that are good prospects for cross-selling.

To summarize the overall ability of the model to recover the unobserved values in
yi1, we plot the posterior medians for all 100 missing observations of yi1 against the
true value used to generate the data in Fig. 7. (We know the true values because when
we generated the data, we drew yi from a multivariate normal distribution and then
removed the “unobserved” elements of yi.) Figure 7 also shows the posterior
uncertainty in the imputation by plotting error bars representing the 2.5 and
97.5%- tiles of the posterior distribution, illustrating the full range of values that
the missing data might take. The posterior medians are generally consistent with the
true values, and the true value is always contained within the posterior interval.
Thus, the fusion model is able to accurately recover the unobserved value of yi1.

Figure 7 shows that the posterior medians for the unobserved y1i tend to be
somewhat closer to zero than the true values. (The slope of a best-fit line thorough
the points in Fig. 7 is somewhat less than 1.) This is an example of Bayesian
shrinkage, where Bayesian posteriors for individuals tend to be closer to the overall
mean and should be expected.

With this example, we have illustrated that fusion modeling is straightforward to
execute; however, a word of caution is due. Inference about unobserved values of y1i
and y2i and the correlation between them (including non-Bayesian inference)
depends critically on their being correlations between the linking variables and y1i
and y2i. To illustrate this, we re-estimated the fusion model with two other synthetic
data sets that were identical in dimension to the first. One was generated where Σwas
diagonal (i.e., no correlations in yi) and one generated where all correlations in Σ
were 0.9. Complete R code for replicating these analyses is included in the
Appendix.

When the correlations are high, as shown on the bottom panel in Fig. 8, the
missing elements of y1i can be recovered very precisely. The posterior medians are
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Fig. 7 Posterior estimates of missing elements of y1 are accurately recovered by the fusion model
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close to the true values and the posteriors are quite narrow, which reflects the fact that
when there are high correlations the data is more informative about the unobserved
elements of y1i than our first example, where the correlations were moderate.
However, when the correlations are zero, the data is completely uninformative of
the missing observations of y1i. As shown in the top panel of Fig. 8, there is no
discernible relationship between the posterior medians and the true values, and the
posteriors are so wide that they run off the edges of the plot. This extends to
inference about the correlation between yi1 and yi2, which has a posterior that is
close to uniform between �1 and 1 – which is essentially the same as the prior,
reflecting that fact that the data contains no information about the correlation
between yi1 and yi2. So, even with a substantial number of observations, it is possible
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Fig. 8 Inference about missing elements of y1 depends critically on the correlations between the
elements of y. When Σ is diagonal, there is no information in the data about the missing elements of
y1i (top). When correlations between elements of yi are high, unobserved elements of y1i are
precisely recovered (bottom)
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that the missing elements of yi1 and yi2 cannot be recovered if the linking variables
yib are not correlated with yi1 and yi2.

This discussion relates to the clear distinction between the fraction of missing
data and fraction of missing information in the missing data literature (Little and
Rubin 2014) where the number of rows that are incomplete may be a poor indicator
of how much missing information there is.

The two cases presented in Fig. 8 illustrate why it is extremely important when
doing data fusion to carefully choose the linking variables in yib. For example, in
designing a split questionnaire survey, it is important that responses to the questions
that are answered by all respondents are correlated with responses to the questions
that are only answered by some respondents. (See Adigüzel and Wedel (2008) for
more extensive discussion of split questionnaire design.) In fusing media consump-
tion and product purchase data – the classic data fusion example – demographics are
usually used as the linking variables. This will work best when demographics are
correlated with media consumption (which is very likely but perhaps less so in
today’s highly fragmented media landscape) and product purchase (which is likely at
the category level but perhaps not at the brand level).

However, even if a poor choice is made for the linking variables, the Bayesian
posteriors for the parameters and the missing data will always reflect whatever
uncertainty remains. Thus, unlike ad hoc imputation approaches, Bayesian fusion
modeling will identify when the linking variables are weak by reporting diffuse
posteriors for the individual-level imputations.

Ex. 2: Fusing Data Using a Multivariate Probit Model

As we mentioned earlier, the multivariate normal model is inappropriate for most
marketing data, where there are many binary or categorical variables. This is easily
accommodated by specifying a latent variable model where an underlying latent
vector is normally distributed and then each element of that vector is appropriately
transformed to suit the observed data. For example, if the data is binary, which is
quite common in marketing, for instance, with “check-all-that-apply”-type questions
in a survey or with behavioral variables that track incidence, one can use a multi-
variate probit model. Assuming that yi = (y1i, y2i, ybi) contains all binary variables,
the model for the complete data is:

yik ¼ 1 if zik > 0
0 if zik < 0

�
(4)

zi ¼ z1i, . . . , zKið Þ � NK μ,Σð Þ (5)

where k indexes the elements in yi from 1 to K= K1 + K2 + Kb. Complete Stan model
code for this model is provided in the Appendix. Note that the variances in Σ are not
identified in the multivariate probit model, but associated correlations (Omega) are
identified.
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We estimated this model using a data set with similar structure as that in Ex. 1. As
in the previous example, there is one observed variable in the first data set (yi1), one
in the second (yi2), and two linking variables in yib; however, these variables are now
all binary. As in the previous example, the key inferential goal is to estimate the
correlation between yi1 and yi2.

Complete R code for running this model is provided in the Appendix; we focus
here on the resulting posterior inference. The posterior distribution for the
correlations are shown in Fig. 9 which shows that the correlation between yi1
and yi2 has a posterior mean of 0.368 with a rather wide posterior relative to our
first example (2.5%-tile = 0.024, 97.5%-tile = 0.784). This is unsurprising as in
the previous example yi1 and yi2 are never observed for the same subject and, in
addition, the binary data used in this example is less informative than the data
used in Ex. 1.

For each of the unobserved y1i, we obtain a set of posterior draws that is either
0 or 1. Summarizing these, we can get a probability that a particular missing value
is 1. For example, the first missing element of data set 1 is equal to one in 0.296 of
the posterior draws, indicating that there is a 0.296 probability that y1,1 is one.
Consequently, our best estimate of the missing value of y1,1 is that it is equal to
zero.

We can summarize these best estimates across all individuals in the data set.
Comparing these to the true values that generated the data, we get the confusion
matrix in Table 1.

So, even with binary data, which is less informative, it is still possible to estimate
a fusion model and recover the unobserved variables from each data set reasonably
well.

The multivariate probit sampler also produces draws for the underlying contin-
uous normal variables, zi. In Fig. 10 we plot the posterior means of those estimated

Table 1 Confusion matrix
for estimated missing
values of y1i in fusion
model for binary data

True value of y1i
0 1

Estimated y1i 0 38 17
1 14 31

Fig. 9 Posterior distribution
of correlations (Omega) from
a data fusion model for binary
data in Ex. 2
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latent variables. Those z which are associated with an observed binary y are plotted
in black, and those z for which the y is missing are plotted in red. In Fig. 10 all of the
black points are in the upper right or lower left quadrants, reflecting the fact that
when the associated binary variable y is observed, the posterior means for z are
consistent with the observed y which is in turn consistent with the sign of the true z.
In contrast, the red points appear in all four quadrants, reflecting the same “confu-
sion” we saw in Table 1. However, the points in Fig. 10 do generally follow a
diagonal line, reflecting the model’s ability to recover the missing values of yi for
most users and the latent zi.

Examples 1 and 2 illustrate simple data fusion models for continuous data and
binary data. Example 2 uses a continuous normal latent variable to model a binary
observation, and this strategy can be extended to allow for ordinal responses,
truncated continuous responses or a combination of different variable types. These
models can also be extended to allow for mixed levels of aggregation as we discussed
in the “Introduction.” Additionally, one could build any number of model structures
to relate the data in both data sets. The Bayesian framework and tools like Stan allow
analysts the flexibility to build models that reflect the data-generating process.

Summary of the Process for Developing a Fusion Model

To summarize, the general process for developing a fusion model is as follows:

1. Cast the fusion problem as one of missing data.
2. Consider how the missing data came to be missing. In most data fusion problems,

the missing data is missing by design, which means we do not need to model the
process by which the data became missing as in other missing data settings.

3. Specify a parametric model for the complete “wished-for” or “fused” data.

Fig. 10 Posterior means latent variable z for missing binary values y (red) show some confusion
where the imputed value is inconsistent with the true value
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4. Develop an MCMC sampler for the model. In these examples, we have used
Stan which automatically produces a MCMC sampler based on a specified
model. Programs similar to Stan include WinBUGS and JAGS. One may also
code the sampler directly in a statistical language like R, MATLAB, Python, or
Gauss.

5. Treat the missing data as unknowns and estimate them using data augmentation.
In the above example, we used Stan to define the missing data as a Stan
parameter, which resulted in Stan producing a posterior sample for the
missing data. When building a Gibbs sampler from scratch, one would find a
way to draw the missing parameters from their full conditional distributions based
on the model parameters and the observed data.

6. Analyze the posterior samples to make inferences about the model parameters.
Often those model parameters correspond directly to the inferential goals of the
project.

7. If desired, create a multiply-imputed “fused” data set by taking several random
draws from the posterior for the imputed missing data. The fused data can be used
as a basis for targeting individual customers.

A point that should be emphasized is that this approach, like all Bayesian
inference, conditions on the specified model for the fused data. Our first example
used a multivariate normal model and our second used a multivariate probit
model. Models based on the multivariate normal are computationally convenient
and common in the literature. For instance, in the context of split questionnaires,
Raghunathan and Grizzle (1995) and Adigüzel and Wedel (2008) use a cut point
model with an underlying multivariate normal distribution. Rässler (2002) also
focuses primarily on data fusion with the multivariate normal. However, as with
all model-based inference, a model should be chosen that is appropriate for the
data and obtaining a posterior based on that model, and the observed data is
generally easy to do using modern Bayesian computational methods.

We focused here on methods that propose a model for the joint distribution of the
fused data, (y1, y2, yb), but Gilula et al. (2006) point out that it is actually only
necessary to specify the joint distribution of y1 and y2 conditional on yb. They further
point out that most of the two-stage matching approaches implicitly assume inde-
pendence of y1 and y2 conditional on yb, i.e., f (y1, y2|yb) = f (y1|yb) f (y2|yb). Relying
on this assumption, one can specify and estimate models for f (y1|yb) and f (y2|yb)
directly and then integrate over the observations of yb in the data to find the joint
distribution of y1 and y2. This simplifies the modeling task, eliminating the need to
specify a model for the linking variables, yb. The likelihood of f (y1|yb) and f (y2|yb)
can be modeled using off-the-shelf methods such as generalized linear models. Qian
and Xie (2014) expand on this approach by proposing an alternative nonparametric
model for f (y1|yb) and f (y2|yb) that is highly flexible and suitable for both continuous
and discrete data.

By contrast, the approaches like that illustrated in Exs. 1 and 2 model the full
vector (y1, y2, yb) and do not make the assumption of conditional independence
directly. Instead, they identify the conditional dependence through the prior
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which yields dependence in the marginal distribution. As we illustrated in Ex. 1,
the empirical identification of the full joint distribution can be weak, that is, some
parameters of the joint distribution are only identified by the prior. The level
of identification depends, sometimes in subtle ways, on the data; in our
example identification was weak when yib was not correlated with yi1 and yi2.
Empirical identification should always be checked by comparing the prior to the
posterior uncertainty; if they are the same, then the data has not provided any
information.

Summary of Related Literature

We conclude with a brief summary of the literature in marketing on data fusion and
then expand to a number of related papers that use Bayesian missing data methods.
Our hope is that the examples provided in the previous section will provide a solid
base from which students can tackle the more challenging data fusion problems
described in the literature.

Literature on Data Fusion

Table 2 organizes several key papers on data fusion into three related problem
domains: (1) the classic data fusion problem, (2) split questionnaires, and (3)
mixed aggregate-disaggregate data.

The classic problem of fusing media and purchase data (see Fig. 1) was first
recognized by Kamakura and Wedel (1997). They cast the problem as a Bayesian
missing data problem, recognizing that the missing data mechanism is missing by
design and so is ignorable. They propose a joint model for the fused categorical
data (yi1, yi2, and yib) that is a discrete mixture model where incidence is indepen-
dent across yi within each latent group. They also show that it is important to
account for the uncertainty caused by the data fusion process and propose a
multiple imputation approach that is a predecessor to the Bayesian posterior
samples we have described in this chapter. Kamakura and Wedel (2000) build on
this work by proposing an alternative factor model which can be used in data
fusion. They also point out there are a number other related problems where data is
missing by design (including subsampling and time sampling, which we discussed
in section “Introduction”) where the same Bayesian missing data approach may be
employed.

Gilula et al. (2006) simplified the data fusion problem by making the assump-
tion of conditional independence between the fused variables. If p(yi1|yib) is
assumed to be independent of p(yi2|yib), then it becomes unnecessary to specify
the full joint distribution of yi1, yi2, and yib. Instead, the p(y1|yb) and p(y2|yb) can
be estimated separately (using standard models), and then the joint distribution
can be approximated by averaging over the observed empirical distribution
of yib, i.e.,
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p yi1, yi2jDð Þ � EθjD
1

N

X
obs

p yi1j yib,θð Þp�yi2j yib, θ�
" #

(6)

where D is the observed data and N is the number of observations in the complete
data set. This so-called direct approach to data fusion reduces the potential for
misspecification and is computationally simpler than the joint modeling approach.
This approach works well for the standard data fusion problem, yet the joint
modeling approach is often desirable when the data fusion problem is embedded
within a more complex model (e.g., Musalem et al. 2008; Feit et al. 2010).

Most recently, Qian and Xie (2014) developed a nonparametric odds ratio model,
which they show performs better than the parametric models typical of the prior
literature and applies this model using both the direct and the joint modeling
approaches. They also identify a new application area for data fusion: combining
data collected anonymously on a sensitive behavior with data collected non-anon-
ymously on other behaviors. In their specific application, they fuse data on cus-
tomer’s use of counterfeit products with other shopping and product attitudes.

At about the same time the data fusion was recognized as an important problem in
marketing, Raghunathan and Grizzle (1995) proposed similar techniques for ana-
lyzing split questionnaires in the statistics literature. They propose a model for
combined continuous and categorical data and analyze that model with a fully
Bayesian approach, using a Gibbs sampler, as we described in section “Developing
and Estimating Fusion Models.” Adigüzel and Wedel (2008) extend the work on
split questionaires, focusing on the problem of split questionnaire design, using a
pilot sample of complete data to determine which questions should be included in
each block of the split questionnaire to obtain the most precise posteriors for the

Table 2 Summary of key data fusion papers

Paper Fusion Contribution

Media
and
purchase

Kamakura and
Wedel (1997)

Joint Recognizing data fusion as a missing data problem
and a discrete mixture model for data fusion with
categorical variables

Kamakura and
Wedel (2000)

Joint Factor model for data fusion with continuous and
categorical variables

Gilula et al.
(2006)

Direct Direct approach to data fusion applied with several
off-the-shelf models

Qian and Xie
(2014)

Direct
or
joint

Nonparametric odds ratio model for data fusion with
continuous and categorical variables

Split
quest.

Raghunathan
and Grizzle
(1995)

Joint Split questionnaire as a missing data problem and a
model for continuous and discrete data

Adigüzel and
Wedel (2008)

Joint Method to design a split questionnaire and a normal
multivariate cut point model for data fusion

Agg. Feit et al. (2013) Joint Fusion model for mixed aggregate-disaggregate
binary data
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missing (by design) data. They use a normal multivariate cut point model for the data
fusion.

Building on this prior work on data fusion, Feit et al. (2013) brought the problem
of combining mixed aggregate and disaggregate data into the marketing literature.
Their approach involves building a posterior sampler for the complete individual-
level data that is constrained to be consistent with the aggregate data.

Related Missing Data Problems

The application of the Bayesian approach to missing data extends far beyond the
data fusion problem. Since the reader of this chapter has, by this point, become
familiar with the Bayesian approach to missing data, in this section, we provide a
brief overview of other applications of this approach. Table 3 lists a few key papers
in this area.

Both Feit et al. (2010) and Qian and Xie (2011) propose solutions to the common
problem that the analyst wishes to estimate a regression model but has some missing
regressors. Regressors are not typically included in the probability model, and so
Feit et al. (2010) illustrate how these missing regressors can be handled by including
a model specification for them. Inference then proceeds by simulating from the joint
posterior for the regression model parameters, regressor model parameters, and the
missing regressors. Their work illustrates how, under the Bayesian framework, the
posterior for missing regressors is informed by the observed regression outcomes.
Specifically, they show that you can impute consumers product needs (typically
modeled as a regressor) from their observed choices in a conjoint study. While Feit et
al. (2010) use a standard multivariate probit model for the missing regressors, Qian
and Xie (2011) propose a more flexible nonparametric model that can handle a
variety of missing regressors. Both papers illustrate the point that researchers should
specify a model that reflects their beliefs about the data-generating process, whether
that model is one of those proposed in the papers in Table 2 specifically for data
fusion or a regression model or a more complex structural model. Once the model
is specified, model parameters and missing data are estimated simultaneously,
rather than treating missing data as a problem that should be handled prior to data
analysis.

Table 3 Summary of related work on Bayesian missing data problems

Problem Paper Missing data mechanism

Missing regressors Feit et al. (2010) Ignorable

Qian and Xie (2011) Ignorable

Aggregated regressors Musalem et al. (2008) Ignorable

Survey selection Bradlow and Zaslavsky (1999) Non-ignorable

Ying et al. (2006) Non-ignorable

Cho et al. (2015) Non-ignorable

Anonymous visits Novak et al. (2015) Non-ignorable
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Musalem et al. (2008) develop a model and estimation routine for a similar
problem where individual-level regressors are missing but are observed in aggregate.
The specific problem they study is the situation where purchase histories are
observed for individual customers, and those customers are observed redeeming
coupons, but we don’t know which customers have a coupon that they chose not to
redeem. Instead, we only observe how many coupons were distributed in aggregate.
They simultaneously estimate a model that relates the (unobserved) coupon avail-
ability to purchases and imputes “who has the coupon” in a way that is consistent
with the aggregate observation.

All the previously discussed literature deals with situations where data is missing
by design. That is, the data is missing because the researcher planned not to collect it,
and the missingness is therefore ignorable. But many missing data problems in
marketing address situations where the missingness is stochastic and related to the
missing value, which is non-ignorable. The classic example of this is survey non-
response. Bradlow and Zaslavsky (1999) impute individual users’ missing satisfac-
tion ratings under the assumption that a user will be less likely to answer a
satisfaction question when they do not hold a strong opinion. Similar, Ying et al.
(2006) study individual users’ movie ratings under the assumption that the likeli-
hood that a user will not rate a movie (probably because they didn’t watch it) is
related to their (unobserved) rating for that movie. Ying et al. (2006) illustrate that
when the correlation between a movie being not-rated and the likely rating is
ignored, predicted ratings are less accurate, leading to less a less effective movie
recommendation system. More recently, Cho et al. (2015) have revisited missing
data in customer satisfaction surveys.

Finally, in a recent application of Bayesian missing data methods, Novak et al.
(2015) estimate a model of repeat transactions using customer relationship manage-
ment (CRM) data, which often has the problem that there are a number of visits
where the customer is not identified. These transactions may have been made by an
existing customer or by a new customer. They show that when there are so-called
anonymous visits, a Bayesian missing data approach can be used to impute the
missing user ids and identify the customer who made the anonymous visit.

Conclusion

As readers can see, the general problem of missing data in marketing is very broad.
The Bayesian framework can be used for missing Ys, missing Xs, data sets where
there is individual and aggregate data, and so on. In fact, the broad class of missing
data and data fusion problems, we would argue, is one of the most prevalent among
practitioners today who want to leverage all the data that they have even when
disparate data sources cannot be directly linked. However, as a final note, we warn
again that for those who use these sophisticated methods, one should always pay
attention to the mechanism (or hopefully lack thereof) that generated the missing
data. If the mechanism is non-ignorable, then one would have to build a likelihood
for the missing data process, and that process is often hard to observe and verify.
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While much research has been done for over 30 years in this area, as new data sets
emerge, we expect this area to remain one of high activity going forward.
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Appendix

This appendix provides the code used to generate all examples in this chapter. It is also
available online at https://github.com/eleafeit/data_fusion. Note that the results in the
chapter were obtained with Stan 2.17. If you use a different version of Stan, you may
obtain slightly different results even when using the same random number seed.

R Code for Generating Synthetic Data and Running Ex. 1 with Stan

R Commands for Ex. 1 (Requires Utility Functions Below to Be Sourced
First)

library(MASS)

library(coda)

library(beanplot)

library(rstan)

# Example 1a: MVN ====================================
# Generate synthetic data

set.seed(20030601)

Sigma <- matrix(c(1, 0.3, -0.2, 0.7, 0.3, 1, -0.6, 0.4, -0.2,

-0.6, 1, 0.1, 0.7, 0.4, 0.1, 1), nrow=4)

d1 <- data.mvn.split(K1=1, K2=1, Kb=2, N1=100, N2=100,

mu=rep(0,4), Sigma=Sigma)

str(d1$data)

# Call to Stan to generate posterior draws

m1 <- stan(file="Data_Fusion_MVN.stan", data=d1$data,

iter=10000, warmup=2000, chains=1, seed=12)

# Summaries of posterior draws for population-level parameters

summary(m1, par=c("mu"))

summary(m1, par=c("tau"))

summary(m1, par=c("Omega"))

plot.post.density(m1, pars=c("mu", "tau"), prefix="Ex1",

true=list(d1$true$mu, sqrt(diag(d1$true$Sigma)),

returncov2cor(d1$true$Sigma)))
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draws <- As.mcmc.list(m1, pars=c("Omega"))

png(filename="Ex1PostOmega.png", width=600, height=600)

beanplot(data.frame(draws[[1]][,c(2:4, 7:8, 12)]),

horizontal=TRUE, las=1, what=c(0, 1, 1, 0),

side="second", main=paste("Posterior Density of Omega

(correlations)", log=""), cex.axis=0.5)

dev.off()

# Summaries of posterior draws for missing data

summary(extract(m1, par=c("y1mis"))$y1mis[,3,])

png("Ex1y13mis.png")

plot(density(extract(m1, par=c("y1mis"))$y1mis[,3,]),

main="Posterior of Unobserved y_1", xlab="y_1")

dev.off()

summary(m1, par=c("y")) # posteriors of observed data place a

point mass at the observed value

plot.true.v.est(m1, pars=c("y1mis", "y2mis"), prefix="Ex1",

true=list(d1$true$y1mis, d1$true$y2mis))

# Example 1b: MVN with zero correlations ===================
# Generate synthetic data

set.seed(20030601)

Sigma <- matrix(0, nrow=4, ncol=4)

diag(Sigma) <- 1

# Call to Stan to generate posterior draws

d2 <- data.mvn.split(K1=1, K2=1, Kb=2, N1=100, N2=100,

mu=rep(0,4), Sigma=Sigma)

m2 <- stan(file="Data_Fusion_MVN.stan", data=d2$data,

iter=10000, warmup=2000, chains=1, seed=12)

# Summarize posteriors of population-level parameters

summary(m2, par=c("mu"))

summary(m2, par=c("tau"))

summary(m2, par=c("Omega"))

plot.post.density(m2, pars=c("mu", "tau"), prefix="Ex2",

true=list(d1$true$mu, sqrt(diag(d1$true$Sigma)),

cov2cor(d1$true$Sigma)))

draws <- As.mcmc.list(m2, pars=c("Omega"))

png(filename="Ex2PostOmega.png", width=600, height=400)

beanplot(data.frame(draws[[1]][,c(2:4, 7:8, 12)]),

horizontal=TRUE, las=1, what=c(0, 1, 1, 0), side="second",

main=paste("Posterior Density of Omega", log=""),
cex.axis=0.5)

dev.off()

# Summaries of posterior draws for missing data

plot.true.v.est(m2, pars=c("y1mis", "y2mis"), prefix="Ex2",

true=list(d2$true$y1mis, d2$true$y2mis))

# Example 1c: MVN with strong positive correlations ==========
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# Generate synthetic data

set.seed(20030601)

Sigma <- matrix(0.9, nrow=4, ncol=4)

diag(Sigma) <- 1

# Call to Stan to generate posterior draws

d3 <- data.mvn.split(K1=1, K2=1, Kb=2, N1=100, N2=100,

mu=rep(0,4), Sigma=Sigma)
m3 <- stan(file="Data_Fusion_MVN.stan", data=d3$data,

iter=10000, warmup=2000, chains=1, seed=12)

# Summaries of population-level parameters

summary(m3, par=c("mu"))

summary(m3, par=c("tau"))

summary(m3, par=c("Omega"))

plot.post.density(m3, pars=c("mu", "tau"), prefix="Ex3",

true=list(d1$true$mu, sqrt(diag(d1$true$Sigma))))

draws <- As.mcmc.list(m3, pars=c("Omega"))

png(filename="Ex3PostOmega.png", width=600, height=400)

beanplot(data.frame(draws[[1]][,c(2:4, 7:8, 12)]),

horizontal=TRUE, las=1, what=c(0, 1, 1, 0), side="second",

main=paste("Posterior Density of Omega", log=""))

dev.off()

# Summaries of posterior draws for missing data

plot.true.v.est(m3, pars=c("y1mis", "y2mis"), prefix="Ex3",

true=list(d3$true$y1mis, d3$true$y2mis))

Utility Functions for Ex. 1

data.mvn.split <- function(K1=2, K2=2, Kb=3, N1=100, N2=100,

mu=rep(0, K1+K2+Kb),

Sigma=diag(1, K1+K2+Kb))

{

y <- mvrnorm(n=N1+N2, mu=mu, Sigma=Sigma)

list(data=list(K1=K1, K2=K2, Kb=Kb, N1=N1, N2=N2,

y1=as.matrix(y[1:N1, 1:K1], col=K1),

y2=as.matrix(y[N1+1:N2, K1+1:K2], col=K2),

yb=as.matrix(y[,K1+K2+1:Kb], col=Kb)),

true=list(mu=mu, Sigma=Sigma,

y1mis=y[1:N1, K1+1:K2],

y2mis=y[N1+1:N2, 1:K1]))

}

data.mvp.split <- function(K1=2, K2=2, Kb=3, N1=100, N2=100,

mu=rep(0, K1+K2+Kb),

Sigma=diag(1, K1+K2+Kb))
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{

z <- mvrnorm(n=N1+N2, mu=mu, Sigma=Sigma)

y <- z

y[y>0] <- 1

y[y<0] <- 0

y1mis <- y[1:N1, K1+1:K2]

y2mis <- y[N1+1:N2, 1:K1]

y[1:N1, K1+1:K2] <- NA

y[N1+1:N2, 1:K1] <- NA

true=list(mu=mu, Sigma=Sigma, z=z, y=y, y1mis=y1mis,

y2mis=y2mis)

y[is.na(y)] <- 0

data=list(K1=K1, K2=K2, Kb=Kb, N1=N1, N2=N2, y=y)

list(data=data, true=true)

}

plot.post.density <- function(m.stan, pars, true, prefix=NULL){

for (i in 1:length(pars)) {

draws <- As.mcmc.list(m.stan, pars=pars[i])

if (!is.null(prefix)) {

filename <- paste(prefix, "Post", pars[i], ".png", sep="")

png(filename=filename, width=600, height=400)

}

beanplot(data.frame(draws[[1]]),

horizontal=TRUE, las=1, what=c(0, 1, 1, 0),

side="second", main=paste("Posterior Density of",

pars[[i]]))

if (!is.null(prefix)) dev.off()

}

}

plot.true.v.est <- function(m.stan, pars, true, prefix=NULL){

for (i in 1:length(pars)) {

draws <- As.mcmc.list(m.stan, pars=pars[i])

est <- summary(draws)

if (!is.null(prefix)) {

filename <- paste(prefix, "TrueVEst", pars[i], ".png", sep="")
png(filename=filename, width=600, height=400)

}

plot(true[[i]], est$quantiles[,3], col="blue",

xlab=paste("True", pars[i]),

ylab=paste("Estiamted", pars[i], "(posterior median)"))

abline(a=0, b=1)

arrows(true[[i]], est$quantiles[,3], true[[i]],

est$quantiles[,1], col="gray90", length=0)
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arrows(true[[i]], est$quantiles[,3], true[[i]],

est$quantiles[,5], col="gray90", length=0)

points(true[[i]], est$quantiles[,3], col="blue")

if (!is.null(prefix)) dev.off()

}

}

Stan Model for Ex. 2 (Split Multivariate Probit Data)

functions {

int mysum(int[,] a) {

int s;

s = 0;

for (i in 1:size(a))

s = s + sum(a[i]);

return s;

}

}

data {

int<lower=0> K1; // number of vars only observed in data set 1

int<lower=0> K2; // number of vars only observed in data set 2

int<lower=0> Kb; // number of vars observed in both data sets

int<lower=0> N1; // number of observations in data set 1

int<lower=0> N2; // number of observations in data set 2

int<lower=0,upper=2> y[N1+N2, K1+K2+Kb]; // should contain

zeros in missing positions

}

transformed data {

int<lower=1, upper=N1+N2> n_pos[mysum(y)];

int<lower=1, upper=K1+K2+Kb> k_pos[size(n_pos)];

int<lower=1, upper=N1+N2> n_neg[(N1+N2)*(K1+K2+Kb) - K2*N1

- K1*N2 - mysum(y)];

int<lower=1, upper=K1+K2+Kb> k_neg[size(n_neg)];

int<lower=0> N_pos;

int<lower=0> N_neg;

N_pos = size(n_pos);

N_neg = size(n_neg);

{

int i;

int j;
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i = 1;

j = 1;

for (n in 1:N1) { //positions in observed y1

for (k in 1:K1) {

if (y[n,k] == 1) {

n_pos[i] = n;

k_pos[i] = k;

i = i + 1;

} else {

n_neg[j] = n;

k_neg[j] = k;

j = j + 1;

}

}

for (k in (K1+K2+1):(K1+K2+Kb)) {

if (y[n,k] == 1) {

n_pos[i] = n;

k_pos[i] = k;

i = i + 1;

} else {

n_neg[j] = n;

k_neg[j] = k;

j = j + 1;

}

}

}

for (n in (N1+1):(N1+N2)) { //positions in observed y2

for (k in (K1+1):(K1+K2+Kb)) {

if (y[n,k] == 1) {

n_pos[i] = n;

k_pos[i] = k;

i = i + 1;

} else {

n_neg[j] = n;

k_neg[j] = k;

j = j + 1;

}

}

}

}

}
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parameters {

vector[K1 + K2 + Kb] mu;

corr_matrix[K1 + K2 + Kb] Omega;

vector<lower=0>[N_pos] z_pos;

vector<upper=0>[N_neg] z_neg;

vector[K2] z1mis[N1];

vector[K1] z2mis[N2];

}

transformed parameters{

vector[K1 + K2 + Kb] z[N1 + N2];

vector[K2] y1mis[N1];

vector[K1] y2mis[N2];

for (i in 1:N_pos)

z[n_pos[i], k_pos[i]] = z_pos[i];

for (i in 1:N_neg)

z[n_neg[i], k_neg[i]] = z_neg[i];

for (n in 1:N1) {

for (k in 1:K2) {

z[n, K1 + k] = z1mis[n, k];

if (z1mis[n, k] > 0)

y1mis[n, k] = 1;

if (z1mis[n, k] < 0)

y1mis[n, k] = 0;

}

}

for (n in 1:N2) {

for (k in 1:K1) {

z[N1 + n, k] = z2mis[n, k];

if (z2mis[n, k] > 0)

y2mis[n, k] = 1;

if (z2mis[n, k] < 0)

y2mis[n, k] = 0;

}

}

}

model {

mu ~ normal(0, 3);

Omega ~ lkj_corr(1);

z ~ multi_normal(mu, Omega);

}
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R Commands for Ex. 2

# Generate synthetic data

set.seed(20030601)

Sigma <- matrix(c(1, 0.3, -0.2, 0.7, 0.3, 1, -0.6, 0.4, -0.2,

-0.6, 1, 0.1, 0.7, 0.4, 0.1, 1), nrow=4)

d1 <- data.mvp.split(K1=1, K2=1, Kb=2, N1=100, N2=100, mu=rep

(0,4), Sigma=Sigma)

# Call to Stan to generate posterior draws

m1 <- stan(file="Data_Fusion_MVP.stan", data=d1$data,

iter=10000, warmup=2000, chains=1, seed=35)

# Summaries of posteriors of population-level parameters

summary(m1, par=c("mu", "Omega"))

plot.post.density(m1, pars=c("mu"), prefix="Ex1MVP", true=list

(d1$true$mu))

png(filename="Ex1MVPPostOmega.png", width=600, height=400)

draws <- As.mcmc.list(m1, pars=c("Omega"))

beanplot(data.frame(draws[[1]][,c(2:4, 7:8, 12)]), horizontal=TRUE,
las=1, what=c(0, 1, 1, 0), side="second",

main=paste("Posterior Density of Omega", log=""))

dev.off()

# Summarize posteriors for one of missing values

y1mis.draws <- extract(m1, par=c("y1mis"))[[1]][,1,1] # draws for

third respondent

mean(y1mis.draws > 0)

# Confusion matrix for missing data

y1mis.est <- summary(m1, par=c("y1mis"))$summary[, "50%"]>0

xtabs(~y1mis.est + (d1$true$y1mis>0))

y2mis.est <- summary(m1, par=c("y1mis"))$summary[, "50%"]>0

xtabs(~y2mis.est + (d1$true$y2mis>0))

z.est <- data.frame(z.true=as.vector(t(d1$true$z)),

y=as.vector(t(d1$true$y)),

z.postmed=summary(m1, pars=c("z"))
$summary[,"50%"])

png(filename="Ex1MVPTrueVEstz.png", width=600, height=400)

plot(z.est[,c(1,3)], xlab="True Latent Variable",

ylab="Posterior Mean of Latent Variable")

points(z.est[is.na(z.est$y), c(1,3)], col="red")

abline(h=0, v=0)

dev.off()
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Abstract

This chapter provides a nontechnical summary of how to deal with endogeneity in
regression models for marketing research applications. When researchers want to
make causal inference of a marketing variable (e.g., price) on an outcome variable
(e.g., sales), using observational data and a regression approach, they need the
marketing variable to be exogenous. If the marketing variable is driven by factors
unobserved by the researcher, such as the weather or other factors, then the
assumption that the marketing variable is exogenous is not tenable, and the
estimated effect of the marketing variable on the outcome variable may be biased.
This is the essence of the endogeneity problem in regression models. The
classical approach to address endogeneity is based on instrumental variables
(IVs). IVs are variables that isolate the exogenous variation in the marketing
variable. However, finding IVs of good quality is challenging. We discuss good
practice in finding IVs, and we examine common IVestimation approaches, such
as the two-stage least squares approach and the control function approach.
Furthermore, we consider other implementation challenges, such as dealing
with endogeneity when there is an interaction term in the regression model.
Importantly, we also discuss when endogeneity matters and when it does not
matter, as the “cure” to the problem can be worse than the “disease.”

Keywords

Endogeneity · Bias · Regression · Instrumental variables · IV · 2SLS · Omitted
variables · Causal inference

Introduction

Suppose a firm sells a product, and at some point the firm anticipates that the product
will be in higher demand. For example, the product is likely to be in higher demand
due to events such as seasonality, promotions, or free publicity. To benefit from this
anticipated positive “demand shock,” the firm decides to raise its price. Despite the
rise in price, demand is so strong that there is an increase in sales. A researcher who
is examining price and sales data from this firm now observes price increases going
together with sales increases. If the researcher is unaware of the demand shock, then
(s)he may falsely conclude that an increase in price causes an increase in sales. That
is, when the researcher attempts to estimate a price elasticity in a regression model,
but does not control for the demand shock in the model, the estimated elasticity of
price will be biased. In such circumstances, price is said to be endogenous, and the
subsequent optimization of the price level results in suboptimal decision-making.

More formally, endogeneity problems arise when the independent variables in a
regression model are correlated with the error term in the model. In the example, the
unobserved (to the researcher) demand shock is part of the model’s error term, which
is now correlated with the independent variable price. Endogeneity problems are
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common in marketing studies that use observational data. Observational data are
data where the researcher just records or observes what happens in the marketplace,
without interference or experimentation. Observational data includes transaction
data (e.g., scanner data, online purchase data) and survey data. In observational
data, it is not unlikely that there is some unobserved factor that is part of the model’s
error term that is correlated with the marketing variable of interest, which is the
essence of the endogeneity problem. To address the problem, good practice calls for
instrumental variable (IV) estimation techniques. However, to avoid an endogeneity
problem altogether, the best approach would be to use experimental data, where the
researcher experimentally manipulates the marketing variable.

This chapter provides a nontechnical summary of dealing with endogeneity in
market research applications via instrumental variable (IV) estimation. IV
methods were developed to overcome the endogeneity problem, but finding
suitable IVs is challenging. We discuss good practice in finding instrumental
variables and in using these to estimate the model, such as at the two-stage least
squares approach and the control function approach. Furthermore, we discuss
other implementation challenges, such as dealing with endogeneity when there is
an interaction term in the regression model. Importantly, we discuss when
endogeneity matters and when not, as the “cure” to the problem can be worse
than the “disease.”

What Is Endogeneity?

Regression modelling in marketing often centers around the estimation of the effects
of marketing activities, such as price or advertising, on a performance metric (e.g.,
sales or profit). However, managers are strategic in their use of marketing activities
and adapt these activities in response to factors that are related to demand, but that
are often unobserved by and unknown to the researcher. Regression models in
marketing that seek to estimate the causal effect of marketing instruments need to
account for such deliberate planning of marketing activities or otherwise may suffer
from an endogeneity problem, leading to biased estimates of the effects of the
marketing activities on performance.

To illustrate the problem with a simple example, we consider an ice-cream vendor
who is selling ice creams on the beach. She is the only ice-cream vendor in the near
vicinity. Her main decision is centered on pricing of the ice creams. She knows that
when the weather is warm, there are more people on the beach, and they are willing
to pay more for the ice creams. To take advantage of this, she increases prices on
days with higher temperature and sets prices lower on days with lower temperature.

She asks a researcher to estimate a linear demand model which would help her for
her decision-making (e.g., pricing, purchasing ingredients). While she kept daily
records of sales and prices for about 2 years, she did not inform the researcher about
her price setting strategy using temperature. Hence, the researcher observes a data set
consisting of daily dates, prices, and sales for the (let’s say) 500 days of observations.
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The researcher may now fit a simple linear1 regression model of the following
form:

Yi ¼ β0 þ β1Pi þ ei (1)

Here, Yi indicates the i-th sales observation (e.g., number of ice creams sold on
day i), Pi indicates the price on day i, and ei is the model error term capturing (among
other things) all unobserved factors that also affect sales2. The coefficient β1 is the
coefficient of interest: the effect of price on sales.

When a researcher estimates model (1) using the ordinary least squares (OLS)
approach, (s)he is unlikely to estimate the causal effect of price on sales, i.e., β1. The
reason is that by using OLS, we implicitly assume that price is exogenous. Price is
“exogenous” in this regression model when it does not correlate with the error term
ei. In other words, OLS estimation requires that the covariance between price and
error is zero: i.e., cov (Pi, ei) = 0.

However, in the ice-cream example, we have a problem: the temperature that the
ice-cream vendor used to set prices also affects sales. Therefore, temperature is part
of the model error term ei. Because she used temperature information to set prices,
prices and temperature are correlated, i.e., cov (Pi, ei) 6¼ 0, and prices Pi are said to be
“endogenous.” In fact, as she increases price with higher temperature, we tend to see
in the data that price increases go together with sales increases as higher temperature
also leads to higher sales. In the absence of data on temperature, the increase in price
is positively associated with the increase in sales, which could make the estimated
price coefficient less negative or even positive.

This is the essence of the endogeneity problem: the estimated effect of a market-
ing variable (e.g., price) on the dependent variable (e.g., sales) is distorted (biased),
because there is a correlation between one or more independent variables (price in
the example) and one or more unobserved factors that are part of the regression
model’s error term (temperature in the example).

We now consider the problem of endogeneity in the above model a bit more
formally. For illustration sake, we assume that prices can be described by a normal
distribution with mean μp and variance σ2p . We can write Pi = μP + νi, where vi is

normally distributed with mean 0 and variance σ2p. We also assume that the error term

ei has a normal distribution with mean 0 and variance σ2e . Because prices are

1Many demand models in marketing are nonlinear. At the end of this chapter, we briefly discuss
nonlinear models. A popular nonlinear demand model to estimate price elasticities is the log-log
demand model, where both the dependent and independent variables are the natural logs of the
original variables, which can be estimated using standard approaches for linear regression models.
Log-log models are also prone to an endogeneity problem.
2We use the cross-sectional setup in Eq. 1 as the leading example in this chapter. A similar logic
applies to a time series setup (e.g., when we would view Eq. 1 as a time series model). However, this
would require an additional discussion of dealing with potential autocorrelation in the model error
terms, which is beyond the scope of this chapter. Therefore, we assume that the error terms ei are
independent and identically distributed in this chapter.
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correlated with the errors, ei and vi have a non-zero covariance, cov(ei, νi) =
E(eiνi) = σep. Viewing the distribution of Yi and Pi as a bivariate normal distribution,
the conditional mean and variance of Yi given Pi = pi are (e.g., Lindgren 1993,
p. 423)

E YijPi ¼ pið Þ ¼ β0 þ β1pi þ
σep
σ2p

pi � μp
� �

¼ β0 �
σep
σ2p

μp

 !
þ β1 þ

σep
σ2p

 !
pi (2)

Var YijPi ¼ pið Þ ¼ σ2e 1� ρ2ep

� �
¼ σ2e �

σ2ep
σ2p

(3)

where ρep ¼ σep
σeσp

is the correlation between prices and the error term. If the endo-

geneity in prices is ignored, then standard OLS produces the coefficients

βr0 ¼ β0 � σep
σ2p
μp

� �
and βr1 ¼ β1 þ σep

σ2p

� �
instead of the true parameters β0 and β1.

That is, in the previous ice-cream example, where prices were positively correlated
with the error term (because she increases prices when temperature is higher), the
estimated price coefficient is higher than the true value because σep

σ2p
is positive. As we

may expect that the true value β1 is negative, the OLS estimated price coefficient β̂
r

1

is “less negative” or potentially positive depending on the magnitude of β1 and
σep
σ2p
.

Furthermore, from Eq. 3, we can see that the conditional variance of Yi given
price is less than the true unobserved variance σ2e . In other words, OLS produces an
estimate of the residual variance that is smaller than the actual variance. Hence,
using OLS, we are led to believe that the model “fits” better than it actually does.
We return to this below when it comes to predictions in the presence of endogenous
regressors.

Figure 1 shows a scatterplot for 500 hypothetical daily observations of price and
sales for the ice-cream seller from the example above. The solid black line represents
the incorrectly estimated demand curve by OLS, whereas the dashed line is the true
demand curve (in this case the “curve” is a straight line given that we use linear
regression). Indeed, as the equations above suggest, the OLS line is less “steep” than
the true line. We discuss how to estimate the correct demand curve using an
instrumental variable approach below.

In this stylized example, we have an endogeneity problem because the temperature
variable was omitted from the model. If the researcher had known the price setting
behavior and had observed the temperature variable in the data set, then (s)he should
have included this variable as a covariate in the model in Eq. 1, and this would have
taken care of this particular endogeneity problem. Then an OLS regression using both
prices and temperature as covariates would have estimated the correct price effect.
Unfortunately, in many real-world applications, it is impossible to enumerate all
relevant demand drivers, measure them, and include them in the model. Thus, we
often cannot fully address the endogeneity problem by just including a set of control
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variables. Nevertheless, we do recommend to always include a rather complete set of
control variables as they do make the endogeneity problem less severe.

In sum, if models of consumer demand do not account for marketing instruments
(e.g., price, advertising, sales force) that are set strategically, an endogeneity bias is
likely present in the estimated regression coefficients (e.g., Petrin and Train 2010;
Villas-Boas and Winer 1999). This leads to flawed decisions in determining optimal
levels of the marketing instruments, as we show next.

Before we proceed, we would like to highlight two additional aspects. First, the
stylized ice-cream vendor example above, as well as most examples that we discuss
below, considers transaction data in which endogeneity arises because managers or
consumers exhibit strategic (nonrandom) behavior, which is not captured by the
regression model. We would like to emphasize, however, that endogeneity concerns
are also relevant for survey research. Unobserved respondent characteristics often
correlate with the dependent as well as the independent variables in regression
models that are estimated using survey data. Hence, causal inferences in cross-
sectional survey analyses are only possible if we can rule out these unobserved
components. This problem is similar to the common-method bias that is often
presented as a serious concern for survey research (Podsakoff et al. 2003).

Second, in marketing models, a regressor may be correlated with the error term,
not only because of omitted variables (e.g., temperature) but also because of
measurement error. Measurement error in econometrics refers to situations where
one or more regressors cannot be measured exactly and are observed with an error.
Another cause for an endogeneity problem is when price and demand are determined
simultaneously, as is the case, e.g., in an auction for commodities.

Fig. 1 Scatterplot of sales versus price in the presence of an omitted variable
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In the case of the ice-cream seller example, measurement error and simultaneity
problems may happen, for instance, in the following case. Suppose that the
ice-cream seller has the goal of selling all ice cream she has in her cart on any
given day, e.g., because the ice cream is less fresh the next day. If at the same time,
she is afraid of losing customers during a stock-out situation, she may use price to
control supply and demand during the day, e.g., increase prices when she observes
long queues and decrease prices when there are no queues. If she now reported daily
average price, the OLS approach would not capture that price and demand are
formed simultaneously. Besides, the average daily price would be a proxy for actual
price charged, leading to potential measurement error in price. Similar to omitted
variables (e.g., temperature), both measurement error and simultaneity may result in
regressor-error dependencies, such that cov(Pi, ei) 6¼ 0, and standard OLS suffers
from an endogeneity problem. For technical details on measurement error and
simultaneity, see, e.g., Verbeek (2012) or Greene (2011).

Why and When Does Endogeneity Matter?

From a practical perspective, it may be tempting to dismiss the problem of endo-
geneity as an academic exercise that is of little relevance to managers. Indeed, many
applied textbooks on empirical methods rarely touch upon the issue of endogeneity
at all, which may seem to support this argument. We, however, argue the opposite:
the problem of endogeneity is of high managerial relevance because obtaining
correct effect estimates is essential.

Bijmolt et al. (2005) analyze 1851 estimated price elasticities at the brand level
that were published across 40 years in 81 articles. They find that the estimated price
elasticity when endogeneity is controlled for is, on average, �3.74. In contrast, the
estimated price elasticity when endogeneity is ignored is, on average, �2.47, which
is quite a strong difference. In other words, when we do not control for endogeneity,
the price elasticity estimate is biased toward zero (less negative), similar to the
ice-cream vendor example above.

Moreover, there can be endogeneity in other important marketing variables as
well. Sethuraman et al. (2011) investigate in a meta-analysis of advertising effec-
tiveness the potential endogeneity bias in the estimated advertising elasticity. They
find that the estimated advertising elasticity is lower when endogeneity is not
accounted for than when it is accounted for. Albers et al. (2010) analyze 506 esti-
mated personal selling elasticities from 75 articles and find that the estimated
elasticity when endogeneity is not taken into account is, on average, 0.37, while it
is, on average, 0.28 when endogeneity is accounted for. Hence, the personal selling
elasticity is overestimated when endogeneity is not incorporated in model
estimation.

Are these empirical findings on endogeneity biases something that managers need
to worry about? Yes, we believe so, and here is why. Going back to the ice-cream
vendor example, suppose that the ice-cream vendor wanted to change her price
strategy from using temperature to profit maximization. She asks the researcher to
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calculate the optimal price, given a marginal cost (c) for ice cream of, say, €1. The
researcher estimates a demand model using the data described above with a standard
estimation approach (e.g., OLS) and finds that the estimated price elasticity of ice
cream is �2. Following the Amoroso-Robinson theorem3, we find that the optimal
price would be €2. This optimal price is not correct, because the true price elasticity
is underestimated. Suppose that the true price elasticity is�3. Using this number, we
find that the optimal price is €1.5. Hence, in this example, ignoring endogeneity in
estimating price elasticity leads to an “optimal” price of €2 instead of €1.5. Clearly,
this is suboptimal. We therefore believe that it is of critical importance to managers
and decision-makers to be aware of potential endogeneity problems in estimating
marketing regression models.

What are typical situations in which researchers and managers must be aware of
potential endogeneity problems? We now consider several examples in detail.

Price Endogeneity

Many retailers such as supermarkets have to decide which items to include and
which items to exclude from their assortments. To offer guidance for these decisions,
Rooderkerk et al. (2013) develop a model to optimize retailer assortment of laundry
detergents. As part of the analysis, they estimate demand models using supermarket
scanner data to understand the effect of price on demand, while controlling for price
endogeneity. In essence, they estimate a regression model for sales of an SKU (stock
keeping unit) in week t as a function of its price. Why may price be endogenous in
this case? In the case of laundry detergents, there may be time-varying unobserved
demand shocks such as promotional (e.g., coupons) or advertising activities. If these
effects are not included in the model, an endogeneity bias in the estimated effect of
price is likely.

The same is true if there are brand-specific time-varying shocks in brand
popularity and managers use this information to adjust prices. These shocks may
arise, for instance, from online buzz or media coverage. One product category in
which these variations seem quite natural is experiential goods, such as music or
movies.

In cross-sectional analyses, unobserved product characteristics pose a problem.
Managers may set prices based on product characteristics such as style, quality,
durability, status, service levels, or brand strength. If these factors are not observed
by the researcher (which is often the case), an endogeneity bias may occur in the
estimated regression parameters (Berry 1994). On the other hand, if we observe
variation across brands and across time as in standard panel data applications, these

3For the sake of simplicity in this example, we assume that the researcher estimates a constant
elasticity model (e.g., using a log-log regression). The optimal price can then be computed as
p� = c(β/(β + 1)), where c is marginal cost and β is the estimated price elasticity (Amoroso-
Robinson theorem, e.g., Homburg et al. 2009, p. 181).
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unobserved factors will be less of a concern as they can potentially be controlled for
using panel data estimation strategies (as we discuss below).

Advertising Endogeneity

Similar arguments apply to non-price marketing instruments. Consider the follow-
ing example in Dinner et al. (2014). They address the question of whether
advertising in one channel (e.g., online) affects sales in the other channel (e.g.,
offline or brick-and-mortar sales). They are in particular interested in the direction
and magnitude of these effects. Dinner et al. (2014) analyze retailer data to test for
the presence of “own-channel” effects (e.g., online display advertising on online
sales) versus “cross-channel effects” (e.g., online display advertising on store
sales). They estimate the following regression models for online and offline sales
in week t:4

ln Online Salest ¼ β0 þ β1 ln Online Advertisingt
þ β2 ln Offline Advertisingt þ e1t (4)

ln Offline Salest ¼ γ0 þ γ1 ln Online Advertisingt
þ γ2 ln Offline Advertisingt þ e2t (5)

Online advertising includes expenditures on online banner ads and offline adver-
tising expenditures on TV, print, or radio advertising. Since Eqs. 4 and 5 are log-log
models, the response parameters can be interpreted as advertising elasticities. For
example, β1 is the own-channel online advertising elasticity (the percentage increase
in online sales due to a 1% increase in online advertising), and β2 is the cross-channel
elasticity for the offline advertising on online sales. An endogeneity problem arises
when the managers use unobserved demand shocks to adjust their advertising
budgets. For instance, a manager may anticipate seasonal shocks in demand. If the
manager then allocates her advertising budget accordingly, then this may lead to an
overestimation of the advertising elasticity using a standard estimation approach.
Dinner et al. (2014) control for endogeneity in model estimation.

As an another example, consider an artist who sells records and downloads. If this
artist experiences a surge in popularity (e.g., because of online word of mouth or a
TV show), the artist may decide to cut down on advertising because she feels that the
product does not need the advertising. This would potentially lead to an underesti-
mation of the advertising elasticity if endogeneity is not accounted for, because we
tend to observe high demand with relatively low advertising expenditures.

4We simplified their model here for sake of exposition. The full model of Dinner et al. (2014) splits
online advertising into search advertising and banner ads, allows for advertising carryover effects,
and for the effects of other covariates.
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Detailing Endogeneity.

Pharmaceutical companies typically spend a substantial amount of their marketing
budget on detailing, i.e., sales reps visiting doctors to influence the doctors’ pre-
scription behavior. A well-recognized pattern in this domain is that high-volume
doctors (i.e., those that often prescribe the drug of the focal brand) receive more
detailing. When this is not considered in the regression model, the estimation
approach may produce a positive estimated detailing effect, even in the complete
absence of a causal effect of detailing on prescription behavior (Manchanda et al.
2004). Accordingly, the meta-analysis by Albers et al. (2010) on personal selling
elasticities (that includes detailing) finds that estimation approaches that do not
account for endogeneity in detailing studies overestimate the personal selling
elasticity.

Firm Strategies

“Firms choose strategies based on their attributes and industry conditions” (Shaver
1998). These attributes may represent a general strategic orientation, management
background, or other characteristics that affect firm performance, but are generally
difficult to observe for the researcher. Furthermore, firms deliberately choose those
strategies that are most likely to increase profit. Hence, most empirical models, in
which firm performance is modelled as a function of strategic choices made by firms,
are likely to suffer from an endogeneity problem (Shaver 1998).

CMO Presence

Germann et al. (2015) estimate the effect of the presence of a chief marketing officer
(CMO) on firm performance. Similar to the point made by Shaver (1998), Germann
et al. (2015) argue that the presence or absence of a CMO is likely an endogenous
regressor in a regression model because firms do not randomly decide to have a CMO.
Rather, the decision to employ a CMO is a strategic choice that will be related to other
firm characteristics (e.g., management style, strategic orientation, beliefs about the
effect of a CMO). Hence, the variable that captures the presence and absence of the
CMO will be correlated with unobserved firm characteristics that also drive firm
performance, which will potentially induce an endogeneity bias in the estimated effect
of CMO on firm performance, which Germann et al. (2015) address in their analyses.

Digital Piracy

Since the rise of digital distribution of media products, a strong debate has developed
on the extent to which digital piracy hurts music sales (see Liebowitz 2016 for an
overview). A naïve approach would be to use OLS to estimate a regression model
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with artist’s sales as dependent variable and piracy (e.g., the number of illegal
downloads) as an independent variable. However, in such a regression model, the
popularity of the artist would be an omitted variable. We expect that an artist’s
popularity affects both the piracy level as well as music sales. As both piracy and
sales are likely positively correlated with popularity, the OLS estimated effect of
piracy on sales will be biased (probably less negative than the true effect of piracy on
sales).

An endogeneity problem may also occur when survey data are used to estimate
the effect of piracy on music sales. We could, for instance, survey a random sample
of 10,000 respondents and measure the extent to which they illegally download
music as well as their expenditures for music. Respondents highly involved with
music are probably more likely to download music illegally, whereas at the same
time, they are also more likely to purchase music. Hence, if we would correlate the
survey responses of the illegal download and music expenditure questions, we
probably would find a rather positive and significant correlation. This estimated
positive correlation between music expenditures and illegal download activity is
likely to be spurious and should not be interpreted as causal, because the estimated
correlation is largely driven by unobserved involvement of the respondents with
music.

Summary

Researchers and managers must be aware of the problem of endogeneity whenever
they are interested in the causal effect of a marketing (or other) variable on an
outcome variable. And, very often managers are interested in causal effects. For
instance, the statement “If you change the marketing variable by 1%, the perfor-
mance changes by β1%” requires an estimate of the causal effect of the marketing
variable on performance. Such a statement is useful for making predictions about the
consequences of changing a marketing policy or the value of a marketing instrument.
It would tell the manager what would happen in an alternative scenario (Angrist and
Pischke 2008).

To avoid endogeneity all together, we would need to run field experiments. In the
ice-cream vendor example, for instance, we could run a field experiment where we
set prices randomly every day for a period of time. In such an experiment, the
random assignment of prices would likely guarantee that there is no correlation
between price and other drivers of demand that are unobserved by the researcher. For
instance, because of the randomization, we would sometimes observe high prices
with high temperatures, but also sometimes observe high prices with low tempera-
tures (and vice versa). Prices are no longer strategically set. This would allow us to
use a straightforward (OLS) regression of sales on price to unbiasedly estimate the
causal effect of price. Similarly, we could randomly allocate advertising budgets
across brands, or we could randomly assign some firms a CMO, while other firms
would have to work without a CMO, and observe the effect on sales or firm
performance.
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Unfortunately, in most marketing applications, such field experiments are not
feasible, and we would have to resort to nonexperimental approaches that can be
used with observational data. Fortunately, in studies with observational data, we can
often develop an identification strategy to estimate the effect of interest (Angrist and
Pischke 2008; Germann et al. 2015), as we discuss next.

How to Address Endogeneity in a Regression Model

The goal of a regression analysis is to estimate the causal effect of the regressor (e.g.,
price) on the dependent variable (e.g., demand). For the reasons discussed above,
there is often reason to believe that price and other regressors may be correlated with
the error term in the regression equation (e.g., ei in Eq. 1). To address the endo-
geneity problem, a popular approach is to find one or more additional variables,
called instrumental variables (IVs), which correlate with the price variable but not
with the unobserved determinants of sales (that are part of the error term). This IV
approach is the classical approach to address endogeneity in linear regression models
(e.g., Greene 2011; Wooldridge 2010). To identify potential IVs, the researcher must
have a deep understanding of the practical context of the study, because IVs must
meet two requirements (e.g., Angrist and Pischke 2008):

1. The relevance criterion, i.e., the IVs must have a strong relation with the
endogenous regressors.

2. The exclusion restriction, i.e., the IVs must be unrelated to the error of the main
Eq. 1.

If one of these two criteria is not fulfilled, the IV approach, which we outline in
more detail next, will fail.

The idea behind IV estimation is to use exogenous variation in the independent
variable to estimate the causal effect of the independent variable on the dependent
variable. Returning to the ice-cream example, we have to augment the demand
equation in (1) with an auxiliary equation for price, where price is modelled as:

Pi ¼ γ0 þ γ1Zi þ νi (6)

Here Zi is the IV that must be uncorrelated with ei in Eq. 1. Thus, Pi is partitioned
into a part γ0 + γ1Zi that is exogenous (i.e., uncorrelated with ei in Eq. 1) and a
random part vi that is endogenous (i.e., correlated with ei in Eq. 1). The exogenous
part is used to estimate the regression parameters of Eq. 1, as we argue below. Thus,
the IV enables us to “partition the variation [in prices] into that which can be
regarded as clean or as though generated via experimental methods, and that
which is contaminated and could result in an endogeneity bias” (Rossi 2014,
p. 655). This decomposition of price in an exogenous and endogenous part is
schematically represented in Fig. 2.
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How can we use the exogenous and “clean” variation in prices to estimate β0 and
β1 in Eq. 1? The answer is to isolate the exogenous variation through the auxiliary
regression model (6), which is typically referred to as the first-stage regression. From
this first-stage regression, we obtain the predicted prices, given values for Z. Then,
the predicted prices are used instead of the original prices as regressor in Eq. 1. More
specifically, this stepwise approach goes as follows:

1. Estimate Eq. 6 using OLS to obtain the estimated parameters γ̂0 and γ̂1. Compute

the predicted values for prices using the estimated parameters, i.e., compute P̂i

¼ γ̂0 þ γ̂1Zi.

0–2

2
–2

–4

–4 –2 0 2 4
Endogenous variation in x

0
4

–4

–4
–2

0y

y

y

2
4

2
Observed varitation Exogenous variation in x

4 0–2–4

–4
–2

0
2

4

2 4

Fig. 2 Decomposing the observed variation of an endogenous regressor in exogenous (γ0 + γ1Zi)
and endogenous (vi) variation
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2. Use the predicted values P̂i in Eq. 1, instead of observed prices Pi, and estimate
the resulting equation with OLS. That is, estimate the following equation with
OLS:

Yi ¼ β0 þ β1P̂i þ ei (7)

The resulting estimate for β1 is now the causal effect of prices on sales, and this
estimation approach results in a “consistent estimate for β1.” A consistent estimate
means the estimate converges (in probability) to the true value as the sample size
tends to infinity. This stepwise approach is called the two-stage least squares (2SLS)
approach.

Many software packages implement the 2SLS approach, and we would caution
against doing these steps manually in a research study (see also next section).
However, from this stepwise approach, we can get a better intuition as to why IV
estimation works. We can see that in step 1, we predict prices using only the
exogenous information contained in Zi. Thus, by construction, P̂i is exogenous
(under the assumption that Zi is exogenous, i.e., uncorrelated with ei). Subsequently,
in step 2, the endogenous variable Pi is replaced by its exogenous “alter ego” P̂i ,
which is not correlated with the error term ei. Thus, we can simply apply OLS in step
2 to estimate Eq. 7 because all regressors are now exogenous.

Importantly, from this stepwise approach, we can also get a better intuition for
what criteria an IV must satisfy for this to work. Firstly, Zi needs to be able to predict
the endogenous variable Pi well, i.e., it needs to satisfy the relevance criterion. This
criterion can be tested, as we discuss below. When the IV has little explanatory
power, the IV is a “weak” IV (Bound et al. 1995), and the predicted values from step
2 above are bad “alter egos” that have little to do with the original price variable.
Estimating the resulting Eq. 7 with OLS is not going to give a very precise estimate
for β1. In the worst case, there is no explanatory power of Zi at all, i.e. γ1 = 0, and the
predicted values for Pi would all be the same (and equal to the average value of
prices) for i = 1 , 2 , . . . , N, and the price effect β1 cannot be estimated.

The second requirement is the exclusion restriction. This means that Zi must be
exogenous: uncorrelated with the error term ei from the main Eq. 1. Otherwise P̂i is also
endogenous, and we have not solved the endogeneity problem in Pi. This requirement
implies that Zi must be unrelated to all unobserved factors that drive demand and that
may be correlated with price. Going back to the example of the ice-cream seller, the Zi
must be uncorrelated with weather and other unobserved factors that are part of the
model’s error term. Unfortunately, and this is often the biggest challenge in the
implementation of IV, the exogeneity assumption for Z cannot be tested directly.
Hence, researchers must rely on the knowledge of the empirical context (i.e., the data
generating process), and theory, to argue that their IV meets this criterion.

In the ice-cream example, the cost of ingredients (e.g., milk) may serve as an IV,
because these costs will influence consumer prices, but they are unrelated with other
unobserved factors that drive consumer demand. In the CMO example above
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(Germann et al. 2015), we need a variable that predicts the presence of a CMO, but
that is not related to unobserved firm characteristics that drive the decision to appoint
a CMO and affect firm performance. For the piracy example, we need a variable that
is correlated with an artist’s piracy level, but unrelated to shocks in the artist’s
popularity. We discuss possible IVs for these contexts below.

Hence, two conditions are central to IV estimation: (1) Zi correlates with Pi , but
(2) is uncorrelated with the errors ei. Without these two conditions, the IV estimate
for β1 is not consistent, and we cannot interpret the IVestimate as the causal effect of
prices on sales. Good IVs can be difficult to find (e.g., Germann et al. 2015, p. 8).
The reason is that the two conditions are very hard to meet simultaneously: when the
IV is very strongly correlated with the endogenous regressor, it is often hard to argue
that the IV is not a direct driver of demand (i.e., it does not satisfy the exclusion
restriction). When the IV is completely exogenous (it does satisfy the exclusion
restriction), it often is a rather weak IV.

Finding IVs requires “a combination of institutional knowledge and ideas about
processes determining the variable of interest” (Angrist and Pischke 2008, p. 117).
Likewise, Rossi (2014) notes that “good IVs need to be justified using institutional
knowledge because there is no true test for the quality of IVs.” Thus, substantive
knowledge about the marketing context is needed to identify and argue which
variables may be proper candidates for an IV.

To assess whether a candidate IV (or a set of candidate IVs; more on that below) is
an appropriate IV, the researcher is advised to perform the following two tasks (see
also Germann et al. 2015, pp. 8–9):

1. Demonstrate relevance of the IV (i.e., that the IV is not weak).
2. Argue that the IV meets the exclusion restriction (i.e., the IV is exogenous).

To perform the first task, the researcher needs to make the case that the IV
correlates with the endogenous variable. The arguments should provide a predic-
tion of why and how the IVaffects the endogenous variable. This task also includes
a discussion of the first-stage regression estimation results (Eq. 6) and assessing
whether the estimates make sense in the light of the theoretical context. For
instance, do the magnitude and signs of the estimated effects for the IVs (e.g.,
γ1) make sense (see also Angrist and Pischke 2008, p. 173)? If these do not make
sense, perhaps the hypothesized mechanism for the IVs is not correct or is
incomplete. In addition, the researcher should report the R2 or the F-statistic of
the excluded IVs. That is, the researcher needs to run two first-stage regressions.
The first one includes the IVs and other exogenous variables in the main regression
equation, and the second one only includes the exogenous variables but excludes
the IVs (note that in the ice-cream vendor example, there are no other exogenous
regressors in Eq. 1). Then, the change in R2 and value of the F-statistic for the
comparison of the two models is indicative of the strength of the IVs and should
routinely be reported with an IV regression. The bigger the change in R2 and the
higher the F-statistic, the stronger the IVs are.
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The second task involves providing arguments for the exclusion restriction of the
IV. That is, why is the IV uncorrelated with the omitted variables that affect the
dependent variable? Unfortunately, this assumption cannot be tested for, which is
arguably the biggest drawback of IVestimation. Therefore, it is important to develop
valid theoretical arguments that support this assumption, as the consistency of the IV
approach depends on whether this assumption is met or not. Thus, any IV analysis
must be accompanied by such a discussion.

How could we develop such arguments? Often it is useful to think of an
endogeneity problem in a marketing model as an omitted variable problem, as in
the ice-cream vendor example where temperature was an omitted variable. Here, the
omitted variable explains variation in both the dependent variable and the endoge-
nous independent variable. For example, temperature drives sales, but also prices, as
the merchant used temperature to set prices. When we try to argue for an IV in a
marketing regression model, the argument has to make a case that the IV is
uncorrelated with the key unobserved factors driving demand. For example, the
cost of ingredients (e.g., milk) as an IV is unlikely to be related to the unobserved
factors that drive demand for ice creams on the beach, such as the temperature that
day, and hence the IV may be valid in the sense that it is uncorrelated with the
error term.

Formally speaking, the second task examines the assumption E(Ziei) = 0. When
the researcher has provided arguments in favor of this assumption, and also argued
and demonstrated that the IV is not weak (first task), then we may continue with
estimating the regression parameters in model (1) using an IV approach. The key to
IVestimation is thus to decompose the endogenous regressor into an exogenous part,
which is independent of the model error term ε, and an endogenous part v, which is
correlated with the error in the regression model for Y. The exogenous part is used to
estimate the regression parameters of Eq. 1. As should be clear from this discussion,
while there are some empirical checks, the validity of the IV(s) is an assumption that
ultimately cannot be tested for.

We would like to add a note on the relation between the criteria of IV strength and
IV exogeneity. Consider the following thought experiment. Imagine an IV Zi that
leads to an R2 in the first-stage regression in Eq. 6 of 0.98. Under the assumption that
the IV is truly exogenous, this implies that the endogeneity bias cannot be large in the
first place because almost all variation in Pi is exogenous given this very high R

2. If,
in contrast, theory suggests that there is a sizeable endogeneity problem, then
such a high R2 in a first-stage regression makes it implausible that the IV is
uncorrelated with the error (Rossi 2014). In general, stronger IVs are less likely to
be exogenous, and vice versa, which is unfortunate because an IV needs to be both at
the same time.

We have one more remark regarding the underlying assumptions of IVs. Occa-
sionally one can hear or read the statement that “a valid, exogenous IV must be
unrelated with the dependent variable Y.” For a demand model with endogenous
price, this statement would mean that we need an IV “that is correlated with price but
uncorrelated with demand.” These statements are generally not correct. Here is why.
Consider Eqs. 1 and 6. If we substitute Eq. 6 into Eq. 1, we obtain:

196 P. Ebbes et al.



Yi ¼ β0 þ β1 γ0 þ γ1Zi þ νið Þ þ ei
¼ β0 þ β1γ0ð Þ þ β1γ1Zi þ β1νi þ ei ¼ π0 þ π1Zi þ ui (8)

where π0, π1, and ui are defined accordingly. For explanation sake, imagine we
estimate an OLS regression with Zi as the independent variable and Yi as the
dependent variable (we note that this regression is typically not performed in
practice). We would expect that π1 is non-zero, because π1 is zero only if γ1 = 0,
if β1 = 0, or if both are 0. In a demand model, we would expect that β1 < 0, in
general. Furthermore, as argued above, γ1 has to be non-zero for an IVapproach to be
valid. Hence, in general, when using an IV approach for a demand model, we are
actually expecting π1 to be non-zero. In other words, the IV likely has an effect on
demand in Eq. 8. But, this effect is an indirect effect through the endogenous
regressor Pi. For example, assuming that cost is a strong and an exogenous IV
(i.e., it meets the exclusion restriction), it must affect demand in (8) (π1 6¼ 0),
because prices are affected by cost (γ1 6¼ 0) and we expect that prices affect demand
(β1 6¼ 0). In fact, we would expect π1 < 0. Hence, it is important to recognize that
the assumption for an IV to be exogenous is not that the IV is unrelated to demand.
Rather, the assumption is that the IV is uncorrelated with the error term from the
demand equation in (1) (i.e., it meets the exclusion restriction)5.

To conclude the discussion on endogeneity and potential remedies, Table 1 gives
several examples of endogeneity problems in academic marketing studies. For each
example, we point the reader to some ideas of where to find potential good IVs. We
briefly outline the rationale for the choice of some of these IVs.

In line with the discussion about the endogenous price of ice cream, a consider-
able number of studies treat price as endogenous. In many cases, the researchers
manage to obtain cost data that they use as an IV. For example, the study by
Rooderkerk et al. (2013) in Table 1 uses the costs of ingredients of liquid laundry
detergents and transportation costs as IVs. The idea is that these costs should affect
the price of the consumer product, but they should be unrelated to brand-specific
unobserved demand shocks.

Nevo (2001) proposes to use the prices in other cities (markets) as an IV for price
in the focal market. The argument is that these prices (e.g., on the US west coast)
capture common cost shocks, but they are unrelated to specific demand shock in the
focal city (e.g., on the US east coast). Nevo (2001) highlights potential limitations of
these IVs and discusses in great detail the relevant assumptions underlying their
validity. Readers interested in an example of how to build a case supporting the
validity of an IV should turn to Nevo (2001).

A similarly detailed discussion to build a case for an IV can be found in Germann
et al. (2015) regarding the choice of CMO prevalence among peer firms as an instrument
for CMO presence in a focal firm. The argument is that the CMO prevalence captures
the extent to which it is common among a group of firms to have a CMO, but CMO

5This discussion is similar in spirit to the rationale behind mediation analysis. We refer the reader to
chapter ▶ “Mediation Analysis in Experimental Research” in this handbook for more details.
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prevalence among peers is likely unrelated to the focal firm’s optimization consider-
ations. In that sense, their argument for the IV’s exclusion restriction is similar to the
argument provided by Nevo (2001) for prices in demand models.

As a last example, consider the case of piracy and demand for music. Here,
unobserved factors such as an artist’s popularity will drive both sales and piracy.
Bhattacharjee et al. (2007) investigate whether illegal downloads hurt album sales. As
a proxy for album sales, they measure how long the album stays in the billboard top
charts. They use an announcement of the Recording Industry Association of America
(RIAA) to start legal actions against file sharers as the IV for illegal downloads. That
is, their IV is a dummy variable that varies for albums observed before and after the
announcement. Their motivation for this IV is that the perceived legal cost of file
sharing and illegal downloading increases substantially as a result of this announce-
ment. Consequently, we would expect that the IV has a negative effect on illegal
downloads. At the same time, it can be argued that the RIAA announcement is
unrelated to an album’s specific unobserved factors, such as the artist’s popularity.

Naturally, researchers must develop arguments whether their IVs fulfill the
criteria of relevance and exogeneity. We highlight these studies as examples, as the
authors go in great length to build a theoretical case for the validity of their IVs.
Without such a discussion of instrument validity, we would not be able to judge
whether the IV analyses have merit. We include in Table 1 several references to
studies (including the page numbers) that offer arguments for the suitability of the
IVs mentioned in Table 1.

We next discuss practical matters of how to implement IVestimation using Stata.

Implementing IV Estimation

We assume that the researcher has one or more valid IVs for the endogenous
regressor (we briefly discuss the case of multiple endogenous regressors in the
next section). We also assume that the researcher has provided the arguments to
demonstrate (i) relevance of the IVs, and (ii) that the IVs meet the exclusion
restriction, i.e., there is strong theoretical evidence that the IVs are uncorrelated
with the error from the main Eq. 1.

The standard approach to estimate Eq. 1 using IV(s) is to use the two-stage least
squares (2SLS) approach. This approach is available in most statistical software
packages. For instance, in Stata, researchers can use the ivreg or the (higher
optioned) ivreg2 command (Baum et al. 2007, 2015). In R, researchers may use,
for instance, the packages ivmodel, ivpack, or sem (tsls).

We suggest that the researcher who uses 2SLS, in addition to providing the
theoretical argumentation to support the IVs that she uses, discusses the outcomes
of the following six empirical tasks (see also Angrist and Pischke 2008):

1. Report both the standard OLS results (i.e., ignoring endogeneity) and the 2SLS
results. At the minimum, the estimated coefficients and standard errors from both
approaches should be reported. Furthermore, the direction of the bias in OLS as
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suggested by 2SLS should be in the expected direction as predicted by theory. For
instance, in the ice-cream example, we expected OLS to be biased upward, and
2SLS should therefore give a more negative price effect estimate.

2. Report the complete results of the first-stage regression. The first-stage regression
is basically the OLS regression of Eq. 6, including all IVs Z and all other
exogenous regressors that are in Eq. 1 (note that in the ice-cream vendor
example, there are no other exogenous regressors in Eq. 1). As in the previous
step, both the estimated coefficients and the standard errors should be reported.
Do the estimated coefficients have the correct sign and magnitude, particularly
the coefficient(s) of Z?

3. Report the R2 of the first-stage regression and report the R2 of the same regression
excluding all IVs.How big is the difference? The smaller the difference, the worse,
because it means that the IVs have little incremental explanatory power. Some
researchers suggest reporting the incremental F-statistic of the excluded IVs and
argue that this number should be at least 10 (e.g., Stock et al. 2002, Rossi 2014).
However, this number should not be seen as standalone threshold that needs to be
passed. Rossi (2014) argues that this number may be seen as an absolute minimum
requirement. While it is important to discuss the R2 (orF-statistic) of the first-stage
regression Eq. 6, however, as we discuss below, we caution against a comparison
of the R2 of OLS to the R2 of 2SLS of the second-stage regression (the main Eq. 1)
as this comparison is usually meaningless (e.g., Ebbes et al. 2011).

4. When there is more than one IV in the case of one endogenous regressor, we
suggest the researcher estimates the model with the best IV (based on theory) and
compares the results to the model with all IVs included. Are the results stable in
the sense that the main conclusions stay the same? If so, that is good news (more
on that below when we discuss Sargan’s test). If not, what can explain the
difference? The theoretical arguments of IV validity may have to be revisited.

5. Report the results for a test for the presence of endogeneity. This test formally
compares the OLS estimates to the 2SLS estimates and tests whether OLS is
consistent or not (the latter is the null hypothesis). If the null hypothesis is
rejected, then the 2SLS estimates should be used for inferences. In contrast, if
the test does not reject the null hypothesis, then the OLS results should be used for
inference. This test can be carried out in a few different ways. One way is through
a Hausman test (e.g., Verbeek 2012, p. 152; Wooldridge 2010, p. 130). The other
way is by estimating the IV regression model through a control function approach
(see next section). Regardless of the outcome of the test, we recommend that all
previous tasks (1–6) are reported in an IV regression analysis.

We note that sometimes researchers may add an additional task to this list. This
additional task involves carrying out a Sargan test, which attempts to test whether
the IVs that we use are exogenous. This test is an overidentification test which can
only be used if there are more IVs than endogenous regressors. The idea behind
this test is as follows. In case we have more IVs than endogenous variables (i.e., we
have overidentification), we can regress the fitted residuals from Eq. 7 on the IVs.
That is, we run an OLS regression with the fitted residuals as dependent variable
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and all IVs (as well as all other exogenous regressors in the regression model, if
present) as independent variables. If the set of IVs is exogenous, then they should
be jointly unrelated to the residuals, i.e., the R2 from this regression should be close
to zero. If that is not the case, then we have to reject the entire set of IVs. The
reason is that this test cannot tell which of the IV or IVs are problematic – we can
only assess the set of IVs as a whole. The test is usually referred to as the Sargan
test (Wooldridge 2010, p. 135), and it is available in packages such as ivreg2 in
Stata. When there are more IVs than endogenous regressors, this test can be used as
additional evidence besides the theoretical arguments that we develop to choose
the IVs. We advise against this test as a substitute for theoretical arguments. For
more information on this test, we refer to Wooldridge (2010, p. 135) or
Bascle (2008).

We now demonstrate the above six tasks for the ice-cream example. We provide a
simulated dataset that contains ice-cream sales and prices for 500 days. We generate
the data with a true price coefficient of �100 and a true intercept of 300. In
generating the data, we create a correlation between price and the error term such
that we have an endogeneity problem. Table 2 contains descriptive statistics for this
hypothetical dataset.

The average sales is about 131 servings of ice cream per day, and the average
daily price is €1.69. Table 3 contains the estimation results of a simple OLS
regression that does not account for endogeneity. The estimated coefficient for
price is �62.88, while the true coefficient in the data generating process (DGP) is
�100. Hence, it becomes apparent that OLS severely underestimates the true price
sensitivity of consumers, which is in line with previous research (e.g., Bijmolt et al.
2005). We note that these numbers are the marginal effects of a €1 price change on
sales; these are not price elasticities.

We now attempt to solve the endogeneity bias using an IVapproach. The IV Z1 is
the sum across the costs for all ingredients that are used for the ice-cream production
(e.g., milk, sugar, fruits). The costs do not vary every day as the ice-cream seller
often makes bulk purchases for several days. Because the ice-cream seller does not
use local produce, the prices of the ingredients that she uses do not depend on local
short-term temperature fluctuations. We therefore can accept the assumption that
costs are exogenous. In other words, using costs in this example as the IV results in

Table 2 Descriptive
statistics of example
data set

Mean Std. dev. Min Max

Sales (units) 130.69 34.15 35.60 226.19

Price (€) 1.69 0.33 0.72 2.63

Instrument 1 (Z1) 0.99 0.29 0.50 2.00

Table 3 OLS estimation results of example data set

Sales True β Estimate for β se t p

Price �100 �62.88 3.71 �16.96 0.00

Intercept 300 236.99 6.39 37.12 0.00
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an IV that meets the exclusion restriction. Table 4 contains the first-stage regression
of price on Z1.

Here, we expect that the IV (cost) has a positive effect on price, which is the case
as the estimate is 0.50 and significant. Such an empirical examination of the sign and
magnitude of the estimated effect of the IVon the endogenous regressor is important,
as it provides face validity for the theoretical arguments supporting the IV. The R2 of
this regression is 0.20. Because Z is the only regressor in the first-stage regression
model, we can conclude that 20% of the variance in price is explained by the
IV. Table 4 also reports an F-test, which assesses the joint significance of the IVs.
In this case the F-test for the excluded IV is 125.07 and highly significant
( p < 0.0001). This provides support for the strength of the cost variable as IV.

We now use the IV to estimate Eq. 1 with 2SLS, which we could do by estimating
Eq. 7 with OLS, but it is better to rely on a command from the shelf (e.g., ivreg in
Stata), because otherwise there is a risk that the standard errors of the second stage
are not correct (more on that below). Table 5 summarizes the IV results from the
2SLS procedure.

The results indicate that 2SLS accurately estimates the true regression coefficient
(�100). Note, however, the large standard error (9.05) compared to the OLS
standard error in Table 3 (3.71), which is a typical outcome of an IV regression,
i.e., IV is known to be less efficient (have a higher asymptotic variance) than OLS.

In Stata, rather than using ivreg, we can also use ivreg2, which provides a
comprehensive set of additional statistics and diagnostics that are important to
examine. For example, the Stata command would be:

ivreg2 sales (price = Z1), first.
Please note that running this command for this example does not give the Sargan

test for the exogeneity of the IV. This makes sense because the Sargan test cannot be
conducted if there is exactly the same number of IVs (one here) as endogenous
regressors (one here).

We now turn to the Hausman test for endogeneity, which compares the IV
estimate to the potentially inconsistent OLS estimate. In case of systematic differ-
ences between the IV and OLS estimates, the null hypothesis of no difference
between the two will be rejected, and we would conclude that endogeneity is present.
In Stata, we can implement this test by first running an OLS regression, storing the

Table 5 2SLS estimation results of example data set

Sales True β Estimate for β se t p

Price �100 �99.99 9.05 �11.05 0.00

Intercept 300 299.73 15.36 19.51 0.00

Table 4 First-stage
regression results with the
IV Z1

Price Estimate for γ se t p

Z1 0.40 0.04 8.95 0.00

Intercept 1.19 0.05 25.78 0.00

F-test excluded IV df = 498, F = 125.07, p < 0.0001
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estimation results, then running an IV regression, and again storing the estimation
results. After that we can run the Hausman test. We then tell Stata to compare both
estimates:

reg sales price
estimates store ols
ivreg sales (price = Z1), first
estimates store iv
hausman iv ols, sigmamore6

For the ice-cream example, we find a Hausman χ2 test statistic of 25.17 (d.f.= 1),
which leads to a strong rejection of the null hypothesis of no endogeneity
( p < 0.001). We therefore conclude that endogeneity is present in the demand
model for ice cream and the 2SLS results should be used for interpretation of the
effect of price on sales.

It is important to recognize that the validity of the Hausman test depends on the
assumption that we used valid IVs. If we use weak or endogenous IVs, the results of
the test are likely to be meaningless. Second, we recommend researchers to com-
plement this test with an assessment of the managerial and economic relevance of the
difference between the estimated coefficients of OLS and IV. For instance, there may
be cases where the test indicates a statistically significant difference, but the differ-
ence in estimated coefficients is managerially or economically not relevant.

Recall that for the ice-cream example, we argued that the endogeneity issue arises
because the ice-cream seller sets prices based on weather, which was unobserved by
the researcher. Let us now assume that we managed to collect information on this
variable. We may add the variable that captures weather into the main Eq. 1 as an
additional covariate. Table 6 summarizes the results of the OLS regression with both
price and temperature as covariates in the model.

The results indicate that controlling for the previously omitted variable eliminates
the endogeneity problem. The standard error of the estimated price effect (1.15) is
also much smaller than in the OLS model where temperature is omitted (3.71), as
well as in the IV model where price endogeneity is corrected for using 2SLS (9.05).
Hence, it is our advice to develop a regression model that controls for relevant
covariates, such that no important covariate (e.g., temperature) that correlates with
both the dependent (e.g. sales) and key independent variables (e.g., price) is omitted.

Table 6 OLS estimation results of example data set

Sales True β Estimate for β se t p

Price �100 �100.62 1.15 �87.78 0.00

Temperature 30 29.98 0.39 76.74 0.00

Intercept 300 300.88 1.97 152.89 0.00

6The option sigmamore specifies that the covariance matrices are based on the estimated error
variance from the efficient OLS estimator. Stata’s online help provides more information (“help
Hausman”).
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This approach is also discussed in Germann et al. (2015, p. 4), who refer to such an
approach as the “data-rich approach” to endogeneity correction.

Are there ways to assess whether the endogeneity correction was successful by
examining in-sample model fit criteria or carrying out holdout-sample validation?
For many advances in market response models, (e.g., unobserved parameter hetero-
geneity, nonlinear functional forms), we can use model fit criteria to assess how well
the model performs. Unfortunately, however, this is not possible in general for
endogeneity correction. The reason is that any endogeneity correction in a linear
regression model will tilt the fitted line away from the best fitting OLS line, both in
and out of sample. We illustrate this point in Fig. 3, which displays the same
scatterplot of price and sales as before, along with the fitted regression lines for IV
(dashed) and OLS (solid).

Figure 3 shows that the OLS line fits right through the scatter of sales and price
observations. The IV line, however, has a more negative slope because the IV
approach estimates the correct (more negative) price effect compared to OLS.
However, this does mean that the IV fitted line is tilted away from the OLS fitted
line. The OLS line minimizes the sum of squared residuals, and thus the OLS fitted
line has the better fit to the observed data, as shown in Fig. 3.

The same principle holds both in an estimation sample and in a holdout sample,
as long as the underlying data generating process in the holdout sample has not
changed from the data generation process in the estimation sample. In other words,
the OLS fitted line will predict better in a holdout sample than the IV fitted line,
even though the OLS fitted line is based on biased parameter estimates. For
instance, going back to the ice-cream example, suppose that the ice-cream vendor

Fig. 3 OLS and IV regression fitted lines for the ice-cream example
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wants to predict tomorrow’s demand. Suppose also that tomorrow’s temperature
can be predicted quite accurately and that she is planning to set her prices using
tomorrow’s temperature information, as is usual practice for her. What would be
the best prediction for tomorrow’s sales? Looking at the lines in Fig. 3, we are
better off using the OLS fitted line (solid line) than the “true” IV fitted line
describing the causal effect of price on sales (dashed line) to predict tomorrow’s
sales, given price.

Ebbes et al. (2011) formalize this discussion and conclude with two main
recommendations. First, if the model has a descriptive or normative purpose,
consistent estimates for the regression effects are key, and an estimation approach
that corrects for endogeneity is required. Descriptive models are developed to
provide statements about the effectiveness of marketing instruments (Franses
2005), and normative models are developed to offer a recommended course of action
(Leeflang et al. 2000). For either descriptive or normative models, comparisons of
in- and out-of-sample fit of OLS versus 2SLS, or any other method that corrects for
endogeneity, are not useful. Second, if prediction is the primary model objective,
Ebbes et al. (2011) recommend to not correct for endogeneity. Particularly, if the data
generating process in the estimation or holdout samples are the same, then the fitted
line obtained from estimating Eq. 1 with OLS will predict as well or better as a model
that corrects for endogeneity.

Hence, when considering potential endogeneity in a regression model, the
researcher should first decide on the model objective, before attempting to correct
for endogeneity. Importantly, we should not use the standard R2 measure for model
fit to assess the success of an endogeneity correction compared to OLS: OLS will
typically perform better, despite its biased estimates.

What Happens in an IV Regression When Using Poor IVs?

As we saw above, the IV approach can be an effective way of addressing an
endogeneity problem in a linear regression model if the IVs used are strong and
exogenous. However, the quality of an IV regression deteriorates quickly when one
or both of these key requirements are violated. To demonstrate this, we run two IV
regressions, one with an endogenous IVand another one with a weak IV, continuing
from the earlier hypothetical example.

Suppose we have two additional IVs available, Z2 and Z3, where Z2 is not
exogenous and Z3 is weak. What would be an example for Z2 such that it is an
endogenous IV? Rossi (2014) argues that lagged marketing variables, such as lagged
prices, are often invalid IVs, as they are likely to be endogenous, and should thus not
be used as IVs. For instance, in the ice-cream vendor example, using lagged price as
IV (e.g., price of the previous day, or Pt � 1) would likely result in an endogenous IV,
because today’s temperature is likely correlated with yesterday’s temperature, while
yesterday’s price (the proposed IV) is also correlated with yesterday’s temperature,
because of the ice-cream vendor’s price setting behavior. Hence, corr(et, Pt � 1) 6¼ 0,
making the IV Z2t = Pt � 1 endogenous and thus invalid.
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An example for a weak IV (Z3) in the ice-cream vendor case would be, for
instance, gasoline prices. The price of gasoline is potentially an exogenous IV
because gasoline prices are unlikely to be correlated with today’s temperature or
other demand shocks. However, while gasoline prices are part of the cost of
producing ice creams (e.g., transporting ingredients), these prices will probably be
only a small fraction of total cost and thus are expected to only weakly correlate with
the price of ice creams. Hence, we would expect corr(P, Z3) � 0, making the IV Z3 a
weak IV and thus inappropriate.

Table 7 contains the first-stage OLS estimation results using the (invalid) instru-
ment Z2. Table 8 shows the IV results for the main Eq. 1, using only Z2 as an IV.

From Table 7, we can see that the instrument is clearly not weak, as it explains a
significant portion of the variation in prices as indicated by the F-test of the excluded
IV. However, the results in Table 8 show that the 2SLS estimate for the price effect is
severely biased. Interestingly the IV estimate (�47.95) is similarly biased compared
to the true value (�100) as the OLS estimate (�62.88, Table 3), while the IV
estimate has a much larger standard error. Applying the Hausman test here to test
for the presence of endogeneity would give us X2 test statistic of 1.42 (d.f.= 1) and a
p-value of 0.23. Hence, the researcher would believe that there is no endogeneity
problem in estimating Eq. 1 with OLS, which is clearly a wrong conclusion.

We now turn to the case of using the weak IV Z3. Table 9 contains the first-stage
estimation results using OLS, and Table 10 displays the results for the main equation
using only Z3 as a weak IV.

From the first-stage regression results in Table 9, we can conclude that Z3 is a
weak IV, because it is not a significant predictor for price. Consequently, the F-test
statistic of the excluded IV is very low (F = 1.54). As the results in Table 10 show,

Table 7 First-stage regression with the strong but endogenous instrument Z2

Price True γ Estimate for γ se t p

Z2: strong but endogenous IV 0.3 0.32 0.05 6.60 0.00

Intercept 0 1.36 0.05 26.10 0.00

F-test excluded IV df = 498, F = 43.50, p < 0.001

Table 8 2SLS estimation results with the strong but endogenous instrument Z2

Sales True β Estimate for β se t p

Price �100 �47.95 13.27 �3.61 0.00

Intercept 300 211.76 22.46 9.43 0.00

Table 9 First-stage regression with the exogenous but weak IV Z3

Price True β Estimate for γ se t p

Z3: exogenous but weak IV .3 �0.02 0.01 �1.24 0.22

Intercept 0 1.69 0.01 115.11 0.00

F-test excluded IV df = 498, F = 1.54, p = 0.22
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the estimated coefficients from the main equation using the IVapproach with only Z3
as IV are now severely biased and have huge standard errors.

Unlike using Z2 as IV, which is an endogenous IV, we could have identified that
Z3 is inappropriate as an IV because of its weakness, by examining the first-stage
regression (Bound et al. 1995). This example illustrates that it is important that
researchers assess the strength of the IV by examining the first-stage regression.
When the IV is not strong, we should resist the temptation to interpret and use the IV
estimation results, as the ones presented in Table 10. Unfortunately, for the endog-
enous IV Z2, an examination of the first-stage regression (Table 7) did not reveal any
problems with this IV, and only theoretical arguments would have served to dismiss
Z2 as an appropriate IV.

In sum, when the assumptions underlying the validity of IVs are violated, as was
the case for Z2 and Z3, the IVestimates are potentially severely biased, and we would
be better off to not use an IVapproach to correct for endogeneity, as the “cure” to the
problem is worse than the “disease.”

Extensions of the Basic IV Approach

Many empirical regression applications in marketing cannot be addressed by a simple
linear market response model with just one independent variable. More likely, we
encounter applications where there are multiple endogenous regressors, other regres-
sors (covariates) that are not endogenous, interaction terms with endogenous regres-
sors, or there is endogeneity in the presence of binary dependent or independent
variables. We now provide a discussion of several common extensions of the basic IV
approach, which may be useful to address an endogeneity problem in a marketing
application. We continue using a linear regression model for our discussion; if the
original model is a model that can be linearized (e.g., a multiplicative model using the
log transform), then the extensions that we discuss next will still apply.

Control Function

There is an alternative way of estimating Eq. 1 using IVs. Instead of using the 2SLS
approach, we could use the control function (CF) approach (e.g., Petrin and Train
2010; Ebbes et al. 2011; Wooldridge 2015). Recall that in the 2SLS approach, we
replace the observed values of the endogenous regressor by its predictions obtained
from the first-stage regression. In contrast, in the control function approach, we add

Table 10 2SLS estimation results with the exogenous but weak IV Z3

Sales True β Estimate for β se t p

Price �100 �19.65 75.31 �0.26 0.79

Intercept 300 163.90 127.33 1.29 0.20

Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers 207



the residuals of the first-stage regression as an additional regressor into the main
Eq. 1.

We can implement the control function approach by using the same first-stage
regression (6) as in 2SLS. After estimating the first-stage regression with OLS, we
compute the fitted residuals

ν̂i ¼ Pi � P̂i (9)

Then, we include these fitted residuals as an additional regressor in the main
regression Eq. 1 for the dependent variable, resulting in

Yi ¼ β0 þ β1Pi þ β2ν̂i þ ei (10)

Subsequently, this “augmented” regression equation can be estimated using
standard estimation approaches (e.g., OLS). It can be shown that 2SLS and CF
give identical estimates for the regression parameters in the linear regression model
(e.g., Verbeek 2012). Note that the original Pi is used in Eq. 10 and not P̂i. The idea is
that the term ν̂i captures the “omitted” variables that make Pi endogenous. By
including this term in Eq. 1, we “control” for endogeneity. Interestingly, a standard
t-test for the significance of β2 would be a fairly straightforward way to test for the
presence of endogeneity, i.e., it is a computationally easy version of the Hausman
test (step 6 in the previous section).

One note of caution regarding the use of the CF approach is the following. While
in linear models the estimated coefficients using the CF approach are identical to the
2SLS estimates, the standard errors when estimating Eq. 10 using OLS are incorrect,
because ν̂i is an estimated quantity. One way to address this is to use bootstrapping
techniques to estimate the correct standard errors. The procedure to compute the
correct standard errors using bootstrapping is given in Karaca-Mandic and Train
(2003) and Papies et al. (2017).

We illustrate the control function approach using the same data as above. We
first estimate Eq. 6, then store the residuals (e.g., in Stata by using the command
predict new_variable, res), and use these residuals as an additional regressor in the
main regression equation. The estimated coefficient (�99.99) using the CF
approach is identical to the one obtained from 2SLS (Table 5). Importantly, the
control function requires the exact same conditions for the IVs as before. That is,
the IVs must be strong and exogenous. Thus, in the linear regression model, there
is little reason to use the CF approach. In fact, it is harder to implement the CF
approach than the 2SLS approach, as we need to bootstrap to obtain the correct
standard errors.

However, the CF approach is often the more straightforward way of correcting for
endogeneity when the dependent variable in Eq. 1 is not continuous. We may have a
dependent variable that is, e.g., binary (e.g., purchased an ice cream or not), a
discrete variable (e.g., how many scoops of ice creams were purchased), or a choice
variable (e.g., which ice-cream flavor is chosen); see, e.g., Petrin and Train (2010),

208 P. Ebbes et al.



Ebbes et al. (2011), and Andrews and Ebbes (2014). In those cases, the model in
Eq. 1 would not be a linear regression model, but rather a binomial logit or probit
model for a binary dependent variable, a Poisson regression model for a discrete
count dependent variable, or a multinomial regression model for a nominal (choice)
dependent variable (Andrews and Ebbes 2014; Petrin and Train 2010). We can
control for endogeneity in these models by including the control function term ν̂i
as an additional regressor and bootstrapping the standard errors of the estimated
regression coefficients.

Multiple Endogenous Regressors

Many marketing applications have more than one potentially endogenous regressor.
Suppose we have two regressors, price and advertising, in a regression model that we
suspect are both endogenous because of strategic planning. In addition, we have one
other regressor Xi, which we believe is exogenous. That is, let us consider the
following extension of Eq. 1:

Yi ¼ β0 þ β1Pi þ β2Ai þ β3Xi þ ei (11)

Here, Ai is the endogenous advertising variable, and Xi is the exogenous regressor.
We now need at least two IVs to correct for endogeneity in Eq. 11. In general, when
there are K endogenous regressors, we need L � K IVs. For each IV, the researcher
needs to develop theoretical arguments to argue that (1) the IV is relevant (i.e., is not
weak) and (2) the IV meets the exclusion restriction.

Once we have identified appropriate IVs, we could then think of the IV approach
as estimating a separate first-stage regression for each endogenous regressor. But,
there is an important practical matter: each first-stage regression needs to have the
same set of right-hand-side variables. That is, all available exogenous information
(IVs and exogenous regressors) belong to the right-hand side of each first-stage
regression equation, as in the following two first-stage regression equations for price
P and advertising A:

Pi ¼ γ0 þ γ1Z1i þ γ2Z2i þ γ3Xi þ νpi (12)

Ai ¼ η0 þ η1Z1i þ η2Z2i þ η3Xi þ νAi (13)

where νpi and νAi are the error terms of the first-stage regression equations. Another
important matter concerns the theoretical development of the IVs: we must ensure
that each endogenous variable is identified by at least one unique IV. That is, we only
address the endogeneity problem adequately if at least one IV is related to Pi and the
other IV is related to Ai. We cannot have that Z1 is correlated with both P and A, while
Z2 is correlated with none. We can also not have that Z1 and Z2 are both correlated
with P and neither is correlated with A.
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To test for the strength of the instruments in case of multiple endogenous vari-
ables, we can use a multivariate F-test (e.g., the Sanderson-Windmeijer F-test). This
test is implemented in Stata’s ivreg2 (Baum et al. 2007, 2015; Sanderson and
Windmeijer 2016).

In case we want to address an endogeneity problem with multiple endogenous
regressors using the CF approach, the procedure is quite similar as before. Using the
first-stage regressions (12) and (13), we can compute the fitted OLS residuals from
Eqs. 12 and 13 and include both as two additional regressors in the main Eq. 11.
Subsequently, the augmented Eq. 11 may be estimated by OLS. As before, we need
to bootstrap to obtain the correct standard errors of the estimated regression
coefficients.

Interaction Terms

In many marketing applications, the effect of one independent variable on the
dependent variable depends on the level of a second independent variable. In that
case, we need an interaction term in the regression equation, i.e., the product of the
two independent variables enters the regression as an additional covariate. Consider
the following example in which the effect of the endogenous regressor price depends
on the level of the exogenous variable Xi:

Yi ¼ β0 þ β1Pi þ β2Xi þ β3PiXi þ ei (14)

To use 2SLS, we must treat the interaction as a separate endogenous regressor that
needs its own IV(s) and its own first-stage regression equation. As a second IV, we
could use the interaction XiZi between the exogenous regressor Xi and Zi:

7

Pi ¼ γ0 þ γ1Zi þ γ2XiZi þ γ3Xi þ νpi (15)

PiXi ¼ η0 þ η1Zi þ η2XiZi þ η3Xi þ νpxi (16)

Here, νpi and ν
px
i are the error terms of the two first-stage regression equations. The

regression coefficients in Eq. 14 should be estimated with 2SLS. As before, we
would need to support the IVanalyses with the six tasks discussed above, including a
discussion of the first-stage regressions and the strength of the instruments (which
now includes the constructed instrumental variable XiZi).

A potentially more straightforward and parsimonious way to address an endo-
geneity problem in an interaction term is through the CF approach (Wooldridge

7In case the variables are mean centered before they enter the product, i.e., Pi � P
� �

Xi � X
� �

, we
need to use the mean-centered interaction term on the left-hand side of (16) and on the right-hand
side of (14), instead of PiXi. The IVs do not require mean centering as the first-stage predictions will
not be affected by mean centering.
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2015). It is sufficient to estimate the following first-stage regression and add the
fitted residuals as an additional regressor to (14):

Pi ¼ γ0 þ γ1Zi þ γ2Xi þ νpi (17)

By including the residuals from Eq. 17 in the main Eq. 14, we can directly address
the endogeneity problem, without having to specify a second first-stage equation for
the interaction term (Wooldridge 2015, p. 428). However, a potential downside is
that the standard errors need to be computed using a bootstrapping approach.

The Benefit of Panel Data

As the discussion above highlights, correcting for potential endogeneity in a market
response model is important but not straightforward. In fact, when the IVs are poor
(e.g., weak, endogenous, or both), the IV estimator is potentially more biased than
the OLS estimator. Hence, the “cure” to the problem can be worse than the “disease”
(see also Rossi 2014). Therefore, the researcher should only resort to IVestimation if
there is a serious concern of an endogeneity problem and when it cannot be solved by
adding other covariates (e.g., Germann et al.’s (2015) rich data approach).

However, another opportunity to correct for endogeneity arises when the
researcher has panel data (e.g., Wooldridge 2010; Verbeek 2012). Panel data
means multiple observations per response unit across time, such as tracking the
sales of a set of stores over time. In some cases, the panel structure of the data can be
leveraged to correct for endogeneity. In the literature, these models are often labeled
“unobserved effects models” (Wooldridge 2010; Germann et al. 2015). The idea
behind such models is that they control for omitted variables by using fixed effects
dummy variables as control variables. To illustrate this idea, suppose we have daily
data not only for one ice-cream vendor but for multiple vendors. We extend model
(1) for panel data as follows:

Yit ¼ β0 þ β1Pit þ αi þ λt þ eit (18)

Here i = 1 , . . . , N indicates ice-cream vendor i, and t = 1 , . . . , T indicates
day t. In addition, there are two new terms in the model: αi and λt. The first term, αi, is
a term specific to ice-cream vendor i and does not vary over time. This term
represents all factors that we cannot observe that are particular to this ice-cream
vendor and which do not change during the observation window. As examples we
could think of the location of the vendor or the quality of the vendor’s ice cream. If
they are not accounted for in model estimation, these unobserved, time-constant
effects could lead to an endogeneity problem: if the ice-cream vendors realize the
potential of their location, they may be tempted to charge higher prices on premium
locations, regardless of which day it is. When this price setting behavior is
unobserved to the researcher, Pit will correlate with the (composite) error term
uit = αi + eit through αi, and we have an endogeneity problem.
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The second term, λt, is a time-specific term that affects all ice-cream vendors in
the same way. Here, we could think of, say, weather (assuming the same weather
applies to all ice-cream vendors), industry-wide changes, economic cycles, govern-
ment policy, etc. Following similar reasoning, when ice-cream vendors take these
“time” shocks into consideration for setting their prices, then we may have an
endogeneity problem if the model estimation does not account for these time shocks.
Hence, when the factors αi and λt are not explicitly accounted for in the estimation,
they will be part of the composite error term uit = αi + λt + eit, and price (or other
regressors) may be correlated with uit, leading to biased estimates using standard
estimation approaches such as OLS.

Fortunately, the panel structure of the data allows us to eliminate these two
unobserved components αi and λt and any endogeneity problem arising from
these two components, without needing IVs. This is done by leveraging a two-
way fixed effects model (Baltagi 2013, p. 39) that uses fixed effects to control for
systematic differences between cross-sectional units (e.g., ice-cream vendors)
and for factors that are common to all cross-sectional units but vary by time
period.

As fixed effects for the cross-sectional units, we could include a set of dummy
variables for each ice-cream vendor in the model. However, this can potentially lead
to many more parameters to estimate. Instead, we could calculate the average
demand and average price across t for each i, by averaging (18) across time, resulting
in:

Yi ¼ β0 þ β1Pi þ αi þ λþ ei (19)

with Yi ¼ 1
T

PT
t¼1 Yit , and the other averages Pi , λ, and ei defined similarly. Then,

subtracting Eq. 19 from Eq. 18 results in the following regression equation:

Yit � Yi

� � ¼ β1 Pit � Pi

� �þ λt � λ
� �þ eit � eið Þ (20)

Examining (20), we see that the unobserved time constant effect αi dropped out of
the model, and the concern about it inducing an endogeneity problem is gone. We
may estimate (20) with OLS, using Yit � Yi as the “new” dependent variable and
Pit � Pi as the “new” independent variable and including time-fixed effects dummies
eλ1, . . . ,eλT (alternatively, we can include T � 1 time-fixed effects dummies and an
intercept). This estimator for β1 is called the “within estimator” because it only uses
within-cross-section variation to estimate β1.

However, as Germann et al. (2015, p. 4) note, we do need the assumption that
prices are uncorrelated with the error term eit across all time periods (this assumption is
sometimes called “strict exogeneity”). Thus, the identifying assumptions underlying
the fixed effects model (20) are that (i) the omitted variable(s) is (are) time invariant
(i.e., the individual-specific intercept captures the omitted variable(s)) and (ii) there is
enough variance in the dependent variable as well as the focal endogenous variable
within one specific individual (ice-cream vendor) to allow for the estimation of its
effect (the endogenous variable is identified only through the within-individual
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variation). The effects of time-invariant independent variables (e.g., quality of the
location of the ice-cream vendor) cannot be estimated in the fixed effects approach and
are thus eliminated from the fixed effects model during estimation.

How about the time unobserved effects? In estimating Eq. 20 with OLS, we
already suggested to include time-fixed effects dummies. These dummies capture
any unobserved time-specific effects. Thus, any endogeneity concern arising from
unobserved time-specific shocks that are common to all ice-cream vendors are now
no longer present.

However, if we have daily data, this would lead to the inclusion of many time
dummies in (20), which may complicate the estimation of Eq. 20 with OLS. As an
alternative, we could subtract the average across cross section (per time period) from
both the dependent and independent variables. That is, we average (18) across cross-
sectional units, for each time period t = 1 , 2 , . . . , T, resulting in

Yt ¼ β0 þ β1Pt þ αþ λt þ et (21)

with Yt ¼ 1
N

PN
i¼1 Yit , and the other averages Pt , α , and et defined similarly. In

addition, we average (18) across cross section and time, giving

Y ¼ β0 þ β1Pþ αþ λþ e (22)

with Y ¼ 1
NT

PT
t¼1

PN
i¼1 Yit, and the other averages P, α, λ, and e defined similarly.

Now we subtract Eqs. 19 and 21 from Eq. 18 and add Eq. 22 (Baltagi 2013, p. 40), to
obtain

Yit � Yi � Yt þ Y
� � ¼ β1 Pit � Pi � Pt þ P

� �þ eit � ei � et þ eð Þ (23)

We can now run a standard OLS regression on (23) to estimate β1 as both αi
and λt are dropped out of the model. Here, we would not include an intercept
and use as dependent variable the “new” variable Yit � Yi � Yt þ Y and as
independent variable the “new” variable Pit � Pi � Pt þ P . There would be
neither time dummies nor vendor-specific dummies in this regression. We
believe that in many panel data applications in marketing, such an approach
can already address most of the endogeneity problems and should routinely be
carried out.

We note that another approach commonly discussed in panel applications is the
random effects estimator that treats the unobserved intercepts αi in (18) as random
variables. We would like to stress that this approach does not account for endogeneity,
and it has even slightly stronger exogeneity assumptions regarding the identification of
the regression effects in (18) than OLS. Hence, if the researcher believes that there is
an endogeneity problem arising from unobserved, time-constant effects, then includ-
ing random intercepts in the model, as in a random effects regression approach, does
not address the endogeneity problem (see also Ebbes et al. (2004) for a discussion). A
discussion on the main identifying assumptions of panel data model applications in
marketing is given by Germann et al. (2015, Table 2).
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Conclusions

Many marketing research professionals and consultants are interested in estimat-
ing regression models to understand the effect of one variable (e.g., price or a
marketing investment) on another (e.g., sales or market share). If the goal is to
find the causal effect based on observational data such as transaction data or
survey data, endogeneity is a serious challenge in achieving this goal. Endo-
geneity occurs if the independent variable is set deliberately and strategically by
managers in order to capitalize on factors causing shocks in demand that are
observable to the manager but not to the researcher. Similarly, consumers may be
strategic and make decisions based on factors not observable to the researcher.
As a result, these unobserved factor(s) can become part of the error term in the
regression model. If one or more such factors are used to set the independent
variable, then the variable is endogenous, which means that the estimated effect
of the independent variable will be biased in standard estimation approaches
such as OLS.

The bias can be substantial in practical applications, and therefore considering
endogeneity issues is important both in marketing academia and marketing
practice. However, this is more easily said than done. As a first step, we
recommend researchers to expand the regression model with covariates that
could capture the unobserved factors. In the ice-cream vendor example, once
the temperature variable was added to the regression model, the OLS estimates
were very close to the true parameter values and were estimated with high
precision (low standard errors).

In a panel data setting, unobserved factors may be concentrated in unobserved
cross-sectional differences between firms or consumers. In this case, adding fixed
effects (dummies for each cross-sectional unit) as additional covariates adequately
addresses the endogeneity problem. If the endogeneity problem arises because of
time-related demand shocks, adding fixed time effects (time dummies) as additional
covariates solves the problem. Equivalently, we can use the within estimators
presented in the previous section.

If we have a single time series or a single cross section of observations or if we
have a panel data setting and the fixed effects approach does not fully solve the
endogeneity problem (e.g., Germann et al. 2015; Ebbes et al. 2004), then we need to
split the exogenous variation in the independent variable from the endogenous
variation and only use the exogenous variation to estimate the causal effect. This
is the essence of the IV (or 2SLS) approach. It is, however, challenging to find IVs
that satisfy two seemingly contradictory conditions: they need to be strong (explain
the endogenous independent variable) yet be uncorrelated with the error term of the
main regression equation. While the first condition (IV strength) can be investigated
empirically, the second condition (IV exogeneity) can only be supported with
theoretical arguments.

The difficulty of finding suitable IVs has sparked researchers’ interest in finding
ways of accounting for endogeneity in observational data without the need to use
observed instruments. In the marketing literature, two approaches have been
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proposed. Firstly, Ebbes et al. (2005) develop the method of latent instrumental
variables (LIV) that provides identification through latent, discrete components in
the endogenous regressors. Similar to the observed IV approach, the LIV approach
shares the underlying idea that the endogenous regressor is a random variable that
can be separated into two components, one which represents the exogenous variation
and one which represents the endogenous variation. The endogenous component is
correlated with the error term of the main regression equation through a bivariate
normal distribution. The LIV model may be estimated using, e.g., a maximum
likelihood approach. Secondly, Park and Gupta (2012) introduce a method that
directly models the correlation between the endogenous regressor and the model
error term using Gaussian copulas. This approach can be implemented through a
control function approach. Both the LIV and the Gaussian copulas approaches
require non-normality in the endogenous regressor and normality of the error term
of the main regression equation. We refer to Papies et al. (2017) for a detailed
discussion of these two approaches.

Since exogenous variation in the independent variable of interest is essential for
the estimation of causal effects, perhaps the best way to estimate causal effects is
through field experiments (e.g., Ledolter and Swersey 2007; Ascarza et al. 2017). In
a field experiment, we randomly set the values of the independent variable(s). After
observing the realizations of the dependent variable, we can estimate the causal
effect of the independent variable(s) on the dependent variable with a standard OLS
regression approach8, as the variation in the independent variable is exogenous
because of the randomization. Field experiments are suitable in business applications
where there are many potential customers, who can be accurately targeted and
randomized into two or more treatment groups and whose outcomes or responses
can be measured. But even in those settings, the implementation can be a challenge.
For instance, a field experiment that attempts to randomly manipulate prices in an
online setting can be detected by consumers, who realize that their price changes
from one online session to another or notice that their price is different from the price
of another consumer who is purchasing the same product. This may lead to a
potential backlash, especially in today’s world of online connectivity (see, e.g.,
Verma 2014).

This chapter is deliberately written rather informally, as a way to introduce the
problem of endogeneity in regression models to marketing researchers. For a more
formal, econometric treatment of endogeneity problems in regression models, we
refer to the excellent textbooks by Wooldridge (2010) and Verbeek (2012) and the
article by Bascle (2008). We hope that this chapter has clarified the issue of
endogeneity and has provided some perspective on approaches to address
endogeneity.

8Ascarza et al. (2017) leverage a field experiment to address endogeneity concerns in the context of
a customer relationship management (CRM) campaign, customer targeting, and social influence.
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Abstract

Cluster analysis is an exploratory tool for compressing data into a smaller number
of groups or representing points. The latter aims at sufficiently summarizing the
underlying data structure and as such can serve the analyst for further consider-
ation instead of dealing with the complete data set. Because of this data com-
pression property, cluster analysis remains to be an essential part of the marketing
analyst’s toolbox in today’s data rich business environment. This chapter gives
an overview of the various approaches and methods for cluster analysis and links
them with the most relevant marketing research contexts. We also provide
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pointers to the specific packages and functions for performing cluster analysis
using the R ecosystem for statistical computing. A substantial part of this
chapter is devoted to the illustration of applying different clustering procedures
to a reference data set of shopping basket data. We briefly outline the general
approach of the considered techniques, provide a walk-through for the
corresponding R code required to perform the analyses, and offer some interpre-
tation of the results.

Keywords

Cluster analysis · Hierarchical clustering · k-centroid clustering · k-medoid
clustering · Marketing analysis · Marketing research

Introduction

Cluster analysis is a generic term for exploratory statistical techniques and methods
aiming at detecting groupings in data sets that are internally more homogeneous than
the entities across the categorized groups. One of the primary goals of clustering is
data compression, i.e., to summarize the original entities by a smaller number of
groups or representing points instead of considering the complete data set. Cluster
analysis has a long history and emerged as a major topic in the 1960s and 1970s
under the label “numerical taxonomy” (cf., Sokal and Sneath 1963; Bock 1974). The
origins of cluster analysis appeared in disciplines such as biology for deriving
taxonomies of species or psychology to study personality traits (Cattell 1943).
Over the years, a large variety of clustering techniques has been proposed for
numerous types of applications in diverse fields of research. From a historical
perspective, excellent books on cluster analysis have been written by Anderberg
(1973), Hartigan (1975), Späth (1977), Aldenderfer and Blashfield (1984), Jain and
Dubes (1988) or Kaufman and Rousseeuw (1990). Additionally, Arabie and Law-
rence (1996) provide an extensive compilation of contributions on various aspects of
cluster analysis; for more development updates in the field, see Everitt et al. (2011)
or Hennig et al. (2015). From a marketing researcher’s perspective, Punj and Stewart
(1983) or Arabie and Lawrence (1994) provide comprehensive reviews of cluster
analysis.

The “classical” marketing problems involving the application of clustering
methods are market segmentation (Wedel and Kamakura 2000; Dolnicar et al.
2018) and competitive market structure (CMS) analysis (DeSarbo et al. 1993).
The former entails deriving segments of customers who either react homogeneously
to various marketing mix variables (response-based segmentation) or are more
homogeneous with respect to some psychometric constructs such as product atti-
tudes or product images, perceived value, or preferences (construct-based segmen-
tation); see Mazanec and Strasser (2000) or Reutterer (2003) for this distinction and
an overview of corresponding clustering methods.
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The task of CMS analysis is to derive a configuration of brands in a specific
product class which adequately reflects inter-brand competitive relationships as
perceived by consumers (DeSarbo et al. 1993). This is typically accomplished via
an arrangement of the rivaling brands in ultrametric trees, overlapping or fuzzy cluster
structures (Rao and Sabavala 1981; Srivastava et al. 1981, 1984). Because they
utilize identical data structures but just differ in the mode of data compression,
segmentation (compression of the consumer mode) and CMS (compression of the
brand mode) turn out to be “reverse sides of the same analysis” (Grover and
Srinivasan 1987; Reutterer 1998). Yet another very similar data structure arises
when companies keep record of their customer transactions (e.g., by tracking them
over time in customer relationship management systems). Such data sets tend to be
huge and accrue as clickstreams of visitation and corresponding purchasing patterns
on a website or as sequences of shopping baskets comprising jointly purchased
items or product categories. The data compression tasks involved in the so-called
exploratory market basket analysis (Mild and Reutterer 2003; Boztuğ and Reutterer
2008; Reutterer et al. 2017) are analogous to those in market segmentation vs. CMS
analysis and also entail some suitable clustering method. The marketing literature
refers to the task of discovering subgroups of distinguished cross-category interrela-
tionship patterns among jointly purchased items or product categories also as “affinity
analysis” (Russell et al. 1999; Manchanda et al. 1999; Russell and Petersen 2000).

The remainder of this chapter is organized as follows: In the next section, we
provide a brief overview of the various clustering methods and focus on how to
proceed when conducting distance-based clustering in more detail. We also present
the most popular distance/proximity measures and algorithms as well as the most
commonly used software implementations in the computational environment R
available to analysts. To demonstrate the application and the results obtained from
using various clustering methods, we then provide a couple of hands-on examples on
how to put cluster analysis into action. Using one and the same data set, we
demonstrate the specific quality of data compression achieved when utilizing
a specific type of cluster analysis. While most textbooks use market segmentation as
the standard case for illustrating cluster analysis in marketing (see, e.g., Chapman and
McDonnell Feit (2019) and Dolnicar et al. (2018) for excellent examples), we focus in
our demonstration on the exploratory analysis of shopping basket data representing
customers’ joint purchase decisions across a wide range of product categories.

An Overview of Clustering Methods

We can distinguish between two major groups of clustering methods: model-based
clustering and distance-based clustering. While model-based methods explicitly
assume some statistical probability model as an underlying data generating process,
the latter are more exploratory by nature. The idea behind model-based methods is
that the observations arise from a probability distribution which is a mixture of two
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or more components (i.e., clusters). Each of these components is a density function
with an associated weight in the mixture (e.g., a mixture of multivariate normal
distributions) and the task is to determine the mixture distribution which fits the data
best. This is usually done by varying the number of components and optimizing
some fit or information criterion. A specific variant of model-based clustering
is discussed in the chapter ▶ “Finite Mixture Models” of this handbook. For more
technical details on model-based clustering, see Titterington et al. (1985),
McLachlan and Basford (1988), Fraley and Raftery (2002), and Frühwirth-
Schnatter (2006).

In the following, we will focus on distance-based clustering. The aim of
distance-based clustering is to find groupings in the data such that the distance
between entities within a group is minimized, while it is maximized for entities
between groups for some predefined distance measure. The steps required to
employ a distance-based clustering procedure are shown in Fig. 1. After the objects
and variables of interest are selected from an available data base, the second step
involves the choice of an appropriate proximity measure to quantify the
(dis-)similarity between the objects to be clustered. In the next step, a specific
cluster algorithm is selected, and once the results are obtained, the number of
clusters is determined and the cluster solution interpreted accordingly. Because of
their crucial impact on the resulting cluster solutions, we next discuss some of the
most popular proximity measures and clustering algorithms used in research
practice.

Data Quality and Proximity Measures

The choice of a proximity measure depends on the nature of the data to be clustered,
more specifically, the scaling properties of the variables at hand. Generally speaking,
we can distinguish between numerical (quantitative, metric) and categorical (qual-
itative, nonmetric) data. Metric data is characterized by a scale with numerically
equal distances representing values of the underlying characteristic being measured,
such as age, income, or the number of units sold over a month. With this kind of data,
any mathematical operation can be performed, it can be displayed from the greatest
to the least and vice versa. In contrast, categorical data include binary and nominal
data with no natural order, for example: product choice, gender, ethnicity, etc.
If categorical data imply an order relationship (such as preference rankings) of the
measured objects, the scale is denoted as being ordinal. The latter include rating
scales (e.g., brand attitudes measured using itemized scales), which occasionally are

Fig. 1 Steps to conduct cluster analysis
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called pseudometric as they are treated as numerical data despite their ordinal
properties. For a detailed discussion of measurement issues and data quality see,
e.g., Mooi et al. (2018). Given the scaling properties of the data and the type of
(dis-)similarity desired, the choice of a proximity measure determines how close/
similar or how far/dissimilar objects in a data set are situated. A major distinction
of alternative measures arises when we distinguish between metric and nonmetric
data, see Fig. 2. In the case of metric data, most of the proximity measures are
based on the summed distances of the objects with respect to all variables or
dimensions of the data.

In an n-dimensional space, the most well-known and widely used distance
measure between two data points X = (x1, x2, � � �, xn) and Y= (y1, y2, � � �, yn) arises
as a family of metrics denoted as Minkowski distance or Lp norm (Adams and
Fournier 2003), i.e., a metric where the distance between two vectors is given by the
norm of their difference. The outcome of this metric is given by Eq. 1:

dp X ,Yð Þ ¼
Xn
i¼1

xi � yij jp
 !1=p

(1)

The distance is a metric if p � 1. The most commonly used norms are L1 known
as the Manhattan norm and L2 known as the Euclidean norm. The distances derived
from these norms are called Manhattan distance

d1 X ,Yð Þ ¼
Xn
i¼1

j xi � yi j , (2)

and Euclidean distance

d2 X ,Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi � yij j2
s

, (3)

respectively. In cases where more weight should be put on the measurement of very
distant data objects, the squared Euclidean distance can be used:

Fig. 2 Common examples of proximity measures
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d22 X ,Yð Þ ¼
Xn
i¼1

xi � yij j2 (4)

If the data is nonmetric (i.e., nominal, binary, or ordinal scales), the most common
way of quantifying the (dis)similarity between data points is based on a two-way
cross-classification of objects which counts for having a binary attribute: present or
absent (note that ordinal data can be transformed into a series of binary variables
accordingly). The corresponding similarity coefficients mentioned in Fig. 2 mainly
differ in their assumptions on whether the common absence of a characteristic
reflects similarity (such as the simple matching coefficient) or not and how much
weight they put on the matched presence of an attribute.

Since we will use the Jaccard (dis)similarity coefficient in the following applica-
tions of cluster analysis using shopping basket data, we briefly illustrate the con-
struction of the Jaccard index. The latter is used to assess the similarity s between
two sets A, B or categories cA, cB. Formally, it measures the size ratio of their
intersection cA \ cB divided by their union cA [ cB and can be written as follows:

scAB ¼
cA \ cB
cA [ cB

¼ cA \ cB
cA þ cB � cA \ cB

(5)

As discussed below in more detail, in the context of market-basket analysis the
analyst’s interest is in quantifying the (dis)similarity of products or product catego-
ries depending on whether they are jointly purchased in a set of transactions or not.
In doing so, the product purchases are represented as binary elements with
(1) denoting presence and (0) denoting absence of the specific product in a shopping
basket. By cross-classifying a pair of products, we can calculate the Jaccard coeffi-
cient with the help of the following contingency table (cf. Sneath 1957; Kaufman
and Rousseeuw 1990; Leisch 2006).

For a set of p shopping baskets, the Jaccard similarity coefficient (also often
referred to as the Tanimoto similarity coefficient (Anderberg 1973)) for products
1 and 2 can be calculated as:

sprod1,prod2 ¼ a

aþ bþ c
, (6)

and the corresponding dissimilarity coefficient is:

dprod1,prod2 ¼ bþ c

aþ bþ c
, (7)

226 T. Reutterer and D. Dan



with the elements in the contingency table representing:

– a, the number of transactions with purchases of both product 1 and 2
– b, the number of incidences of product 2 but no product 1 purchases
– c, the number of incidences of product 1 but not product 2 purchases
– d, the number of transactions with neither product 1 nor product 2 purchases

Note that sprod1, prod2 = 1 � dprod1, prod2 and in practice d in the above contingency
table is usually the cell with the (by far) highest counts. This particularly applies to the
context of shopping basket analysis but is not limited to this case. In such situations, any
proximity measure that treats co-incidences of common zeros (in our case: nonpurchases
of two specific products or categories) the same way as common ones would be biased
towards the absence of two characteristics. For example, this is the case for the simple
matching coefficient (which is sprod1,prod2 ¼ aþdð Þ

p ) or the Hamming distance (i.e., the

number of different bits dprod1, prod2= b + c). Thus, in many scenarios it makes sense to
use asymmetric proximity measures like the abovementioned Jaccard coefficient which
gives more weight to common ones than to common zeros.

Distance-Based Cluster Algorithms

Regarding the choice of a cluster algorithm (step three in the above by Fig. 1), one
popular way to distinguish variations of distance-based clustering methods is to

Fig. 3 Overview of distance-based clustering algorithms
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divide them into hierarchical and nonhierarchical procedures. As illustrated by
Fig. 3, the former can be split into agglomerative and divisive, while the later
can be branched into nonoverlapping, overlapping, or fuzzy clustering methods
(Hruschka 1986; Wedel and Kamakura 2000).

While in the case of nonoverlapping clustering each entity is assigned to one single
group, overlapping clustering techniques allow for the simultaneous membership of
objects to multiple groups. For example, depending on the consumption, brands
and/or consumers might belong to more than one cluster of products or to several
segments, respectively (see, e.g., Arabie et al. 1981). Fuzzy clustering abandons the
idea of a “hard” partitioning of the data and replaces fixed cluster assignments by a
degree of membership assigned to each entity and cluster (Hruschka 1986). Note that
despite similar in idea but different in conception and interpretation, the notion of a
“soft” group membership assignment becomes also apparent in model-based cluster-
ing methods when probabilities of cluster memberships are estimated and thus each
data point can be assigned to more than one cluster. In this case, the inclusion of a data
point in multiple clusters is due to a probabilistic approach, not of a distance.

Nonoverlapping clustering approaches can be further classified into hierarchical and
nonhierarchical methods (Punj and Stewart 1983). Techniques for hierarchical cluster-
ing either start out with all entities in a single cluster (divisive algorithms or top down)
or with each entity in its own cluster (agglomerative algorithms or bottom up). The
latter approach is more popular among marketing researchers and successively links
pairs of clusters (or still isolated entities) from a previous stage based on their shortest
mutual distance. The agglomeration schedule stops when all entities are combined into
one single cluster.We illustrate the application of some common hierarchical clustering
procedures below in section “Hierarchical Clustering.”

Nonhierarchical clustering starts with a (typically randomly initialized) grouping
of the data for a prespecified number k of clusters and aims to gradually improve the
partition by optimizing a “minimum variance criterion,” i.e., by minimizing the inner
(within-group) dispersion of the k-partition (cf. Bock 1974; Strasser 2000). The
k-means algorithm was first proposed by MacQueen (1967) and its many variations
(see, e.g., Jain and Dubes 1988; Kaufman and Rousseeuw 1990) are popular
examples for such nonhierarchical distance-based clustering procedures. There is a
huge variety of clustering procedures available in packages and functions provided
by the R (R Core Team 2019) ecosystem for statistical computing. The most
commonly used packages are the following:

• stats: The base R package provides a number of implementations for both
partitioning and hierarchical clustering techniques. Function kmeans() com-
prises several algorithms for computing Euclidean distance-based partitions,
while hclust() provides agglomerative hierarchical clustering algorithms.
The stats package also provides various auxiliary functions like dendro-
gram() for visualizing cluster hierarchical solutions.

• cluster: This package provides R implementations of methods introduced in
Kaufman and Rousseeuw (1990) and comprises a number or both partitioning
(pam(), clara(), and fanny()) and hierarchical cluster algorithms (agnes(),
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diana(), and mona()). The package also contains many extensions of these
base methods and visualization functions (Struyf et al. 1996).

• mclust: A set of model-based clustering methods for fitting Gaussian finite
mixture models using an expectation maximization (EM) algorithm is provided
by the mclust package. It also provides numerous functions to assist cluster
validation and evaluating the number of mixture components using the Bayesian
Information Criterion (BIC) (Fraley and Raftery 2003).

• flexclust: This package provides an environment for partitioning cluster
analysis with non-Euclidean distance measures using k-centroids cluster algo-
rithms (KCCA) (Leisch 2006). There are also functions for deriving neighbor-
hood graphs and image plots for visualization of partitions.

A comprehensive list of R packages for performing model-based or distance-
based clustering is maintained by Friedrich Leisch and Bettina Grün and made
available via the following CRAN task view: https://CRAN.R-project.org/view=
Cluster.

Cluster Analysis of Market Basket Data

We next illustrate three different clustering procedures applied to a reference data
set of shopping basket data. In doing so, we briefly outline the data used and the
general approach of the selected procedure, then provide a walk-through for the
corresponding R code required to perform the analyses and give some interpretation
of the results. The three clustering procedures under consideration are: hierarchical
clustering using the function hclust() and two prototype generating clustering
methods: function pam() from the cluster package and function kcca() from
the flexclust package.

Data Characteristics and Choice of Distance Measure

To illustrate the clustering methods, we use one month (30-days) of real-world point-
of-sale transaction data from a local grocery outlet. The data set is included in
the widely used R package arules and consists of an easy-to-handle set of 9835
retail transactions representing purchases in 169 different categories. The data come
as a sparse matrix with each observation (row) representing a retail transaction and
each column a binary variable with 1 denoting that a specific grocery category is
present in the transaction and 0 otherwise. Thus, the row-wise sums indicate the
number of categories purchased together in each transaction. A typical transaction is
expressed as a list of categories such as: {tropical fruit, yogurt, coffee}, {citrus fruit,
semifinished bread, margarine, ready soups}, and so on.

To obtain the data, in the R console, we add the arules package and activate the
Groceries data set included in the library. To get a first visual impression of
the proposed data set, we plot a histogram for the basket sizes, see Fig. 4, which
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shows a right-skewed pattern we typically observe in supermarket transaction data:
the majority of baskets are composed of only a few categories. Thus, the binary
basket data are extremely sparse, with a mean basket size mean(size(Grocer-
ies)) of only 4.41 categories per shopping trip. Note that throughout the chapter,
we will omit the category “shopping bags” because the latter does not reflect any
specific consumption preference but in a grocery shopping context merely serves to
carry the bought items around. The arules library, the Groceries data and the
groc variable indicated below will be the same throughout all the further examples
and will be reported only once in the R code examples.

To get a better understanding about which categories are purchased most fre-
quently, we can plot the frequency distribution of categories exceeding a threshold
(support) of 5%. As we can see from Fig. 5, the most frequently purchased categories
are typical grocery products such as whole milk, other vegetables, rolls/buns, soda,
yogurt, etc.

library("arules")

data("Groceries")

groc <- Groceries[size(Groceries)>1,

which(itemLabels(Groceries) != "shopping bags")]

hist(size(groc), xlab =
"Number of products purchased inside the basket")

With the itemFrequencyPlot function, we plot the most frequent items.

Histogram of size(groc)
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Fig. 4 Histogram of basket sizes

230 T. Reutterer and D. Dan



itemFrequencyPlot(groc, support = 0.05)

As we discussed in the previous section, in order to perform distance-based
clustering, we need to specify a proximity measure which quantifies the distance
between the objects to be clustered. Two aspects need to be considered in our present
application. Firstly, an appropriate distance measure needs to adequately account
for the data sparsity we observe for our market basket data at hand. Secondly, from
a more substantive perspective, we are typically interested in finding groupings
in the data which reflect jointly purchased categories, i.e., we aim at detecting
complementary cross-purchase incidences. Thus, an asymmetric distance measure
giving more weight to joint purchases than to common zeros (i.e., nonpurchases)
is preferred in such situations. The previously discussed Jaccard coefficient
(cf. Kaufman and Rousseeuw 1990) has such properties and is used in the present
application.

For a given data set of market baskets XT= [xn], n= 1, . . . , N containing binary
purchase incidences xn � {1, 0}J we can compute a frequency matrix
XT � X = C = [cij] of pairwise co-purchases of categories i, j = 1, . . . , J and derive
the Jaccard distance as follows (cf. Sneath 1957):

dij ¼ 1� cij
cii þ cjj � cij

,8i,j ¼ 1, . . . ,J (8)
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Fig. 5 Histogram of the most frequent items purchased
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Note that in the present context, the corresponding Jaccard similarity sij = 1� dij
measures the percentage of joint purchases in all baskets which contained at least one
of the two categories.

Hierarchical Clustering

In our first example, we employ hierarchical clustering to the described set of
shopping basket data. In such a setting, the task is to explore subgroups of jointly
purchased product categories based on pairwise co-purchase “affinities” across the
categories included in the data set. Thus, we aim at detecting clusters of product
categories which tend to be purchased together more often by the customers of the
local supermarket.

As already mentioned in section “Distance-Based Cluster Algorithms,” the most
popular hierarchical clustering method is agglomerative clustering, which can be
performed by using the function hclust(). In this family of clustering methods,
the agglomeration procedure initially considers each singleton object (here: product
category) as a cluster and then, step by step, merges the objects iteratively into
groups of clusters until one final cluster is generated. The merging mechanism is
directed by (i) the proximity or (dis)similarity measure and (ii) a linking criterion.

In our example, we use the Jaccard distance as defined above. As a starting point,
we thus compute a dissimilarity matrix D = [dij] according to Eq. 8:

diss <- dissimilarity(groc[, itemFrequency(groc) > 0.02], method =
"jaccard", which = "items")

Note that for simplicity reasons and to keep the resulting tree structure
easy to inspect, we only select categories which are contained in more than 2% of
the retail transactions at hand. This is done by specifying itemFrequency
(Groceries)> 0.02.

The choice of a linking criterion determines how the distance between two groups
of observations is calculated during the agglomeration procedure. It uses the previ-
ously computed (dis)similarity measure and one of the many available methods for
measuring the distance between two clusters or between a cluster and a singleton
object. The most popular linkage methods are represented in Fig. 6. While single
linkage uses the distance between the two closest elements of two clusters, complete
linkage measures the distance between the two farthest or most distant elements in
two sets. The average linkage criterion compromises between the two previously
mentioned ones and takes the mean distance between the elements of each cluster.
Ward’s method aims at minimizing the within-cluster variance and at each step
merges the pair of clusters that leads to a minimum increase in total within-cluster
variance after merging (cf. Kaufman and Rousseeuw 1990).
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Note that the choice of a cluster linkage method has a decisive impact on the
resulting cluster solution. To illustrate this, consider the following two cases
using single linkage clustering and the minimum variance method proposed by
Ward (1963). Using the function hclust(), single linkage clustering can be
performed as follows:

# Single linkage method

hc.single <- hclust(diss, method = "single")

plot(hc.single, cex=0.7)

abline(h = c(0.75, 0.80, 0.85, 0.90, 0.95),

col = "gray", lty = 3)

One common way to visualize the outcome of hierarchical clustering is by using
a so-called dendrogram. The word dendrogram comes from the combination of two
ancient Greek words: déndron (“tree”) and grámma (“written character, letter, that
which is drawn.”) The analogy with a reversed tree is obvious, each leaf represents
one object (in our case a product category), each branch represents one cluster
at a certain point of the agglomeration process, and the root encompasses all the
clusters. Notice that at a certain “height” of the cluster dendrogram, the branches
are merged together. The height of the fusion, also known as the cophenetic
distance (Farris 1969), is inversely proportional to the similarity of the objects.
A common way to assess how the generated dendrogram reflects the data is to
compare the cophenetic distances with the original distances by correlating them.

Fig. 6 A selection of popular linkage criteria in hierarchical clustering
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A strong correlation indicates a good linking of the objects in the dendrogram
(Saraçli et al. 2013).

The dendrogram derived for our market basket data is obtained by the plot()
command for object hc.simple. It is given in Fig. 7 and depicts a typical property
inherent to single linkage clustering, namely that very “similar” categories (i.e.,
those which are purchased together very often, here whole milk, other vegetables,
followed by root vegetables, yogurt, etc.) are merged at a very early stage of the
agglomeration process and those categories which rarely appear in the same shop-
ping baskets (chewing gum, beverages, etc.) at a later stage.

The single linkage criterion employs a “nearest neighbor” rule to merge sets and
thus is able to reveal rather complex, elongated, or snake-shaped data structures
(Kaufman and Rousseeuw 1990; Dolnicar et al. 2018). On the other hand, single
linkage typically induces a chaining effect in the hierarchical agglomeration proce-
dure, which can be clearly seen in Fig. 7 in the creation of long straggling “clusters.”
This is due to the fact that objects are added sequentially to clusters, and at each
stage, the “closest distant” (or most similar) object is merged with the already
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Fig. 7 Hierarchical agglomerative clustering applying single linkage method
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existing configuration. Because of this property, single linkage cluster is also
sometimes used for outlier detection (i.e., those entities merged with the configura-
tion towards the end of the agglomeration process).

In contrast, Ward’s linking method aims at forming minimum inner variance
partitions. To achieve this, at each step, the pair of clusters which minimizes the
incremental increase in within-cluster variance is merged. Ward’s method can be
called in the R code by specifying the ward.D option. As we see from the
dendrogram in Fig. 8, using this method, the categories are merged more evenly
from the start, and thus we have a more balanced distribution of clusters.

# Ward linkage method

hc.wardd <- hclust(diss, method = "ward.D")

plot(hc.wardd, cex=0.7)

rect.hclust(hc.wardd, k = 5, border = 2:7)
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Fig. 8 Hierarchical agglomerative clustering applying Ward’s method
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As we move up from the leaves to the root, we notice that the branches get linked
together at a variable height. The height of the linkage, indicated on the vertical axis,
measures the (dis)similarity between two objects or clusters. The more we move
towards the root of the dendrogram, the more dissimilar the merged objects are.
In our illustrative example, we can see that several branches merge frequently
co-purchased categories from the assortment of fresh products (e.g., vegetables,
whole milk, fruits, yogurt) at the left-hand side of the tree, which are later linked
with drinks (e.g., bottled beer, juices, water, soda, etc.) and a combination of
categories associated with snacks (e.g., frankfurter, sausage, rolls, etc.) into one
cluster marked by a red box. In the other (right-hand side) branch from the root, other
distinct category combinations (such as salty and sweet snacks, candies and choc-
olate categories, etc.) are represented.

Notice that at any horizontal “cut” of the tree structure a specific cluster solution
consisting of groups of product categories with internally more intense cross-
category purchase relationships emerge. For example, in Fig. 8, we marked
a solution with k= 5 clusters: three larger clusters and two smaller, each representing
only three categories which are purchased together very frequently (i.e., {pro-
cessed cheese, ham, white bread} and {baking powder, four,
sugar}). Such formations of “supra-categories” can be helpful for store managers
to design shelf placements of categories within the store but also to consider the
representation of categories in leaflets or promotional activities.

K-Medoid Clustering

Hierarchical clustering is a useful tool for data compression and visualization if the
number of objects used for clustering is reasonably small. For example, this is
the case if we are interested in analyzing the joint purchase affinities among the
product categories J represented in a matrix X of shopping baskets as just illustrated
above. However, as J increases, the dimensionality of the to-be-derived distance-
matrix reaches computational limits and/or visualization of the dendrogram for the
linkage procedure becomes intractable and interpretation cumbersome. The latter
also applies to the task of deriving a segmentation of the shopping baskets or the
households behind the observed retail transactions. From a substantive perspective,
such a focus also implies moving away from studying category purchase interde-
pendencies for a pooled set of transaction data. When we compress the shopping
baskets into a smaller number of representing basket classes, we aim at finding a
partition of the data set at hand with outstanding or more distinguished complemen-
tary cross-category purchase incidences within the detected classes (for more details,
see Boztuğ and Reutterer 2008; Reutterer et al. 2006, 2017).

For such tasks, nonhierarchical or partitioning clustering is a feasible alternative.
Formally, the task is to find a partition P = {P1, . . . , PK} of the data set into a fixed
number of K basket classes which fulfills the following objective function:
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X
k

X
n�Pk

d xn, c xnð Þð Þ ! min
P,C

(9)

where C = (c1, . . . , cK) is a set of centroids or prototypes and d(�) a distance
measure, such as the Jaccard distance in Eq. 8, we are using in the present applica-
tion. In the clustering and classification literature, the “minimum dispersion crite-
rion” in Eq. 9 is also known as the principal point or k-centroids problem (Jain and
Dubes 1988; Leisch 2006). One important property of resolving Eq. 9 is that for any
optimum configuration (P�, C�), the condition c�(xn) = arg min {d(xn, ck), 8k}
holds, which warrants that each basket xn is mapped onto its minimum distant or
closest centroid. With the notable exception of Ward’s method (which follows
a similar objective function), this is in sharp contrast to the way most linkage pro-
cedures proceed in forming clusters. Instead of minimizing a global objective func-
tion, agglomerative hierarchical clustering aims at minimizing a distance function at
each step of the cluster fusion but can result in a potentially suboptimal global solution.

Before we illustrate using a generic method for solving the k-centroids problem in
the next section, we first employ an iterative, easy-to-implement, relocation-based
heuristic proposed by Kaufman and Rousseeuw (1990) under the name Partitioning
Around Medoids (PAM). Combined with clustering objective function (Eq. 9), this
algorithm requires from the centroid to have the property ck � {xn}n � Pk 8 k, i.e.,
the “medoid” is defined as the shopping basket which minimizes the mean distance
with all other transactions in the same cluster Pk. This medoid property guarantees
that the centroids are real shopping baskets, which tend to result in more robust
cluster solutions in the presence of outliers and facilitates interpretation. On the other
hand, PAM is suitable for relatively small- to medium-sized data sets, but this
problem can be overcome by selecting randomly from the available data or follow-
ing other resampling methodologies.

For clustering larger data sets using the medoid approach, one may use
CLARA (Clustering LARGE Applications; see Kaufman and Rousseeuw 1990) or
CLARANS (Clustering Large Applications based upon RANdomized Search; see
Ng and Han 2002). The former does not use the entire data, but it randomly chooses
multiple samples with fixed size and repeatedly applies PAM to each of these
samples and selects the representative k-medoids. Afterwards, the objects in the
data set are assigned to the closest medoid. CLARA finds the best clustering if
the sampled medoid is among the best k-medoids by calculating the mean of
the dissimilarities of the data to their closest medoid. CLARANS interprets the
search space as a hypergraph, where each node represents a set of k-medoids.
The algorithm randomly chooses a set of neighbor nodes as new medoids in an
iterative manner. If the neighbor discovered is better than the previous one, a local
optimum is discovered. The whole process is repeated until the whole graph is
sufficiently explored and an optimal solution is found.

We apply the k-medoid partitioning to the Groceries data set by taking
into account only transactions that contain at least two different product categories.
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After this preselection, we are left with 7,676 transactions and 168 categories.
To retain a dissimilarity matrix of moderate size, we randomly select 2,000 trans-
actions and use the Jaccard coefficient as distance measure. The cluster solutions for
a sequence of K = 1, . . . , 8 clusters are generated using the function pam(). Setting
a seed value to secure reproducibility of the obtained results completes the following
code for performing k-medoid clustering of the available shopping basket data:

library("cluster")

set.seed(42)

samp <- sample(groc, 2000)

diss <- dissimilarity(samp, method = "Jaccard")

clust <- lapply(1:8, function (x) pam(diss, k= x))

Determining a suitable number of clusters based on distance-based clustering
methods is an open issue and the relevant literature offers a huge variety of “validity”
metrics to assist the analyst with this task. Popular metrics include the cluster
separation measure proposed by Davies and Bouldin (1979) or indices based on
the agreement of repeated cluster solutions like the measures proposed by Rand
(1971). An overview and detailed performance comparisons of alternative metrics
for determining the number of clusters is provided by Milligan and Cooper (1985) or
Dimitriadou et al. (2002). Among these heuristics is also the easy-to-use silhouette
coefficient proposed by Rousseeuw (1987) which takes into consideration the
discrepancies of the average within-cluster dissimilarities and the nearest data points
of each neighboring cluster. Based on this heuristic, we opt for a solution of K=5
clusters (see also the discussion in Reutterer et al. 2007 or Reutterer et al. 2017).

As discussed before, the derived clusters should reflect classes of shopping
baskets with more distinguished complementary cross-category purchase incidences
within the detected basket classes. To explore these particular patterns, we select
two exemplary clusters, namely cluster number 2 and 5, and characterize their
specific properties using the function itemFrequencyPlot(). The resulting
plots exhibited in Figs. 9 and 10 represent the relative purchase frequencies across
categories in the complete data set as continuous lines and contrast them with the
respective cluster-specific distributions. Note that for space and illustrative reasons,
we include only categories which are present in at least 5% of transactions.

itemFrequencyPlot(samp[clust[[5]]$clustering == 2],

population = groc, support = 0.05)

set.seed(42)

inspect(samp[clust[[5]]$medoids[2]])

## items

## [1] {citrus fruit,

## tropical fruit,

## root vegetables,
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## other vegetables,

## whole milk}

Comparing the two clusters, they clearly point to considerable differences between
the shopping baskets summarized by them. The transactions represented by cluster
2 are characterized by a shopping pattern with elevated purchase likelihood in fruits
(citrus fruit, tropical fruit) and vegetables (root vegetables, other vegetables) cate-
gories as well as whole milk. In contrast, the purchase behavior behind cluster
5 transactions is clearly dominated by remarkably high purchase incidences in
certain beverage categories (bottled water, soda, bottled beer) and only moderate
class-conditional choice probabilities in the remaining categories.

The inspect() function returns us the respective medoid shopping baskets
for these two clusters which confirm the above interpretation (i.e., {citrus
fruit, tropical fruit, root vegetables, other vegetables,
whole milk} for cluster 2 and {bottled water, soda, bottled beer}
for cluster 5).

itemFrequencyPlot(samp[clust[[5]]$clustering == 5],

population = groc, support = 0.05)

set.seed(42)
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Fig. 9 Profile of relative purchase frequencies across categories in cluster 2
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inspect(samp[clust[[5]]$medoids[5]])

## items

## [1] {bottled water,soda,bottled beer}

K-Centroids Cluster Analysis

A more flexible approach to solve the k-centroids problem introduced in the previous
section is offered by the function kcca() in package flexclust (Leisch 2006). The R
package flexclust includes a multitude of functions for various cluster algorithms.
The main function in this package is kcca() which implements generalizations of
k-means clustering for arbitrary distance measures. Thus, it can be used as a unifying
partitioning framework for finding canonical centroids in both metric and nonmetric
spaces including binary data (Hartigan and Wong 1979). Like the previous PAM
application, once applied to the data structure at hand and using the same distance
measure (i.e., Jaccard), this method also derives clusters of retail transactions with
internally more homogeneous and pronounced cross-category dependencies.

To illustrate this approach, we use again the Groceries data set from the
arules library and apply the same preselection for categories (threshold of being
present in more than 2% of all transactions) as we did in the above application of
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Fig. 10 Profile of relative purchase frequencies across categories in cluster 5
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hierarchical clustering. In order to be able to perform the necessary computations,
we transform the remaining data set into a matrix grc with logical values structure
and then just add a zero to transform the result into a usable numerical values
container.

The flexclust family provides, among others, the Jaccard coefficient option as
a distance measure for binary data and the kcca() function returns a set of real-
valued centroids representing class conditional expectations which are directly
accessible for the interpretation of the derived cluster solution. The issue of choosing
a suitable number of clusters follows the same line of arguments as discussed in the
previous subsection and is usually addressed by generating cluster solutions for
a sequence of increasing K numbers of clusters and applying some internal “validity”
metrics or by systematically studying the stability of alternative solutions using
ensemble clustering techniques (Hornik 2005). Here, to exemplify and simplify
our illustration, we use five clusters like in the above illustration of the PAM method
(num_clusters ¼ 5).

One way to inspect the separation of the derived clusters is by visualizing a lower-
dimensional representation of the cluster solution. This can be accomplished by
applying a data projection method, such as principal component analysis to the data
set at hand. We note that principal components or factor analysis is problematic for
non-Gaussian (here binary) data, but following Leisch (2006) we consider using it as
appropriate for the mere purpose as a simple and easy-to-use data projection device
used to visualize a cluster solution (we are not interested in the underlying interpre-
tation of the derived dimensions). Other appropriate methods would be, for example,
correspondence or homogeneity analysis.

Combining the results of kcca() and prcomp(), the projection of the data
points together with indicators of their cluster membership on the first two dimen-
sions can be done by using the plot() function. In Fig. 11, the centroids of the five
clusters solution are plotted as numbers and connected by a neighborhood graph,
which thickness represents the degree of connectedness. Even though the projected
clusters apparently overlap, the scatter plot suggests an underlying structure of five
diagonally separated groups of data points.

library("ggplot2")

library("flexclust")

Gr <- groc[, itemFrequency(groc) > 0.02]

grc <- as(Gr, "matrix")

grc <- grc +0

# flexclustControl object holds the "hyperparameters"

fxc <- new("flexclustControl")

lc <- list(iter.max=500, tol=0.001, verbose=0)

fxc <- as(lc, "flexclustControl")

fc_seed <- 100

num_clusters <- 5
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set.seed(fc_seed)}

# verbose > 0 will show iterations

vol.cl <- kcca(grc, k = num_clusters, save.data = TRUE,

control = fxc, family = kccaFamily("ejaccard"))

main_text1 <- "Groceries Basket"

sub_text <- "kcca ejaccard - 5 clusters (seed = 100)"

# plot on first two principal components

vol.pca <- prcomp(grc)

plot(vol.cl, data = grc, project = vol.pca, which = 1:2,
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Fig. 11 Neighborhood plot of the Groceries data using the Jaccard distance on the two principal
components
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main = paste0(main_text1, " - Segment Separation Plot"),

xlab = "Principal component 1",

ylab = "Principal component 2",

points = TRUE, hull.args = list(density=10),

sub = sub_text)

barchart(vol.cl, strip.prefix = "# ",

shade = TRUE, layout = c (vol.cl@k, 1),

main = paste0(main_text1, " - Cluster Profile Plot"),

which = hc.wardd$order)

Similar to the cluster-specific barplots for the relative category purchase frequen-
cies of the k-medoid cluster solution, the barchart() function allows for a graphical
representation of the cluster solution contained in a kcca() object and thus helps
interpreting the findings (see Dolnicar et al. 2014). The argument shade = TRUE
detects and displays the marker variables in colors. The argument which
defines the order of the variables. In our case, we chose the order of the product
categories such that it corresponds to the order in the dendrogram represented in Fig. 8.

Figure 12 shows in the header the absolute number (i.e., the number of shopping
baskets assigned to the respective cluster) and the percentage size of each cluster. The
individual barplots help to compare the overall against the cluster-specific centres or
mean values per category, which in the present context can be interpreted as the
respective percentage of transactions containing a specific category. The line with the
full dot represents the relative purchase frequencies over the complete sample. Thus, as
we already know from above, the categories with highest shares in the shopping baskets
are whole milk, other vegetables, rolls/buns, etc. The bars represent the respective within-
cluster purchase shares for each category. They are colored if the difference to the overall
mean exceeds a certain threshold value, the bar has a gray contour if this difference is not
relevant for interpretation but might be a relevant characteristic of the cluster.

From the visual inspection of Fig. 12, it becomes obvious that the five derived
basket classes differ in their basket composition from the overall “average” shopping
basket by only a few categories, which makes them distinctive from each other.
For example, the shopping baskets represented by cluster 4 are characterized by an
outstanding share of rolls/buns and clearly above average purchase incidences in the
sausage and frankfurter categories (the three categories together representing typical
items demanded for making snacks). A slightly different variation of this cluster is
represented by segment 3, in which drinks are represented by the bottled beer and
food by sausages and bread. In contrast, the 36% of shopping baskets represented by
cluster 2 contain typical grocery shopping categories, such as whole milk, other
vegetables, root vegetables, butter, and domestic eggs above average.

From a managerial perspective, knowledge of such behavioral segments is an
important prerequisite for designing customized target marketing actions (see
Reutterer et al. 2006). For example, categories with distinguished purchase propen-
sities within a specific segment (such as beer in segment 3 or water and soda

Cluster Analysis in Marketing Research 243



in segment 1) are promising candidates for deriving targeted promotions to increase
store traffic. On the other hand, direct marketers could also aim at promoting
categories which are systematically underrepresented in certain segments by cross-
promoting them in combination with certain “draw” categories; for example, in
segment 3, customers could be stimulated to purchase more vegetables or milk by
cross-promoting bottled beer in a way similar to “get a bottle of beer free if you
purchase one liter of milk” (Breugelmans et al. 2010; Dréze and Hoch 1998).

Conclusions

As demonstrated in the previous section, the cluster solutions and corresponding
interpretations vary considerably depending on the applied clustering procedure.
This clearly reflects the exploratory nature of cluster analysis which implies that

Groceries Basket − Cluster Profile Plot
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Fig. 12 Segment profile plot for the five-segment solution based on the K-centroids algorithm
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there is no single “correct” or natural solution for a specific data set at hand.
The achieved data compression effect and thus the specific data structure uncovered
by a particular approach to cluster analysis rather depends on a number of factors
under the analyst’s control. The main factors are the choice of the cluster analysis
procedure, the distance measure, the number of clusters, and the data mode to be
clustered.

While there is some more or less sophisticated methodological guidance available
to decide on some of these factors, it merely depends on the specific research
objective for others. For example, there is extensive research on the determination
of the number of clusters (Milligan and Cooper 1985; Dimitriadou et al. 2002) or on
the stability properties of cluster solutions (Hornik 2004; Hornik 2005). However,
the choice of an appropriate clustering procedure or the specific focus on a particular
data mode to be compressed is a decision that is determined by the substantive
research question or the analysts subjective judgement. Generally speaking, hierar-
chical linkage methods have their merits when the task is to explore differences and
commonalities among objects on a more fine-granular level (e.g., by “zooming in”
the representing deondrogram) and the number of clusters is not fixed a priori.
On the other hand, partitioning methods like k-centroid clustering tend to be the
preferred method when the analyst aims at compressing larger data sets into a smaller
number of representing points (centroids or prototypes), each characterizing a subset
of the data as accurately as possible and simultaneously are distinctive from the other
cluster centroids.

Using a widely used benchmark set of market basket data, we demonstrated in
this chapter that the analytical task of exploring the specific structures of cross-
category purchase relationships can be achieved by reducing the dimensionality
of the data set using hierarchical clustering (i.e., by analyzing the (dis)similarity
structure among the variables of the data matrix). We have also shown that the
derived structural patterns strongly depend on the specific method applied and
they would also vary if we chose a different distance metric. On the other hand,
compressing the number of baskets using nonhierarchical partitioning methods
results in a set of specific classes of shopping baskets with distinguished com-
plementary cross-category purchase incidences within the classes. The latter
effect is obtained by choosing an appropriate distance measure (in our case
Jaccard distances) and the partitioning as well as the interpretation of the classes
which would be different for other distance metrics. All these examples demonstrate
the generic idea behind cluster analysis as an exploratory data compression tool. This
“idea” is to uncover structure in the data, which in the case of distance-based clustering
is based on a specific conceptual understanding of quantifying proximity between data
points.

The field of cluster analysis is a very dynamic one and the analysts’ toolbox is
constantly growing. New methods which aim to cope with the specific challenges of
today’s data-rich environments are emerging. Such challenges are not limited to but
include real-time (online) updating of cluster solutions for data streams (Ghesmoune
et al. 2016), clustering of very high dimensional data sets (Strehl and Ghosh 2003),
bootstrap aggregated clustering (Dolnicar and Leisch 2003), and other ensemble
methods to improve the quality and robustness of cluster solutions (Hornik 2004;
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Hornik 2005); see also the extension package clue for R (R Core Team 2019)
which provides a computational environment for cluster ensembles.

Modern clustering methods also comprise a variety of unsupervised machine
learning methods (for an overview, see Hastie et al. 2009). Marketing applications
of such machine learning methodologies include the employment of vector quanti-
zation techniques (e.g., Decker 2005; Reutterer et al. 2006), neural networks (e.g.,
Hruschka and Natter 1986; Mazanec 1999; Reutterer and Natter 2000), topic models
for “soft-clustering” unstructured texts (e.g., Tirunillai and Tellis 2014; Büschken
and Allenby 2016), or graph partitioning methods (Netzer et al. 2012).
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▶ Finite Mixture Models
▶Market Segmentation
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Abstract

Finite Mixture models are a state-of-the-art technique of segmentation. Next to
segmenting consumers or objects based on multiple different variables, Finite
Mixture models can be used in conjunction with multivariate methods of
analysis. Unlike approaches combining multivariate methods of analysis and
cluster analysis, which require a two-step approach, the parameters are then
directly estimated at the segment level. This also allows for inferential statistical
analysis. This book chapter explains the basic idea of Finite Mixture models and
describes some popular applications of Finite Mixture models in market
research.
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Introduction

Finite Mixture models are segmentation approaches (in this article, we make no
distinction between Finite Mixture and Latent Class models). Segmentation con-
siders heterogeneity among consumers/objects and is crucial for developing mar-
keting strategies. For example, marketing managers may want to know whether
there are groups of consumers who exhibit similar shopping behaviors or
share particular preferences for product features. Such knowledge offers opportu-
nities to target specific groups of consumers and to develop targeted products and
services.

Cluster analysis has traditionally been used to identify groups of consumers who
are similar with respect to some specified variables (e.g., shopping behavior, attitude,
preferences) – either on its own or in combination with multivariate methods of
analysis in a two-step procedure. An example for the latter is the use of a conjoint
study to elicit consumers’ preferences and the subsequent implementation of a
cluster analysis with the estimated preferences as segmentation variables (Green
and Krieger 1991).

In recent years, Finite Mixture models have gained popularity as alternative
approaches for segmentation. What are advantages of Finite Mixture models com-
pared to traditional clustering approaches? A Finite Mixture model is a model-based
approach. This means that a statistical model is assumed for the population from
which the data stems from. Specifically, it is postulated that a mixture of underlying
probability distributions generates the data. The assumption of an underlying statis-
tical model has important consequences. Finite Mixture models aim to recover the
actual observations in the dataset, while traditional cluster approaches just intent to
find homogenous groups of consumers/objects that are distinct from each other
(heterogeneity across groups). Thus, goodness-of-fit measures for Finite Mixture
models are available and support the confidence in the obtained solution. Moreover,
rigorous statistical criteria help the researcher to identify the most appropriate
segment structure in the market. In contrast, researchers use rather arbitrary criteria
(e.g., dendrogram) to decide on the number of segments when using traditional
cluster analyses (Magidson and Vermunt 2002). Another advantage of Finite Mix-
ture models is that they reduce the experiment-wise error. If traditional cluster
approaches are combined with multivariate methods of analysis, a two-step approach
is implemented (see example above). Such two-step processes inflate experiment-
wise error since there are two different objective functions that are optimized. Finite
Mixture models allow for formulating a model that incorporates the identification of
segments in the original analysis. That means, instead of separately conducting two
different types of analysis and optimizing two different objective functions, one
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objective function is formulated (one-step approach). Finally, Finite Mixture models
are flexible in the sense that variables measured at different scales can be considered.
These advantages have contributed to the increasing popularity of Finite Mixture
models in market research.

It is the aim of this book chapter to illustrate the basic idea of Finite Mixture
models and to discuss how Finite Mixture models can be combined with different
multivariate methods of analysis. Finally, the book chapter refers to some specific
applications in academic literature.

Basic Idea of Finite Mixture Models

Illustrative Example

A simple example should help to illustrate the basic idea of Finite Mixture models.
We observe the purchase frequency of chocolate bars for 450 consumers (see Fig. 1;
example adapted from Dillon and Kumar 1994).

Before considering the Finite Mixture model approach, we have a look at the
solution derived from traditional cluster analysis.

In this example, the observed purchase frequency serves as the segmentation
variable. Traditionally, the researcher would start with running a hierarchical cluster
analysis to determine the number of segments. When we use Ward’s algorithm, we
conclude that there are three segments in the data. We use this information to conduct
a K-means clustering, and we find that the three segments have purchase frequencies
of 0.74, 4.64, and 12.50, respectively. With K-means clustering each consumer is
assigned to one specific segment based on his/her purchase frequency. In this
example, the relative segment sizes are 45%, 41%, and 14%. Figure 2 illustrates
the result graphically. Obviously, the K-means solution does not represent the
observed purchase frequencies well. One reason is the deterministic assignment of
consumers to segments.
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Fig. 1 Density function of the observed purchase frequencies of chocolate bars
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Finite Mixture Model and Likelihood Function

In the following, the basic idea of the Finite Mixture approach is illustrated. The
Finite Mixture approach is a model-based approach and assumes that any observa-
tion of one or more variables of interest (i.e., segmentation variable(s)) stems from
an underlying density function. In this example, we use again the purchase frequency
for the segmentation. Purchase frequency is a count variable, and, thus, the Poisson
distribution serves as the underlying density function. The observed density function
(see Fig. 1) results from two or more segment-specific density functions that are
mixed. The segment-specific density functions stem from the same distribution and
only differ in their characteristic parameters. That means, we observe multiple
Poisson distributions that differ in their means. The objective is now to unmix
(separate) the density functions of the observations to identify the segment-specific
density functions (Green et al. 1976).

The density function of the Poisson distribution is:

g y μjð Þ ¼ μy

y!
� exp �μð Þ (1)

where
g(): density function
y: value of the variable of interest (here: observed purchase frequency)
μ: mean value of the Poisson distribution
In order to identify the segment-specific density functions of the Finite Mixture

model, we formulate a likelihood function:

L ¼ ∏
h�H

∏
s� S

η̂s
λh, s ĝh sj yh μ̂sjð Þλh, s (2)
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Fig. 2 Density function of the observed purchase frequencies and K-means result for three
segments (chocolate bar example)
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where
η̂s: estimated relative size of segment s
λh,s: indicator variable for segment membership of consumer h to segment s

λh, s ¼ 1, if consumer h belongs to segment s,
0 otherwise:

�

ĝh sj ð Þ: estimated conditional density function of consumer h if this consumer is a

member of segment s
yh: value of the variable of interest for consumer h (here: purchase frequency of

consumer h)
μ̂s: estimated mean of Poisson distribution for segment s
H: index set of consumers
S: index set of segments
The likelihood function represents the mixture of distributions, and the relative

segment size serves as a weighting variable. Moreover, the likelihood function
considers an indicator variable that indicates to which segment a consumer belongs.
The likelihood function is maximized using iterative optimization algorithms such as
the Newton-Raphson algorithm or expectation-maximization (EM) algorithm
(Wedel and Kamakura 2000; Wedel and DeSarbo 1994).

The different algorithms require starting values. In this example, we need to set
starting values for the segment-specific means of the Poisson distributions and the
relative segment sizes. This implies that we also have to specify the number of
segments we want to consider. Since we do not know how many segments represent
our data, we estimate models with different numbers of segments. To define the
starting values for the means of the Poisson distribution and the relative segment
sizes, we can use the result of the K-means clustering. However, since the likelihood
function is multimodal in nature, we might find a local and not the global maximum
of the likelihood function. To circumvent this issue, one should use different starting
values.

Table 1 shows the result for a three-segment solution from the maximization of
the likelihood function (2), and Fig. 3 shows the segment-specific density functions.
(An Excel spreadsheet for the “chocolate bars” example using the Newton-Raphson
algorithm can be request from the author).

The estimated means of the segment-specific Poisson distributions and the
relative segment sizes differ from the K-means results. A comparison of the

Table 1 Mean values of the segment-specific Poisson distributions and their relative sizes in the
“chocolate bars” example

Mean value of Poisson distribution Relative size (%)

Segment 1 0.3 27.7

Segment 2 3.5 54.3

Segment 3 11.2 18.0
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ln-likelihood values (natural logarithm of the value of Eq. 2) for each solution allows
assessing which set of estimated parameters reflects the observed purchase frequen-
cies better. The K-means solution leads to an ln-likelihood of �1,147.70 for Eq. 2,
while the Finite Mixture solution results in an ln-likelihood of �1,132.04. Thus, the
Finite Mixture solution fits the observed data better.

Probability to Observe a Specific Value of the Segmentation Variable
and Mixed Density Function

The segment-specific (conditional) density functions weighted by the estimated
relative segment sizes allow deriving the probability to observe a certain value of
the purchase frequency. For any individual consumer in the above example, the
unconditional individual probability to observe his/her purchase frequency is as
follows:

ĝh yh μ̂jð Þ ¼
X
s� S

η̂s � ĝh sj yh μ̂j s

� �

¼ 0:277 � 0:3
yh

yh!
� exp �0:3ð Þ þ 0:543 � 3:5

yh

yh!
� exp �3:5ð Þ

þ 0:18 � 11:2
yh

yh!
� exp �11:2ð Þ 8h�H

(3)

For an individual consumer who buys two chocolate bars, this yields, for example,
a probability of 0.11. That means, the probability to observe a purchase frequency of
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Fig. 3 Segment-specific density functions for the three-segment solution (chocolate bar example)
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two chocolate bars equals 11%. This way, we can compute the probability for every
observed value of the purchase frequency. We can use these probabilities to construct
the mixed density function (Fig. 4). Figure 4 illustrates that the three-segment solution
provides a very good fit with the observed purchase frequencies. Figure 3 also shows
the density function for the one-segment solution. In this case, the estimated mean of
the Poisson distribution equals 3.99. The one-segment solution does not capture the
heterogeneity in purchase frequencies adequately.

Assignment of Consumers/Objects to Segments Within Finite
Mixture Models

In contrast to traditional clustering approaches, Finite Mixture models assign con-
sumers to a segment with a certain probability (probabilistic assignment). That
means each consumer has a certain probability to belong to a specific segment.
This probability is determined based on the estimated relative segment sizes and
means of the Poisson distribution. Specifically, the a posteriori probability of
segment membership equals

ωh, s ¼
η̂sĝh sj yh μ̂sjð ÞX

s� S

η̂sĝh sj yh μ̂sjð Þ 8h�H, s� S (4)

where
ωh,s: probability that consumer h belongs to segment s
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Fig. 4 Density function of the observed purchase frequencies and mixed density functions with
one and three segments (chocolate bar example)
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The following conditions need to hold:

0 � ωh, s � 1 8h�H, s� S (5)

X
s� S

ωh, s ¼ 1 8h�H (6)

The a posteriori probability considers the probability to observe the actual
purchase frequency given that a consumer belongs to a specific segments and weighs
this probability with the relative size of the segment. For managerial purposes, the
consumer is ‘assigned’ to the segment for which he/she has the highest a posteriori
probability of segment membership.

Figure 5 shows the relationship between the observed purchase frequency of a
consumer and his/her a posteriori probability of segment membership. For example,
Fig. 5 illustrates that a consumer who buys four chocolate bars has a posteriori
probability of segment membership that is close to one for segment 2. Thus, this
consumer would be assigned to segment 2, which is characterized by a mean
purchase frequency of 3.5 (“medium buyers”). In contrast, a consumer who buys
14 chocolate bars belongs to segment 3 with probability almost equal to one.
Segment 3 represents the “heavy buyers” of chocolate bars (mean = 11.2).

Determining the Number of Segments

The most critical decision when conducting a segmentation analysis is to determine
the number of segments. Traditional clustering approaches use rather arbitrary
criteria to make this decision. In Finite Mixture models, statistical decision criteria
are available. These criteria use the model fit and a posteriori segment membership
probability to determine the number of segments.
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Fig. 5 Relation between purchase frequency and a posteriori probability of segment membership
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The most prominent criteria are the so-called information criteria. The informa-
tion criteria use the deviance (i.e., �2lnL of the estimated model) which reflects the
model fit and a penalty factor. The penalty factors take the number of estimated
parameters and/or observations into account. The lower the value for the information
criterion the better. Thus, when comparing two models that differ with respect to the
number of segments, the researcher selects the model with the lower value for the
information criterion. The idea behind is that the deviance decreases when more
segments are considered since an increasing number of segments improves the
flexibility, that is, it becomes easier to capture the nature of the observed data.
However, increasing the number of segments results in an increasing number of
parameters and less degrees of freedom. The decreasing degrees of freedom should
be taken into account when making a decision of which model is most appropriate
(similar to adjusted R2 in OLS regression analysis). In the following, different
popular information criteria are described.

The Akaike’s information criterion (AIC) suggests using two times the number of
estimated parameters as a penalty factor (Bozdogan 1987; McLachlan and Peel
2001, p. 203):

AIC Sð Þ ¼ �2 lnLþ 2 Kj j (7)

where
|K|: number of elements in the index set of estimated parameters
The modified Akaike information criterion (also called AIC3) uses a penalty

factor of three. The number of estimated parameters has a stronger negative effect
(Andrews and Currim 2003a):

AIC3 Sð Þ ¼ �2 lnLþ 3 Kj j (8)

Consistent Akaike information criterion (CAIC) and the Bayesian information
criterion (BIC) consider the number of observations in addition to the number of
estimated parameters (Wedel and Kamakura 2000, p. 92):

CAIC Sð Þ ¼ �2 lnLþ ln Hj j Ij jð Þ þ 1ð Þ Kj j (9)

BIC Sð Þ ¼ �2 lnLþ ln Hj j Ij jð Þð Þ Kj j (10)

where
|H|: number of elements in the index set of consumers
|I|: number of elements in the index set of observations for each consumer
There is no single best information criterion. Several simulation studies indicate

the weaknesses of the different information criteria in certain settings. The studies
suggest that the AIC tends to overestimate the number of segments (Ramaswamy
et al. 1993). Andrews and Currim (2003a, b) suggested that AIC3 is an appropriate
criterion in many settings – especially with smaller sample sizes. With large samples
(n> 300), BIC and CAIC perform well (Andrews and Currim 2003a). Sarstedt et al.
(2011) find that AIC4 (penalty factor of 4) performs generally better than BIC and
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CAIC. Given these ambiguous results, a researcher may want to discuss multiple
information criteria and argue for a certain solution using also alternative criteria.

An alternative criterion is the entropy. The entropy metric considers the a
posteriori segment membership probability:

Entropy ¼ 1þ

X
h�H

X
s� S

ωh, slnωh, s

Hj jln Sj j (11)

where
|S|: number of segments
The entropy measure ranges between zero and one. If the a posteriori segment

membership probabilities are very similar across all segments, the solution is fuzzy,
and the entropy measure would be close to zero. Imagine a three-segment solution
and the a posteriori segment membership probability is one third for all consumers
for all three segments. In this specific case, the resulting value for the entropy
measure equals zero. If the a posteriori segment membership probability is exactly
one for one specific segment for all consumers, entropy equals one (Ramaswamy
et al. 1993). Thus, the closer the value of the entropy to one, the better solution in the
sense that the segments are better separated. A good separation is critical for deriving
managerial implications later on.

In addition to these model-based criteria, one should evaluate whether the
identified segments are actionable, differentiable, and substantial (e.g., Kotler and
Keller 2012). Hence, the finally chosen segment solution might not always be the
“best” one in statistical terms.

Popular Applications of Finite Mixture Models in Multivariate
Methods of Analysis

A main reason for the popularity of Finite Mixture models is that they can easily be
implemented within other multivariate methods of analysis. While segment-level
solutions are attractive from a managerial standpoint, multivariate methods of
analysis inherently assume either an individual- (e.g., conjoint analysis, multi-
dimensional scaling) or aggregate-level of analysis (e.g., logit models, structural
equation models).

For multivariate methods that originally perform an individual estimation of the
parameters, employing a Finite Mixture model will reduce the variance of the
estimated parameters through segment-based estimation. For multivariate methods
that originally estimate the parameters at aggregate level (i.e., assuming homogene-
ity), incorporating the inherent heterogeneity of the consumers into the model can
reduce systematic biases in the estimated parameters. Note that ultimately there will
always be a trade-off between variance and systematic bias: segment-based estima-
tion rather than individual estimation leads to some systematic bias, as the hetero-
geneity of the consumers is less accurately captured. On the other hand, performing
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segment-based estimation rather than aggregate estimation has a negative effect on
the variance of the estimated parameters. Nevertheless, a segment-level analysis is
attractive from a managerial perspective and builds the basis of many marketing
strategies.

Before the advent of Finite Mixture models, researchers used two-step procedures
to derive results at the segment level. In case of an original analysis at the individual
level, the researcher used the individual-level parameters as segmentation variables
in traditional clustering approaches (see, e.g., Green and Krieger 1991). However,
this approach ignores that the segmentation variables are estimates in themselves.
Moreover, two objective functions are optimized independently, for example, min-
imizing the squared errors in a regression and minimizing the within-group variance
in K-means clustering. In case of an original analysis at the aggregate level, the
researcher used a priori segmentation and then estimated the parameters for the
predefined segments. This approach requires a thorough knowledge of the source of
heterogeneity when defining the segmentation variables.

Implementing the Finite Mixture approach in multivariate methods of analysis
leads to the specification of one likelihood function. Thus, there is only one single
optimization step and no need of optimizing multiple functions with different and
maybe conflicting objectives.

The most popular applications of Finite Mixture models in combination with
multivariate methods of analysis are regression analysis (special case: conjoint
analysis), logit models (special case: choice-based conjoint analysis), multi-
dimensional scaling, and structural equation models. Table 2 lists the advantage of
using the Finite Mixture model in combination with the multivariate method of
analysis and refers the interested reader to articles that describe the approach in more
detail or represent some recent applications of the approach.

Conclusion

Segment-level analyses are particularly useful to managers, as it enables them to
target consumers effectively. Finite Mixture models are therefore highly relevant in
practice, and software developments, such as LatentGold®, Sawtooth®, or
SmartPLS® have supported the increasingly widespread adoption.

Finite Mixture models provide a flexible framework for performing model-based
estimations of segment-specific parameters. Combining Finite Mixture models with
multivariate methods of analysis makes it possible to estimate segment-specific
parameters, segment sizes, and the a posteriori probability of segment membership
simultaneously for each consumer. Thus, for multivariate methods of analysis that
traditionally operate at an aggregate level (i.e., assuming homogeneity across con-
sumers), a reduction in systematic bias in the estimated parameters can be achieved
by considering consumer heterogeneity. For multivariate methods of analysis that
traditionally operate at an individual level, estimating segment-specific parameters
instead can yield more stable estimates.
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Finite Mixture models are based on a fuzzy partition of the consumers into
segments, and they assume that there exists a finite number of segments that
are homogenous in themselves. Yet, this assumption is a weakness of the Finite
Mixture model approach and has been addressed in research (e.g., Lenk and
DeSarbo 2000).

Table 2 Overview of main applications of Finite Mixture models in multivariate methods

Multivariate
method of analysis

Original
level of
aggregation

Advantage of using a
Finite Mixture model

Description
of approach

Exemplary
applications

Regression analysis Aggregate Reduced systematic bias
in the estimated utility
parameters

Wedel and
DeSarbo
(1994)

Decker and
Trusov
(2010)

Petersen
and Kumar
(2015)

Srinivasan
(2006)

Conjoint analysis Individual Reduced variance of the
estimated utility
parameters

DeSarbo
et al. (1992)

DeSarbo
et al. (1992)

Kamakura
et al. (1994)

Logit models
(choice-based
conjoint analysis)

Aggregate Reduced systematic bias
in the estimated utility
parameters

DeSarbo
et al. (1995)

Papies et al.
(2011)

Natter and
Feurstein
(2002)

Steiner et al.
(2016)

Kamakura
et al. (1994)

Ailawadi
et al. (2014)

Multidimensional
scaling

Individual Reduced variance of the
estimated utility
parameters

DeSarbo
et al. (1994)

Natter et al.
(2008)

DeSarbo
et al. (1991)

DeSarbo
and Wu
(2001)

Wedel and
DeSarbo
(1996)

Structural equation
modelling

Aggregate Reduced systematic bias
in the estimated utility
parameters

Jedidi et al.
(1997)

DeSarbo
et al. (2006)

Sarstedt and
Ringle
(2010)

Haapanen
et al. (2016)

Wilden and
Gudergan
(2015)
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Abstract

Experiments are becoming increasingly important in marketing research. Sup-
pose a company has to decide which of three potential new brand logos should be
used in the future. An experiment in which three groups of participants rate their
liking of one of the logos would provide the necessary information to make this
decision. The statistical challenge is to determine which (if any) of the three logos
is liked significantly more than the others. The adequate statistical technique to
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assess the statistical significance of such mean differences between groups of
participants is called analysis of variance (ANOVA). The present chapter pro-
vides an introduction to the key statistical principles of ANOVA and compares
this method to the closely related t-test, which can alternatively be used if exactly
two means need to be compared. Moreover, it provides introductions to the key
variants of ANOVA that have been developed for use when participants are
exposed to more than one experimental condition (repeated-measures
ANOVA), when more than one dependent variable is measured (multivariate
ANOVA), or when a continuous control variable is considered (analysis of
covariance). This chapter is intended to provide an applied introduction to
ANOVA and its variants. Therefore, it is accompanied by an exemplary dataset
and self-explanatory command scripts for the statistical software packages R and
SPSS, which can be found in the Web-Appendix.

Keywords

ANOVA · ANCOVA · RM-ANOVA · MANOVA · Mixed-ANOVA · Split-
plot ANOVA · t-test · GLM · Experimental design · F-distribution · Between-
subjects · Within-subjects · Mean comparison · Sum of squares · Effect size ·
Confidence intervals · Effect coding · Simple effects · Disordinal interaction ·
Crossover interaction · R · SPSS

Introduction

The term analysis of variance (ANOVA) refers to a family of statistical methods that
are closely linked to the analysis of experimental data where a continuous outcome
variable (i.e., dependent variable, DV) is explained by one or more experimental
factors with discrete levels (i.e., independent variable(s), IVs). For instance, if a
company conducts an experiment in which consumers have to rate their liking of an
emotional advertisement or a reason-based advertisement for the same product,
ANOVA can be used to determine whether the mean liking ratings (the DV) of the
two types of advertisements (the IV) differ significantly. To determine whether a
significant mean difference is present, ANOVA follows an indirect testing strategy
rather than directly comparing the means. In particular, it compares the explained
part of the variance in the data (i.e., the systematic variance) to the unexplained part
of the variance (i.e., the error variance) and determines whether the explained part of
the variance is significantly larger. ANOVA thus compares the relative size of the
variances, which gives the approach its name.

The general structure of the present chapter follows a crucial distinction of
experimental design: between-subjects and within-subjects. In a between-subjects
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design, the experimental variable is manipulated such that each participant is only
exposed to one level of the independent variable. In the earlier advertisement
example, this would mean that a participant is randomly assigned to either the
emotional or the reason-based advertisement, and the means of these two groups
of participants are compared. In contrast, in a within-subjects design, the indepen-
dent variable is manipulated within each participant such that a participant is
exposed to both versions of the advertisement and must provide two judgments.
These judgments are compared across all participants using an extension of ANOVA
called repeated-measures analysis of variance (RM-ANOVA). The differences
between these two approaches and their respective statistical advantages and disad-
vantages are discussed in the second part of this chapter.

For both between- and within-subjects designs, three versions of ANOVAmodels
will be discussed: a simple comparison of two means, a slightly more complicated
version with three means, and the simultaneous examination of two IVs and their
interactive effect on a DV (each IV with two levels, resulting in 2� 2= 4 means to
compare). It is important to note that the naming of an ANOVA model depends on
the number of factors considered (in the terminology of ANOVA, the terms factor
and IV can be used interchangeably). A model with just one factor is called a
one-way ANOVA, a model with two factors is called a two-way ANOVA, and so
forth (there are few ANOVA models with more than three factors because such
models are very hard to interpret). After an extensive discussion of these ANOVA
models, this chapter ends with a brief introduction to two variants of ANOVA:
analysis of covariance (ANCOVA), where in addition to IVs with discrete levels,
continuous IVs are included in the ANOVA model, and multivariate analysis of
variance (MANOVA), which is used to analyze several DVs at the same time.

To provide an easy access to these ANOVAmodels, the presentation of the theory
behind these models will be accompanied by an exemplary dataset. The dataset is
simulated and is based on a series of hypothetical market research experiments. The
parameters used to simulate the data ensure that we obtain statistically significant
results throughout the chapter. It is important to note that real studies do usually not
produce such a perfect pattern of results. Moreover, for ease of presentation, the
results of all market research experiments are saved within only one dataset, as if
each participant took part in all experiments. In reality, one would rather use different
samples of participants for different experiments and would hence save the data to
different data files. Throughout the chapter, names printed in italics refer to the
variable names of this exemplary dataset.

All analyses described in this chapter were conducted using the statistical soft-
ware R. This powerful statistical software is free of charge and is continuously
improved and extended by world-leading statisticians on an open-access basis. The
downside is that it is not as easy to use as menu-based statistical software, such as
SPSS. To provide a versatile applied introduction to ANOVA, the Web-Appendix
contains the simulated dataset and all R scripts used for the analyses described in this
chapter in addition to a corresponding SPSS syntax file with explanatory comments.
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For ease of recognition, the R commands used throughout this chapter are printed in
Courier New.

Between-Subjects: One Observation per Person

Two Means: One-Factorial ANOVA or Independent-Samples t-Test

Let us start with a simple comparison between two means. Suppose a company
would like to launch a new brand of exclusive bicycles targeted at successful
businesspeople. The brand is to be called “BUYCYCLE.” The brand manager
considers a simple reduced font and a more complex font as candidates for printing
the brand name (see Table 1). To explore which of these two versions is preferred by
their target group of consumers, he decides to conduct a market research experiment
to compare the liking of the two fonts. He randomly splits a sample of 120 potential
consumers into two groups. Each group is shown one of the font versions of the
brand name and is asked to rate their liking of the brand name. The aim of this
research is to determine whether there is a difference in the mean liking of the
simple-font group compared to the complex-font group.

A typical data matrix for this type of study would look like the matrix shown in
Table 2, where the first six cases and the last case of a sample of 120 participants are
shown (the full dataset can be found in the Web-Appendix). The experimental factor
is named iv_2, and the dependent variable liking is named dv_2.1 Before computing
inferential test statistics, the first reasonable step is to visually display the key
patterns in the data. In the current example, we are interested in the statistical
significance of the mean difference between the two experimental groups. Hence,
we are interested in displaying the two means, which is usually done by a barplot for
discrete IVs2 (see Fig. 1). Moreover, to gain an impression of the random noise in the
data, we would like to include an indicator of random variation. Usually, either the
standard error of the mean or, more often and hence recommended, a 95% confi-
dence interval is used (which is, for sufficiently large samples of N > 30, equal to
approximately 1.96 times the standard error, Field et al. 2012, pp. 45–46).

Table 1 Experimental conditions of Study 1

Condition (1) Simple font Condition (2) Complex font

Note: All imaginary bicycle brand logos used in this text are designed by Veronika König (www.
nachtundtag.com)

1The naming of the variables throughout the chapter follows the key characteristic of the respective
experimental scenario. “_2” refers to the two factor levels employed in the present experiment. All
variable names are constructed following the same logic.
2All barplots in this chapter were produced using the ggplot2-library in R (Wickham 2009).
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Interestingly, in a between-subjects design, the statistical significance of a mean
difference can easily be inferred from a mere visual inspection of the means and their
95% confidence intervals (“inference by eye”; Cumming and Finch 2005). When the
95% confidence intervals do not overlap (as in Fig. 1), the mean difference is
significant at the p < 0.01 level. When they overlap by less than half the length of
the intervals’ whiskers (i.e., half the length between the upper/lower bound of the
interval and the mean), the mean difference is significant at the p < 0.05 level. This
technique is an efficient way to obtain a quick but solid impression of the data pattern.
Amore precise way to assess the statistical significance in terms of an exact probability
estimate (i.e., p-value) is to conduct either a t-test or an ANOVA. In practice, only the

Table 2 Data matrix for the first few participants of Study 1

id gender

1 28 7

1

3

6

4

7

3

23

20

24

25

25

23

male complex

complex

complex

simple

simple

simple

simple

male

male

male

female

female

female

2

3

4

5

6

120

age iv_2 dv_2

Fig. 1 Mean liking ratings of
Study 1 with 95% confidence
intervals
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t-test would be conducted and reported for the given research question because it is the
more parsimonious technique for a comparison of just two means. However, I will also
introduce the key ideas of ANOVA using this simple dataset.

An independent-samples t-test can compare a maximum of two means. It evalu-
ates the ratio of the mean difference between the two experimental groups and the
standard error (SE) of the mean difference:

temp ¼ M1 �M2ð Þ=SE M1 �M2ð Þ (1)

The higher the empirical t-value, the less likely is a purely random mean
difference. The theoretical t-distribution can be used to compute the exact
likelihood of observing an empirical mean difference given the null hypothesis
that both means are the same, which is denoted as the p-value. For the present
example, the mean is 4.32 for the simple font condition and 5.53 for the complex
font condition. The empirical t-value for the difference between these two means
is �4.53 (the negative sign indicates that the first mean is smaller than the
second). To derive the corresponding p-value from the theoretical t-distribution,
the degrees of freedom for estimating the difference between two means are
calculated. The total sample size is 120. Since two means need to be estimated,
two degrees of freedom are “consumed” and 118 degrees of freedom remain for
the analysis. The p-value corresponding to a t-value of �4.53 with 118 degrees of
freedom can be looked up in a t-table and is smaller than 0.001. In practice, the
statistical software package automatically provides the p-value, and there is no
need to find a classical statistics book that still contains tables with exact values
for the t-distribution. When reporting the result of a t-test in a scientific manu-
script, one would write that the difference in means between the simple font
condition (M = 4.32) and the complex font condition (M = 5.53) is statistically
significant (t(118) = �4.53; p < 0.001).

Alternatively, we could also run an ANOVA model to estimate whether there is a
significant mean difference between the two experimental groups. Since ANOVA is
the key topic of the present chapter, I will present the theoretical background of this
method in greater detail. When considering ANOVA in general, it is important to
note that it is not a unique statistical method but is closely linked to many other
statistical techniques. In particular, as is almost every method of inferential statistics,
ANOVA is a special case of the general linear model (GLM) underlying regression
analysis (Rutherford 2001). Hence, the model formula of a one-way ANOVA is
similar to the usual regression model, with yig indicating the DV of participant i in
condition g, y indicating the grand mean across all observations, αg indicating the
impact of the experimental manipulation with g levels, and eig indicating the
residual:

yig ¼ yþ αg þ eig (2)

As the name analysis of variance suggests, the aim of ANOVA is to examine the
sources of variation in the data. In particular, the total amount of variance in the data
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is partitioned into an explained and an unexplained part of the total variance. A
reasonable ANOVA model should explain more variance than is left unexplained by
the model, that is, the ratio of explained to unexplained variance should be greater
than 1. How much greater it must be to reach statistical significance is determined
based on the F-distribution, which is a probability density function of the ratios of
variances.

To provide a better understanding of these different parts of variance and the
necessary steps to determine F- and p-values, we consider the first six cases of the
dataset featured in the Web-Appendix. As hopefully will become clear, ANOVA is a
mathematically simple technique that can be easily computed by hand (although it
would be quite annoying for larger datasets). Figure 2 shows the key elements
necessary to understand the mechanics of ANOVA: the computation of the total
sum of squares (SST) in Fig. 2a, the computation of the model sum of squares (SSM)
in Fig. 2b, and the computation of the residual sum of squares (SSR) in Fig. 2c. All
three figures depict the same three key elements: first, the observed liking evalua-
tions of the first six participants (participant ID is shown on the x-axis). The dark
gray circles indicate that the person is in the simple font condition, and the light gray
diamonds indicate that the person is in the complex font condition; second, the mean
evaluation across all 120 participants (independent of the experimental group), as
indicated by the horizontal black line, which is also called the “grand mean”; and
third, the mean evaluation of the 60 observations of the simple font (horizontal dark
gray line at 4.32) and the mean evaluation of the 60 observations of the complex font
condition (horizontal light gray line at 5.53).

The dashed vertical lines differ between the three figures and indicate three
different sources of variation in the data. In Fig. 2a, the dashed lines indicate the
deviation of each individual observation from the grand mean. As shown in formula
(3a), the sum of these deviations squared is defined as SST. Because the magnitude of
this measure directly depends on the number of observations (i.e., every additional
participant will add a squared deviation from the mean), it has no meaningful
interpretation. To obtain meaning, we can calculate the total mean squares (MST),
as shown in formula (4a), by dividing SST by the corresponding degrees of freedom.
Since the grand mean needs to be estimated from the data, one degree of freedom is
“consumed.” Hence, the degrees of freedom are computed as the sample size minus
one (df: N – 1; here: 120 � 1 = 119). Consequently, MST is the average squared
deviation from the grand mean, which is better known by the term “variance” (i.e.,
MST = the total variance in the data).

The SST can be decomposed into two components: the part of the variation in the
data that is explained by the statistical model SSM and the part that is unexplained SSR
(i.e., SST= SSMþ SSR). Figure 2b shows how SSM is computed. The ANOVAmodel
defines the two experimental groups as sources of systematic variation. Hence, the
mean of the simple and complex group, respectively, is the part of the variation in the
data that is explained by the statistical model. SSM is defined as the sum of the squared
deviations of the group means from the grand mean (see formula (3b)). As indicated
by the vertical dashed lines in Fig. 2b, there are as many squared deviations entering
SSM as there are participants. We can compute the average SSM by dividing SSM by the
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corresponding df (i.e., the number of factor levels minus 1; here: 2 � 1 = 1; see
formula (4b)). The resulting MSM is the systematic variance in the data.

Finally, Fig. 2c shows how the unsystematic variance in the data is computed. The
vertical dashed lines indicate the deviation of individual observations from the mean
of the group the observation belongs to. As defined in formula (3c), the sum of these
squared deviations across all observations is called SSR. To compute the residual
variance, we again divide SSR by the corresponding df (i.e., the sum of the n – 1
participants per experimental group; here: 59 þ 59 = 118; see formula (4c)).

Given the variances computed by formulas (4b) and (4c), we are ready to perform
the test of statistical significance. To this end, we compute the empirical F-value:

Femp ¼ MSM=MSR (5)

Hence, Femp represents the ratio of the systematic and the unsystematic variance
in the data. Clearly, if Femp is smaller than 1, there cannot be a significant effect in the
data because the unsystematic variance is larger than the systematic variance. When
Femp is larger than 1, the question arises of how much larger than 1 Femp must be to
call the effect statistically significant. To compute the precise level of statistical
significance (i.e., the p-value), the empirical F-value Femp is compared to the
theoretical probability density function of F-values. This distribution describes
how ratios of variance are distributed and provides the critical thresholds that have
to be exceeded to infer that the systematic variance is so much larger than the
unsystematic variance that a mere random difference between the variances is
unlikely (i.e., less than 5%). In contrast to the previously discussed t-distribution
with only one parameter, the F-distribution has two parameters that determine the
shape of the distribution. The first parameter is the degrees of freedom of the
systematic variance (i.e., MSM); the second parameter is the degrees of freedom of
the unsystematic variance (i.e., MSR). As in the previous t-test example, classic
textbooks on ANOVA contain tables of critical F-values ordered by the model
degrees of freedom and the residual degrees of freedom. Nowadays, statistical
software packages do the tedious job of computing the exact probability for a
given Femp with its two corresponding degrees of freedom. For the given dataset,
the ANOVA output of R, including all discussed elements, is shown in Fig. 3.

In the figure, MSM is 44.41, MSR is 2.17, and Femp is 44.41/2.17 = 20.48. The
model degrees of freedom is 1. The residual degrees of freedom is 118. R computed
that an Femp of 20.48 given 1 and 118 degrees of freedom is very unlikely (Pr
(>F) = p = 0.0000145).3 In a scientific text, the results of the present ANOVA
would commonly be described as follows: An ANOVA showed that the factor font
type has a significant influence on participants’ liking evaluations (F
(1, 118) = 20.48; p < 0.001). In particular, the complex font (M = 5.53) is
systematically liked better than the simple font (M = 4.32).

3R denotes the p-value by “Pr(>F),” which refers to the probability of observing the empirical
F-value given the null hypothesis. R uses exponential notation to show small numbers. Hence, the
value 1.45e-05 in Fig. 3 is equivalent to 0.0000145.
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More Than Two Means: One-Factorial ANOVA

The example described in the previous section did not require an ANOVAmodel but
could have been analyzed by a t-test because only two means were compared. We
turn now to the key strength of ANOVA: situations where more than two means are
involved. Since the t-test is limited to a comparison of two means, it cannot be
applied to such situations. In what follows, we extend the two group example of the
previous section by a third experimental group.

When the brand manager of our imaginary company sees the results of the first
study, he gets excited about complex fonts. He asks his team of designers to find an
even more complex font, expecting an even higher liking due to the increased
complexity. However, the head of market research is skeptical and proposes a second
study where all three fonts are compared. She sets up a study with one factor (font
type) that has three levels: the two levels of the first study plus a third level, the
“super-complex font” condition (see Table 3).

For ease of data handling, the dataset in the Web-Appendix contains the data of
this second experiment, too.4 The experimental factor of this second study is named
iv_3, and the dependent variable is named dv_3. A total of 120 participants

Fig. 3 R output of a one-way ANOVAwith two factor levels (Study 1)

Table 3 The third condition of the second study that is added to the two conditions shown in
Table 1

Condition (3) Super-complex font

4In real data collections, we would collect a second independent dataset from new participants.
Please assume that although the data for the second experiment (and all further studies) are stored in
the same dataset, these datasets are independent and come from different participants.
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completed this study, with 40 participants per experimental condition. Before
conducting statistical tests, we inspect the descriptive pattern of the results by
plotting the means and their 95% confidence intervals (see Fig. 4). The pattern of
means suggests that the medium complex font still performs best.

To formally confirm this “inference by eye,” we conduct a one-factorial ANOVA.
The model formula is identical to formula (2), and the approach to compute the
variances and the empirical F-value is identical to Fig. 2. The only difference is that
the group index g now has three levels instead of two. Before running the actual
analysis, it is important to note that ANOVA compares the variance explained by one
factor (in the present case with three levels) to the unexplained variance and
computes one F-value and one p-value per factor, that is, the ANOVA shows
whether the factor as a whole explains a significant amount of variance. However,
one does not learn which levels of the factor are responsible for the effect. Consider
the ANOVA output produced by R for the given dataset (Fig. 5).

Fig. 4 Mean liking ratings of
Study 2 with 95% confidence
intervals

Fig. 5 R output of a one-way ANOVAwith three factor levels (Study 2)
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The ANOVA shows that the factor “font type” has a significant influence on
participants’ liking evaluations (F(2, 117) = 8.66; p < 0.001).5 This result tells us
that, according to the presented rationale, at least one of the three means is signif-
icantly different from at least one other mean. However, this result alone does not
inform the researcher which of the three potential pairwise mean comparisons is
significant. This is a very important characteristic of ANOVA that, when ignored,
leads to unjustified claims about statistically significant mean differences. To assess
the significance of the pairwise mean differences, it is necessary to compare each
pair of means separately using a priori contrasts, post hoc tests, or inference by eye.

Which of these techniques should a researcher use? A priori contrasts require that
one knows prior to the analysis the exact means or group of means one would like to
compare. Given that market researchers are usually interested in novel phenomena, it
is unlikely that exact hypotheses about specific mean differences can be derived a
priori. Moreover, it is usually difficult to convince a critical reader that a contrast was
actually proposed prior to the analysis and is not simply declared as being a priori
(Rodger and Roberts 2013). Hence, convincing theorizing is required to justify a
priori contrasts.6 Post hoc contrasts perform an exploratory comparison of all
pairwise group means. One problem associated with such post hoc tests is that the
same data are used to perform multiple statistical tests, which increases the likeli-
hood of falsely rejecting a null hypothesis (also known as Type I error inflation or
alpha inflation). Over the years, countless post hoc procedures have been proposed
to counter alpha inflation, and it has become difficult for a market researcher to make
an informed decision about which of these methods to select. They differ mainly
with respect to the severity of the alpha correction, which has the downside of
reducing statistical power (overlooking a significant effect that is actually present,
i.e., Type II error). A test is called liberal if it adjusts the alpha level only slightly, and
it is called conservative if it adjusts the alpha level considerably.

The most prominent liberal test is called Fisher’s least significant difference test
(LSD, Fisher 1935). This test consists of a sequential two-step test procedure. First,
the global significance of the ANOVA is assessed, which is called the omnibus test.
If this omnibus test is not significant, the test procedure stops. If it is significant,
uncorrected t-tests are performed for all pairs of means. An even simpler version of
this test procedure is to inspect the means and their confidence intervals based on the
inference by eye technique if, and only if, the global F-test of the ANOVA is
significant. A conservative procedure was proposed by a statistician named Carlo
Bonferroni (although there is no traceable publication), which adjusts the alpha level
by the number of conducted pairwise tests m (αBonferroni = α/m). A less-conservative
version of the Bonferroni correction was proposed by Holm (1979) that tests the
mean differences in the order of their magnitude and uses increasingly more relaxed

5Please note how the df of the ANOVA changed compared to Fig. 3 due to three rather than two
factor levels.
6The interested reader can find more information about a priori contrasts (also called planned
contrasts) in the textbooks of Field (2013), Field et al. (2012), and of Klockars and Sax (1986).
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alpha values for smaller mean differences. Which of these tests to select mainly
depends on the consequences of falsely accepting/rejecting a null hypothesis. In
most market research applications, the research examines potential business oppor-
tunities, where it is preferable to give an alternative a try rather than miss a
potentially valuable business opportunity. Hence, in most market research applica-
tions, Fisher’s LSD (or even simpler, the inference by eye technique as a follow-up
on a globally significant ANOVA omnibus test) is a reasonable choice. However, in
other disciplines (such as medicine), falsely rejecting a null hypothesis may have
very negative consequences; hence, conservative tests are better suited in such
instances. The implementation of the three post hoc tests described in the present
section can be found in the Web-Appendix.

Multiplicative Effects: Factorial ANOVA

After the brand manager learns that his idea of a super-complex font does not work
as intended, he comes up with a new idea: He wants to examine whether the
influence of font type on liking depends on the positioning of the brand. In addition
to the brand name “BUYCYCLE,” which is targeted at business people, he creates
the brand name “EASYCYCLE,” which is targeted at leisure-oriented consumers.
He asks his market researchers to test whether the optimal font depends on the brand
positioning. An experimental design with two factors with two levels each is
implemented, as shown in Table 4, and data are collected from 30 people per cell
(Ntotal = 120). In the dataset of the Web-Appendix, the factor “font type” is named
iv_fac_a, the factor “brand name” is named iv_fac_b, and the corresponding liking
judgments are stored in a variable named dv_fac.

The key idea of the two-way experimental design is to go beyond simple main
effects (i.e., A is better than B) and examine conditional effects (i.e., A is only better
than B when C). Statistically speaking, the basic one-way ANOVA formula (2) is
extended by the second experimental factor and by the interaction (i.e., multiplica-
tion) of both factors:

yigh ¼ yþ αg þ βh þ αg
�βh

� �þ eigh (6)

Table 4 Experimental conditions of Study 3

Factor (1) Font type

Simple font Complex font

Factor (2) Brand
name

Business

Leisure
oriented
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Accordingly, the two-way ANOVA considers four sources of variation: the
variance produced by factor α, the variance produced by factor β, the variance
produced by the interaction of α and β, and finally the residual variance e, against
which the significance of all three effects is evaluated.

Before conducting the two-way ANOVA, we need to consider three important
aspects that are relevant for ANOVA with more than one factor: (1) coding of the
factors, (2) different ways of computing the model sum of squares, and (3) the
interpretation of main effects when an interaction is present.

The coding of the factors refers to the numeric coding that is used to represent the
categorical factor levels. For the example provided in Table 4, the factor levels are
denoted by verbal labels (i.e., “simple font” versus “complex font” and “business”
versus “leisure oriented”). However, a statistical procedure, such as ANOVA, cannot
handle verbal information but requires numeric information. Although most statis-
tical software packages automatically transform verbal codes into numeric codes
internally, it is important to keep in mind what is going on under the surface of the
statistical software package. Readers familiar with regression analysis are used to
so-called “dummy coding,” which refers to a coding scheme in which a base
category is denoted by 0 and the other category by 1 (for k factor levels, k-1
dummy-coded variables are needed). This is the default internal coding R uses
when a verbally labeled factor is processed. However, in the context of ANOVA
with more than one factor, dummy coding leads to an incorrect evaluation of the
main effects because this type of coding dismisses one experimental cell from the
mean comparison.7 Therefore, effect coding must be used, where one factor level is
coded as �1 and the other factor level as 1 (see Table 5a).

Effect coding ensures that for a given factor, both cells corresponding to the value
�1 are compared to both cells corresponding to the value 1. This is the default
coding scheme SPSS uses in its ANOVA procedure. Hence, when using SPSS, the
defaults of the software take care of the coding issue. However, when using R, it is
important to change the coding scheme from dummy to effect coding to obtain

Table 5 Comparison of a balanced and an unbalanced experimental design

(a) Balanced experimental design: factors are
uncorrelated

(b) Unbalanced experimental design: factors
are correlated

Factor A Factor A

�1 1 �1 1

Factor B �1 n = 30 n = 30 Factor B �1 n = 45 n = 15

1 n = 30 n = 30 1 n = 15 n = 45

7For the example with 2 � 2 experimental cells provided in Table 4, dummy-coding Factor
1 (simple = 0; complex = 1) and Factor 2 (business = 0; leisure = 1) would mean that the effect
of Factor 1 compares the cell denoted by {0,0} (i.e., “simple and business”) to the two cells for
which Factor 1 has the value 1 (i.e., “complex and business” and “complex and leisure”). The cell
“simple and leisure” would be omitted from the test of the main effect, which is an undesirable
feature of dummy coding when applied to ANOVA models.
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meaningful results (see lines 24–41 of the Web-Appendix R script on how to specify
effect coding in R).

The second important issue concerning ANOVAwith more than one factor is how
the model sum of squares is computed. This issue is only relevant when the
experimental design is unbalanced (i.e., an unequal number of observations per
experimental cell; see Table 5b), which leads to a correlation between factors. To
understand this point, let us consider the key characteristic of a bivariate correlation
in the present context: knowing the value of one factor provides information about
the other factor. In the balanced design in Table 5a, this is not the case. If I know that
a person is in condition “1” of Factor A, the likelihood of being in condition “�1” or
“1” of Factor B is exactly the same (50% or n = 30 in each). In contrast, when
considering the unbalanced design in Table 5b, things are different: If I know that a
person is in condition “1” of Factor A, the likelihood of being in condition “1” of
Factor B is 75% (n = 45) and the likelihood of being in condition “�1” is only 25%
(n = 15). Hence, in unbalanced experimental designs, the factors are correlated,
meaning that they share common variance. This issue is known as multicollinearity
between predictor variables in regression analysis and poses the problem of
assigning explained variance in the DV to the IVs. Before we dig deeper into this
problem, it is important to note that in practice, unbalanced designs are much more
common than perfectly balanced designs due to dropouts. The exemplary dataset in
the Web-Appendix, however, contains a perfectly balanced design, as shown in
Table 5a. As shown in the lower figure of Table 6, this situation is unproblematic in
terms of assigning explained variance to the factors.

When confronted with an unbalanced design, however, it is important to distin-
guish between three ways of computing the model sum of squares. In Type I,8 the
explained variance is assigned to the experimental factors in the order of their
specification in the model. Hence, the first factor in the model formula can poten-
tially explain more variance than factors occurring later in the formula. Table 6
visualizes this situation using Venn diagrams. In these Venn diagrams, the dashed
black circle symbolizes the total variance of the DV, the black circle the total
variance of Factor A, the light gray circle the total variance of Factor B, and the
dark gray circle the total variance of the interaction of Factors A and B. When circles
overlap, they share common variance (i.e., they are correlated). In particular, the area
of the dashed black circle covered by the other circles is the explained part of the
variance of the DV.

Given that the factors are entered into the ANOVA according to the following
formula (DV = A + B + A � B) using Type I sum of squares, Factor A explains the
black area in the DV, Factor B the light gray area, and the interaction the dark gray
area. If the order of the factors in the formula is changed, the explained parts of the

8It is important to note that the term “Type I” is used to denote more than just one statistical concept,
which can be confusing. We already encountered the term in the context of the statistical p-value,
where falsely rejecting the null hypothesis is called an alpha or Type I error. In the present context,
“Type I” refers to a specific way of computing the sum of squares in an ANOVA model, which is
completely unrelated to the “Type I error” in statistical hypothesis testing.
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variance also change, which is a disadvantageous characteristic of Type I sum of
squares because the order of the factors in the model formula is rarely meaningful.
The second way of computing the sum of squares is Type II, where the explained
variance is assigned to the main effects first and the interaction explains the leftover
variance. This way of assigning the explained variance in the DV to the factors can
only be applied when no significant interaction is present. In such a situation, Type II
sum of squares tests the main effects with high statistical power (i.e., high likelihood
of detecting significant effects). However, two-way experimental designs are usually
conducted because the researcher is particularly interested in the interaction, which
brings us to the third way of computing the sum of squares: Type III, where each
factor only explains that part of the variance in the data that is uniquely produced by
that factor. The shared explained variance of several factors is not assigned to a
particular factor when using Type III sum of squares but is nevertheless counted as
explained variance in the computation of the total R2. Type III sum of squares allows
a meaningful interpretation of main effects and interactions when interactions are
present and is usually the best choice in the analysis of experimental designs.

Common statistical packages, such as SPSS, use Type III sum of squares as the
default option. R uses Type I as its default in the aov function. Because there is
rarely a natural order of factors in an ANOVA model, using Type I sum of squares
may lead to biased results because the arbitrary order of specifying the model in the
statistical software can influence the significance of the factors. Hence, I recommend
using Type III sum of squares to avoid such biases. The Web-Appendix shows how
to use Type III in R using the Anova function of the car library (Fox and Weisberg
2011).

The third general issue concerning ANOVA with more than one factor is the
question of how the main effects can be interpreted when an interaction is present.
This is a particularly important point since the mere significance of a main effect can
lead to misleading conclusions when the pattern of an existing interaction is ignored.
To clarify this point, Fig. 6 shows four prototypical mean patterns of a two-way
experimental design. In Fig. 6a, we see a meaningful main effect of Factor A
(“1” is better than “�1”) but no other effects. In Fig. 6b, we see two main effects
of Factors A and B (for both factors “1” is better than “�1”), which are both
meaningful, but there is no interaction. In Fig. 6c, we see the same two main effects
but in addition also an interaction such that the effect of Factor B is stronger for level
“1” of Factor A than for level “�1” of Factor A. This situation is called an ordinal
interaction because the order of the means is not changed by the interaction.
Therefore, both main effects remain meaningful and can be interpreted, that is, the
claim that factor level “1” is better than “�1” is true for both factors, independently
of the other factor.

Now let us consider Fig. 6d, which features a disordinal interaction (also called
“crossover interaction”). On average, level “1” of Factor A is better than level “�1.”
Given the exemplary mean pattern, this effect would most likely show up as a
significant main effect in an ANOVA model. However, this effect would not be
meaningful because the claim that factor level “1” of Factor A is better than factor
level “�1” is not true unconditionally. This claim only holds in condition “1” of
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Factor B. However, in condition “�1” of Factor B, the effect reverses, that is, the
order of the means changes, conditional on the other factor, which makes it a
disordinal interaction. Therefore, it is not sufficient to inspect the ANOVA output
to judge the significance of main effects; the pattern of means must also be consid-
ered because a statistically significant effect can lack substantial meaning when a
disordinal interaction is present. When a disordinal interaction is present, the main
effects are meaningless and should not be the basis of conclusions.

With the understanding of these three general aspects of ANOVAwith more than
one factor, we can start to examine the exemplary dataset of the Web-Appendix.
When running the model in R (see Fig. 7), we find no effects of font type
(F(1,116) = 0.47; p = 0.49) and brand name (F(1,116) = 1.44; p = 0.23) but a
significant interaction between the factors (F(1,116) = 32.05; p < 0.001). Thus, in
the present example, only the interaction is significant. However, even if one or both
of the main effects were statistically significant, they would not be meaningful in the
present scenario since we observe a disordinal interaction (see Fig. 8).

Fig. 6 Prototypical mean patterns of two-factorial experimental designs
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How can we interpret the results of an ANOVAwith interaction(s)? A significant
interaction indicates that the effect of at least one of the factors is dependent on at
least one other factor. A disordinal interaction indicates that the effect of each factor
is dependent on the other factor, that is, in the present example, any effect is
conditional on the other effect. For a substantial interpretation of the interaction,
one needs to know which conditional effects are significant. To this end, we can
compute so-called “simple effects.” To introduce the idea of simple effects, let us
first recap the types of effects we have encountered thus far using Table 7. The main
effect of Factor A compares the mean of [*{�1,�1}* and �{1,�1}�] with the mean
of [^{�1,1}^ and #{1,1}#]. Accordingly, the main effect of Factor B compares the
mean of [*{�1,�1}* and ^{�1,1}^] with the mean of [�{1,�1}� and #{1,1}#]. The

Fig. 7 R output of a two-way ANOVAwith two factor levels for each factor (Study 3) (R denotes
the multiplicative interaction of two factors by “:”)

Fig. 8 Mean liking ratings of
Study 3 with 95% confidence
intervals
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interactive effect of Factors A and B tests whether the mean of [*{�1,�1}* and #
{1,1}#] differs from the mean of [�{1,�1}� and ^{�1,1}^].

In contrast, simple effects do not compare combinations of experimental cells but
directly compare experimental cells for one factor level of the other factor. For the
exemplary design in Table 7, four simple effects can be computed: the simple effect
of Factor A conditional on Factor B’s “�1” level (i.e., *{�1,�1}* vs. ^{�1,1}^),
the simple effect of Factor A conditional on Factor B’s “1” level (i.e., �{1,�1}� vs.
#{1,1}#), the simple effect of Factor B conditional on Factor A’s “�1” level (i.e., *
{�1,�1}* vs. �{1,�1}�), and the simple effect of Factor B conditional on Factor A’s
“1” level (i.e., ^{�1,1}^ vs. #{1,1}#).

How do we compute these simple effects? The attentive reader would probably
suggest that the current chapter started with a situation where two means need to be
compared. A t-test for independent samples or a one-way ANOVA applied to a
subset of the dataset (i.e., just those experimental cells involved in the respective
simple effect) appears to be a natural solution. Simple effects are, however, a bit
more complicated because they make use of the information contained in all
experimental cells (i.e., also those cells that are not involved in the respective
simple effect). In particular, simple effects estimate the residual variance based on
the full dataset and the model variance based on only the cells involved in the
simple effect (Field 2013; Field et al. 2012). This approach increases the residual
degrees of freedom for the evaluation of the empirical F-value and hence increases
the statistical power of the simple effects. Thus, simple effects are a variant of
ANOVA that are conducted as a follow-up analysis after a significant interaction
has been observed. As with any follow-up technique in the ANOVAworld (cf. post
hoc contrasts), it is important to only run the follow-up analyses if, and only if, the
omnibus test is significant. Therefore, simple effects are only computed if a
significant interaction is present in the initial factorial ANOVA. Otherwise, an
inflation of the alpha error is likely to occur, and the obtained results would be
questionable.

Unfortunately, neither SPSS nor R offers a straightforward, convenient way of
testing simple effects (Field 2013; Field et al. 2012). In SPSS, simple effects are not
available from the menu but need to be requested by a self-written command in the
syntax. In R, simple effects need to be computed by extracting the residual sum of
squares and residual degrees of freedom from the initial factorial ANOVA and the
model sum of squares and model degrees of freedom from a follow-up ANOVA
applied to only the involved experimental cells. Own code must be written to apply
the formulas of Fig. 2 to compute the empirical F-value and the corresponding

Table 7 Distinguishing main effects, interaction effects, and simple effects

Factor (A)

�1 1

Factor (B) �1 *{�1,�1}* ^{�1,1}^

1 �{1,�1}� #{1,1}#

Note: The symbols *^�# are used to facilitate the recognition of the four different cells in the text
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p-value. Examples for how to compute simple effects in SPSS and R can be found in
the Web-Appendix.

In the present example, the market researcher is most likely interested in the
question of whether the effect of font type is significant in each of the brand name
groups, that is, whether the difference between the two light gray bars in Fig. 8 is
statistically significant and whether the difference between the two dark gray bars in
Fig. 8 is statistically significant. Thus, we will focus on the two managerially most
relevant simple effects described above (i.e., the effect of “font type” for the
“business brand name” and the effect of “font type” for the “leisure brand name”)
and will discard the managerially less relevant effects (i.e., the effect of brand name
conditional on font type). The simple effects indicate that a complex font works
better for a business brand name (F(1, 116) = 20.14; p < 0.001) and a simple font
works better for a leisure brand name (F(1, 116) = 12.37; p = 0.001).9

Within-Subjects: Two or More Observations per Person

The standard ANOVA covered in the first part of this chapter requires that all
observations are independent from each other and hence come from different
individuals. However, there are situations where it is preferable to collect more
than one measurement per person, which requires the application of a different
type of ANOVA: repeated-measures ANOVA (RM-ANOVA). If a market researcher
would like to compare the effectiveness of two advertisement campaigns, he or she is
usually not only interested in the short-term effects but also in the long-term effects.
To this end, one could survey the same participants immediately after viewing an
advertisement and 1 month later. The time between these two measurements is a
within-subjects factor. In the last dataset of this chapter (Study 6), we will consider
an example of a longitudinal dataset, where time is the within-subjects factor.
Another field of application for RM-ANOVA is the manipulation of a “normal”

Table 8 Comparison of different data formats commonly used for RM-ANOVA

(a) Wide format (b) Long format
id

1 male 28 2 1

7

7

5

5

23

20

male

male

gender age dv_within_2_a dv_within_2_b

2

3

120 23 4 6female

id gender

1 28 2

1

5

7

7

4

6

5

simple

complex

complex

complex

complex

simple

simple

simple

28

23

23

20

20

23

23

male

male

male

male

male

male

female

female

1

2

2

3

3

120

120

age font.type liking

9Please note that the residual degrees of freedom (i.e., 116) for the simple effects are the same as in
the initial factorial ANOVA. This is the reason why simple effects have higher statistical power than
other post hoc approaches that would just compare the two means, such as an independent-samples
t-test.
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experimental factor within-subjects instead of between-subjects. If there is no reason
to expect that participants respond in a biased way (e.g., demand artifact10) once they
know all factor levels of an experimental factor, it is statistically much more
powerful (and hence more efficient) to manipulate an experimental factor within-
subjects instead of between-subjects. We will consider examples of such situations in
the next two sections (studies 4 and 5).

Two Means: One-Factorial RM-ANOVA or Paired-Samples t-Test

In the fourth study of the present chapter, we revisit the first between-subjects study
of this chapter (Study 1), where “font type” was manipulated with two levels: simple
vs. complex. If we assume that participants can provide an unbiased answer even if
they know both levels of the factor “font type,” it would be more efficient to conduct
a within-subjects manipulation of this factor because half the number of participants
is sufficient to gather the same number of measurements as in the between-subjects
scenario. In fact, a key advantage of a within-subjects experiment is that even less
than half the number of participants is sufficient to reach a comparable level of power
compared to a between-subjects scenario because the random differences between
individuals are “pulled out” of the analysis. Let us consider how this is achieved
using the dataset provided in the Web-Appendix. In the dataset, a sample of
120 participants rated the simple font (dv_within_2_a) and the complex font
(dv_within_2_b), and each rating is stored in a separate variable (i.e., a separate
column in the data matrix). This type of data storage is called “wide format.”We will
see later that some types of analyses require a different type of storage called “long
format,” where a second row instead of a second column is used to store the second
measurement (see Table 8).

To illustrate the mechanics of RM-ANOVA, we again compare the t-test approach
with the ANOVA approach.11 A paired-samples t-test can be used to analyze
repeated measures with a maximum of two measurements. The key idea of this
type of t-test is that it is not the means per se that are analyzed but the differences
between pairwise means within an individual. That is, the difference Di is first
computed per participant i by subtracting measurementi2 from measurementi1.
Then, the mean of all Di is computed and divided by its standard error to derive an
empirical t-test statistic:

Temp ¼ mean Dið Þ=SE Dið Þ (7)

10The term demand artifact indicates that participants guess the hypothesis of an experiment and
demonstrate behavior that is consistent with their guess instead of their natural behavior. Therefore,
the occurrence of a demand artifact destroys the external validity of the observed effects. Sawyer
(1975) provides an excellent discussion of this problem and potential solutions.
11A third possible approach would be an extension of the regression framework called linear mixed
models (LMM; for an applied introduction, see West et al. 2015).
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Following this approach, the absolute differences between participants are omit-
ted from the analysis; therefore, this source of random noise does not reduce the
precision of the estimated mean difference. This key idea of excluding the between-
subjects variance when evaluating the significance of the within-subjects effect of
interest is part of all repeated-measures techniques and is responsible for their high
level of statistical power. The present example finds a significant difference
(D = �0.59) between the simple (M = 3.92) and complex (M = 4.51) fonts
(t(119) = �4.34; p < 0.001).

For illustrative purposes, we evaluate the same mean difference using
RM-ANOVA. In practice, however, when only one factor with two levels is present,
the paired-samples t-test would be the method of choice. The RM-ANOVA explic-
itly disentangles the within- and between-subjects variance and uses only the within-
subjects portion to evaluate significance. This approach of splitting the total sum of
squares into the relevant components is illustrated in Fig. 9.

As can be seen in Fig. 9, RM-ANOVA only considers the within-subjects
variance to determine the statistical significance by splitting this source of variation
into the two components we previously encountered in the normal between-subjects
ANOVA model at the outset of this chapter (see Fig. 2): SSMW and SSRW. The
between-subjects variance is, however, isolated and does not influence the estima-
tion of the model’s statistical significance. Different software packages require
different data formats to perform RM-ANOVA (see Table 8). SPSS requires the
repeated measures to be stored in separate variables called “wide format,” as shown
in Table 8a. In R, the required data format depends on the function used: Anova
requires “wide format,” and ezAnova from the ez library (Lawrence 2015)
requires “long format” (Table 8b) where each participant fills as many rows as
there are measurements (in the present example, we have two repeated measures
and hence two rows per person). The output shown in Fig. 10 is produced by running
the Anova procedure on the wide-format data. The results of the RM-ANOVA
replicate the findings of the paired-samples t-test by showing a significant effect of
“font type” on liking (F(1,119) = 18.87; p < 0.001).

Fig. 9 Sources of variation in a RM-ANOVA
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More Than Two Means: One-Factorial RM-ANOVA

The key concept of RM-ANOVA introduced in the previous section can be extended
to more than two within-subjects factor levels. Suppose we would like to repeat the
second study described in the between-subjects part of this chapter using a within-
subjects design, where each participant rates all three font types (simple, complex,
and super-complex). In the exemplary dataset, 120 participants participated in this
study (Study 5). Their answers are stored in the variables dv_within_3_a (= simple),
dv_within_3_b (= complex), and dv_within_3_c (= super-complex). This type of
dataset with one within-subjects factor with three levels cannot be analyzed by a
paired-samples t-test; it requires RM-ANOVA.

The existence of more than two factor levels challenges a key assumption of
RM-ANOVA called sphericity. Sphericity means that all the differences between
pairwise repeated measures have equal variance. This issue arises when more than
two repeated measures are involved, such as in Study 5. When the assumption of
sphericity is harmed, the F-test is too liberal and needs to be corrected. Most
statistical software packages (like SPSS and R) automatically check the sphericity
assumption using Mauchly’s test of sphericity. If the test is significant, the sphericity
assumption is violated, and the F-test must be corrected using either the Greenhouse-
Geisser (Greenhouse and Geisser 1959) or the Huynh-Feldt (Huynh and Feldt 1976)
correction, which applies a correction factor to the degrees of freedom of the
empirical F-value. These two approaches usually differ only slightly, and it is up
to the researcher to report either the more conservative Greenhouse-Geisser or the
slightly more liberal Huynh-Feldt correction. However, when Mauchly’s test of
sphericity is significant, one of the two corrections must be applied and reported.

For the present dataset, we observe the highest liking rating for the complex font
(M= 5.10), followed by the simple (M= 4.23) and the super-complex font (M= 4.03).
The RM-ANOVA produces a significant Mauchly’s test (p < 0.001). Hence, we report
the corrected degrees of freedom for the F-test. We use the Huynh-Feldt correction and
observe a significant effect of font type on liking (F(1.78, 211.47)= 25.39; p< 0.001).
The R output of this analysis is shown in Fig. 11. The degrees of freedom in the
first output have been multiplied by the “HF eps” (i.e., Huynh-Feldt) correction factor
(i.e., 2 � 0.8885498 = 1.78; 238 � 0.8885498 = 211.47). Post hoc LSD contrasts
reveal that the complex font condition is significantly different from the other two (p<
0.001), but the simple and super-complex font conditions do not differ from each other
(p = 0.19). Hence, the complex font is the best-liked option.

Fig. 10 R output of a one-way RM-ANOVAwith two factor levels (Study 4)
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Multiplicative Effects: Factorial RM-ANOVA/Mixed-ANOVA

The RM-ANOVA approach introduced in the previous two sections is easily
extended to two or more within-subjects factors. The key ideas of RM-ANOVA
and the handling of interactions in an ANOVA framework have already been
described; therefore, we will focus on a slightly more complex situation: the
combination of between- and within-subjects factors within one analysis. If these
two types of factors are combined within one analysis, the analysis is called either a
mixed-ANOVA or a split-plot ANOVA (both terms can be used interchangeably). To
illustrate this type of analysis, we revisit the study introduced at the outset of this
chapter, in which the simple font was compared to the complex font (Study 1).
Market researchers are usually interested not only in the immediate effects but also in
the long-term effects of their marketing efforts. Suppose that the participants of the
first study were instructed to provide an immediate liking judgment for the brand
name printed in one of the fonts and to take a look at the brand name once per day for
a 1-month period (Study 6). After the month is over, they are asked to provide a
second liking judgment. It then becomes possible to examine the temporal stability
of the liking judgment and to determine whether one of the fonts is more prone to
habituation.

Technically, such a study has a 2 (between: font type) � 2 (within: time) mixed
factorial design. In the exemplary dataset, the between-subjects factor is named iv_2,
the immediate liking judgment is dv_2, and the follow-up liking judgment is
dv_2_within. A total of 120 participants were randomly assigned to the two
between-subjects conditions (60 per factor level). To understand the mechanics of

Fig. 11 R output of a one-way RM-ANOVAwith three factor levels (Study 5)
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a mixed-ANOVA, we first look at the decomposition of the total sum of squares
provided in Fig. 12.

The key concept of RM-ANOVA is also applied to the mixed-ANOVA: The
residual variance is decomposed into a between- and a within-subjects part, and each
effect is only tested against the relevant part of the residual variance. In particular,
the main effect of the between-subjects factor (i.e., font type) SSMB is tested against
the between-subjects residual variance SSRB. The main effect of the within-subjects
factor (i.e., time) SSMW is tested against the within-subjects residual variance SSRW.
Finally, the interaction of the between- and the within-subjects factor SSMB*W is only
tested against the within-subjects residual variance SSRW. This testing procedure is
evident from the output of the described mixed-ANOVA provided in Fig. 13 (note
the column denoted by “Error SS”).

The results of the mixed-ANOVA reveal that “font type” (F(1, 118) = 42.45;
p < 0.001), time (F(1, 118) = 27.80; p < 0.001), and the interaction of the factors
(F(1, 118) = 26.04; p< 0.001) all have a significant influence on liking. The barplot
of the means provided in Fig. 14 shows that the interaction is caused by the complex
font being equally liked immediately after seeing it the first time and 1 month later,

Fig. 12 Sources of variation in a mixed-ANOVA

Fig. 13 R output of a mixed-ANOVAwith two factors (Study 6)
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whereas the liking of the simple font decreases over time, which is arguably due to
boredom.

Extensions

The standard (RM-)ANOVA approach described thus far is limited to discrete
independent variables (i.e., predictors) and to a single dependent variable (i.e.,
outcome). We will now cover two variants of the standard approach that extend
the ANOVA framework to continuous predictors (ANCOVA) and to more than one
dependent variable (MANOVA).

Analysis of Covariance (ANCOVA)

Analysis of covariance (ANCOVA) refers to an ANOVAmodel in which at least one
continuous predictor variable is included. The key idea of ANCOVA is to include
continuous control variables that are independent of the experimental factors but are
related to the dependent variable. Such a control variable reduces the residual
variance of the model and hence increases the likelihood of discovering a significant
effect of the experimental factors. Before conducting ANCOVA, it is essential to
ensure that the covariates are not correlated with the experimental factors (see Miller
and Chapman 2001 for more details on this issue). If a correlation is present, the
effects of the experimental factors are difficult to interpret since the covariate is

Fig. 14 Mean liking ratings
of Study 6 with 95%
confidence intervals
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confounded with the experimental effect. To avoid such a correlation, researchers
should either use only trait/person variables (e.g., age, education) rather than state
variables (e.g., mood, motivation) as covariates or if a state variable is really needed,
it must be measured before the experimental manipulation occurs. Moreover,
researchers should refrain from including too many covariates in the ANCOVA
model. A covariate can only reduce the residual variance if it is highly correlated
with the dependent variable and not correlated with the experimental factors.
Furthermore, the included covariates should not be correlated with each other.
Usually, it is difficult to find a lot of variables that fulfill these criteria. Therefore,
ANCOVA often employs a single covariate and rarely more than two to three
covariates.

As an example of the application of ANCOVA, consider the one-way ANOVA
study at the outset of this chapter. It is reasonable to assume that the general liking of
a business bicycle brand differs between people, independent of the employed font.
For instance, participants’ age could influence the general liking, such that the
general preference for a business bicycle brand increases with age. If age is added
to the first ANOVA model of this chapter (Study 1) as a covariate, the model
becomes an ANCOVA. Thereby, the residual variance can be reduced. The
Web-Appendix contains an exemplary application of such an ANCOVA. Please
note that in R, the covariate needs to be mean centered (i.e., xi – mean(x) for each
individual observation i of variable x) before it can be included in the ANCOVA. In
SPSS, mean centering is automatically executed by the ANCOVA procedure.

Multivariate Analysis of Variance (MANOVA)

Suppose that in this chapter’s first study, participants were not only asked to provide
a liking judgment (variable name in the dataset, dv_2) but also a willingness-to-buy
judgment (dv_2_manova). In this situation, there is more than one dependent
variable that could be analyzed by ANOVA. One could be tempted to run two
univariate ANOVAs sequentially for the two variables. However, it is likely that
these two variables are correlated with each other, and this information would be lost
when running two separate analyses. Furthermore, as previously discussed in the
context of post hoc contrasts, this approach would be an example of multiple
statistical testing using the same data, which leads to an inflation of Type I error
(i.e., alpha inflation).

There are two potential solutions to this problem. First, if the two (or more)
variables are statistically highly correlated and, based on their theoretical meaning,
are highly related, it would be advisable to treat them as items of an overarching
scale and to aggregate the sores to form a single value (i.e., the mean of the two or
more scores). This approach follows the logic of latent constructs that are measured
by multiple indicators. Then, one can simply run a univariate ANOVA on the
aggregated score and follow the steps described thus far.

Second, if the two variables measure theoretically different concepts that cannot
be summarized by one overarching construct, one would perform MANOVA. The
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key idea of MANOVA is that the dependent variables are not analyzed in isolation
but a linear combination of all dependent variables (called a “variate”) serves as the
outcome to be analyzed. Moreover, MANOVA accounts for the correlation between
the dependent variables using information present in the error terms. A significant
effect in MANOVA means that at least one experimental group differs from one
other group on at least one of the considered dependent variables. To determine
which group mean/means differs/differ, one usually conducts separate univariate
ANOVAs and respective post hoc tests. In this sense, MANOVA serves as a global
omnibus test that guards against alpha inflation. The follow-up analyses are only
conducted if the MANOVA indicates significant effects; otherwise, the analysis
stops. The Web-Appendix contains an exemplary application of MANOVA.

Conclusion

Managers often need to make discrete decisions: Should I run advertisement A or B?
Should I launch product A or B? Should I position my brand as A or B? These types
of decisions require marketing research to evaluate the effect of a discrete predictor
(i.e., experimental factor) on a continuous outcome variable (such as consumers’
liking, willingness to buy, or willingness to pay). ANOVA is the method of choice to
analyze such datasets because it determines whether there are differences in the
means of different groups of observations. The data entered into an ANOVA are
usually produced through experimental research, which has major advantages in
terms of causal interpretation of effects. Since ANOVA provides answers to some of
the most important types of questions (marketing) managers have in mind, it is not
surprising that ANOVA is one of the most important techniques in marketing
research. Accordingly, a comprehensive review of articles published in one of the
world-leading scientific marketing journals, the Journal of Marketing Research,
found that ANOVA is the most frequently used statistical technique across all papers
published by the journal (Malhotra et al. 1999).

The present book chapter was intended to provide an applied introduction to this
important statistical technique. Instead of covering all statistical details and all the
different options to run the analysis (see Field 2013 and Field et al. 2012 for a more
detailed introduction to the different types of ANOVA), the key intention of this
book chapter was to provide clear guidance for how to apply this technique without
making mistakes. To this end, the book chapter is accompanied by a comprehensive
Web-Appendix covering an exemplary dataset and complete scripts of commands
for R and SPSS to conduct all the analyses covered in this chapter. These scripts can
be used as blueprints to conduct these analyses on the readers’ own datasets. To close
this chapter, I would like to summarize some recommendations for applying
ANOVA:

– Coding of factors: The main effects of ANOVA are only meaningful when effect
coding (i.e., �1 vs. 1) instead of dummy coding (i.e., 0 vs. 1) is implemented for
the experimental factors because only effect coding evaluates the main effects
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relative to the grand mean (see Table 7 and the corresponding explanations).
SPSS uses effect coding by default for ANOVA models, and the user does not
need to consider this issue. However, R uses dummy coding by default, and the
user needs to actively specify effect coding to make the main effects in ANOVA
models meaningful (see lines 24–41 of the Web-Appendix R Script on how to
specify effect coding in R). This is a serious issue because the type of coding has a
substantial impact on the estimated effects. Incorrect coding can lead to
completely wrong inferences.

– Sum of squares (SS): As long as only one experimental factor is involved or if all
experimental cells contain exactly the same number of observations, one does not
have to consider the different ways of computing the SS. If these conditions do
not hold, Type III SS is highly recommended. Type I SS suffers from the fact that
the order in which the factors are entered into the model determines how much of
the explained variance is ascribed to the factors (the first factor gets more than the
later factors). However, there is rarely a meaningful order for the factors. SPSS
uses Type III SS by default. However, the aov function in R uses Type I SS, and
the Anova function is required to estimate Type III SS. It is highly recommended
to change the default when using R and to base the analysis on Type III SS (see,
e.g., line 156 of the Web-Appendix R Script on how to change to Type III SS).

– Linear mixed models (LMMs): Recent discussions on the sphericity assumption
and the treatment of missing values in RM-ANOVA designs have led researchers
to conclude that in situations where three or more within-factor levels and/or
missing values are present, an alternative analytical technique is superior: LMMs
(see West et al. 2015 for an applied introduction). LMMs are an extension of the
regression framework and were developed to model any type of multilevel data.
Repeated measures on the same participants are one potential field of application
for this type of model. The key idea of this class of models when applied to
repeated measures is that the between-subjects variance is treated as a random
effect. As in RM-ANOVA, this part of the variation is excluded from the
evaluation of the experimental effects. However, LMMs can also explicitly
model deviations from the sphericity assumption and can easily handle missing
values within participants (in contrast to RM-ANOVA). However, LMMs are
theoretically and computationally more difficult to understand and more difficult
to apply than RM-ANOVA. Nevertheless, LMMs have become increasingly
popular in many fields. Recent research (e.g., Westfall et al. 2014) recommends
the use of such models for any ANOVA procedure where random stimulus
replicates are used within participants.12

– Effect size: Scientists and practitioners are not only interested in the existence of
an effect but in addition also in the magnitude of the effect. For large datasets,
very small effects can be statistically significant without having any practical

12For example, when the effect of funny vs. rational advertisement is examined, one usually shows
several funny and several rational advertisements and compares the aggregated mean evaluations.
The random variation between advertisements can be controlled by LMM.
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meaning. To quantify the magnitude of an effect, it has become good scientific
practice to report the effect size in addition to F- and p-values (Lakens 2013).13 In
the context of ANOVA, the most common effect size measure is the partial eta
squared, reported as ηp

2. For a Factor A, it is defined as SSA/(SSA þ SSResidual).
Hence, it measures a factor’s share of the variance not explained by other factors
in the model. According to Cohen (1988, pp. 285–288), a value of 0.01 is
regarded as a small effect, a value of 0.06 is regarded as a medium effect, and a
value of 0.14 and larger is regarded as a large effect (see also Richardson 2011).
The Web-Appendix contains an exemplary computation of this effect size mea-
sure using the BaylorEdPsych library in R (Beaujean 2012) and the option
menu of SPSS.

– Extensions of ANOVA: The present chapter exclusively focused on the application
of ANOVA to experimental data. We learned that by comparing two portions of
variance (systematic vs. unsystematic), ANOVA can determine whether the
means of experimental groups significantly differ. The basic principle of
ANOVA can, however, be extended to any situation in statistical data analysis
where the sizes of variances need to be compared. For instance, many statistical
techniques require homogeneity of variances across different groups of observa-
tions to fulfill the distributional assumptions of the technique. ANOVA itself
makes the assumption that the error variance is homogenous across different
experimental groups, which can be tested using Levene’s test of variance homo-
geneity (Levene 1960). Interestingly, Levene’s test is just a special case of
ANOVA. Another example is the modeling of data using regression analysis.
When applying regression, one often has to decide how many predictors should
be included in the model. In particular, the question whether adding additional
predictors to the model sufficiently increases the fit of the model needs to be
answered. For this purpose, ANOVA can be used to compare the residual
variances of a more parsimonious model and a model with additional predictors.
In this context, ANOVA assesses whether the additional predictors significantly
decrease the residual variance and should be included or discarded. Hence,
ANOVA can also be used to support model selection in the context of regression
analysis. The reader of this chapter should thus not be surprised to see applica-
tions of ANOVA to problems beyond the analysis of experimental data.

– Statistical software: The present chapter is accompanied by an exemplary dataset
and command script files for SPSS and R. I selected these two software packages
because SPSS is a widespread and easy-to-use statistical software, and the
application of ANOVA models is well implemented in SPSS. By default, SPSS
uses the correct coding of factors and computes the correct sum of squares, which
prevents potential errors. SPSS also provides many helpful additional outputs by
default, for instance, checks of the model assumptions. Hence, I would highly
recommend SPSS for beginners in the application of ANOVA and for people who

13An excellent introduction to the use of effect size measures and a comparison of different
approaches can be found in the referred article by Lakens (2013).

Analysis of Variance 295



do not want to focus too much on technical issues in their daily research to make
life easier and less error prone. The implementation of ANOVA in R is not user-
friendly. As discussed above, the defaults in R with respect to factor coding and
sum of squares lead to potentially wrong results. Applying RM-ANOVA and
computing simple effects are very difficult in R and require computations by
hand. I nevertheless chose R because it is a highly powerful statistical software
with a steadily increasing number of users. Moreover, because the implementa-
tion of ANOVA in R is so difficult and error prone, I found it particularly
important to equip the interested reader with the required knowledge to prevent
mistakes when using R for ANOVA. I hope that the exemplary R code will help
readers to build their own error-free ANOVA models and that it makes applying
ANOVA in R less challenging and more fun.
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Abstract

Linear regression analysis is one of the most important statistical methods. It
examines the linear relationship between a metric-scaled dependent variable (also
called endogenous, explained, response, or predicted variable) and one or more
metric-scaled independent variables (also called exogenous, explanatory, control, or
predictor variable). We illustrate how regression analysis work and how it supports
marketing decisions, e.g., the derivation of an optimal marketingmix.We also outline
how to use linear regression analysis to estimate nonlinear functions such as a
multiplicative sales response function. Furthermore, we show how to use the results
of a regression to calculate elasticities and to identify outliers and discuss in details
the problems that occur in case of autocorrelation, multicollinearity and hetero-
scedasticity. We use a numerical example to illustrate in detail all calculations and
use this numerical example to outline the problems that occur in case of endogeneity.

Keywords

Regression analysis · Marketing mix modeling · Elasticities · Multicollinearity ·
Autocorrelation · Outlier detection · Endogeneity · Sales response function

Introduction

Linear regression analysis is one of the most important statistical methods. It examines
the linear relationship between a metric-scaled dependent variable (also called endog-
enous, explained, response, or predicted variable) and one or more metric-scaled
independent variables (also called exogenous, explanatory, control, or predictor vari-
able). Often, the dependent variable describes the success of marketing and the inde-
pendent variables the factors that explain this success. Variables that describe the success
of marketing are either “hard” success factors such as profit, sales volume (here referred
to as quantity), and market share or “soft” success factors such as customers’ attitudes,
purchase intention, and satisfaction. Variables that influence this success are frequently
marketing instruments such as price, product, distribution, and communication. To
illustrate how regression analysis works, we focus here on a numerical example with
a hard success factor, namely, the estimation of quantity (i.e., sales volume), which is
explained by variables such as advertising budget, price, and number of salespersons.

Statistical Explanation of the Method

Problem Statement

We illustrate the basic idea of linear regression analysis by applying it to data from a
(fictitious) company (displayed in Table 1). Their analysis should address the
following business problems:
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• What is the optimal price?
• What is the optimal budget for advertising and the sales force?

The data in Table 1 shows quantitiy at one point in time for 16 districts that were
randomly selected from a much larger number of districts in which the company
operates. The districts differ only in terms of price, advertising budget, and
salespersons. For the moment, we ignore district 17 and the marketing instrument
“number of mailings.”

The company has variable costs per unit sold of $30 and costs for each
salesperson of $120,000 per year. Moreover, we assume that thus far the company
has managed its marketing activities naively and has not systematically selected
the value for each of its marketing instruments in each district. With this assump-
tion, we exclude the problem of endogeneity (we do address this topic
subsequently).

Objective Function and Estimation of Regression Coefficients

Linear regression analysis investigates the effect of metric-scaled indepen-
dent variables (here, person, price, and advertising budget) on a metric-scaled
dependent variable (here, quantity). We consider each district as one observation.
The corresponding regression equation for the linear regression analysis is as
follows:

Table 1 Distribution of quantity and marketing instruments across districts

District Quantity Salespersons Price Advertising Number of mailings

1 81,996 7 49 228,753 7,106

2 91,735 5 46 370,062 4,733

3 70,830 4 50 297,909 3,734

4 101,192 6 45 271,884 6,152

5 78,319 6 51 299,919 5,734

6 105,369 7 47 367,644 6,640

7 68,564 3 47 241,362 3,115

8 95,523 7 46 244,575 6,859

9 88,834 7 49 296,100 6,905

10 89,511 5 46 372,498 5,142

11 107,836 6 45 359,511 6,196

12 83,310 7 50 324,837 6,801

13 67,817 4 50 288,303 3,965

14 59,207 6 54 289,470 5,830

15 81,410 6 52 363,501 6,124

16 71,431 3 46 361,974 2,509

17 119,000 3 45 250,000 –
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yi ¼ b0 þ
X
k �K

bk � xi, k þ ei i� Ið Þ, (1)

where

yi = value of the ith observation for the dependent variable,
b0 = intercept of the regression,
bk = regression coefficient capturing the influence of the kth independent variable,
xi,k = value of the ith observation for the kth independent variable,
ei = residual of the ith observation,
K = index set of the independent variables, and
I = index set of the observations.

We can observe values of the dependent variable yi and independent variables xi,k
(see the respective values in Table 1), but we need to estimate the coefficients of the
regression equation (Eq. 1), b0 and bk (k�K), and the resulting residuals ei (i� I)
(sometimes also referred to as “disturbance” or “error term”). The residual ei describes
the deviation between the observed value of the dependent variable yi for the ith

observation and the predicted value for the dependent variable byi. The predicted value
of the dependent variable is based on the estimated regression coefficients bk and the
respective observed independent variables xi,k, as illustrated in Eq. 2:

byi ¼ b0 þ
X
k �K

bk � xi, k i� Ið Þ: (2)

The upper part of Fig. 1 illustrates the deviations of the observed values from the
predicted values (for quantity, depending on advertising budget), with the predicted
values lying on the regression line.

The aim of linear regression analysis is to estimate the coefficients of the
regression equation b0 and bk (k�K) so that the sum of the squared residuals (i.e.,
the sum over all squared differences between the observed values of the ith obser-
vation of yi and the corresponding predicted values byi) is minimized. The lower part
of Fig. 1 illustrates this approach, which is called the “least squares method” (Stock
and Watson 2015, p. 162). Simply speaking, the least squares method aims to
minimize the sum of all rectangular areas displayed in the lower part of Fig. 1.
The approach results in the following objective function:

X
i� I

ei
2 ¼

X
i� I

yi � byið Þ2 ¼
X
i� I

yi � b0 �
X
k �K

bk � xi, k
 !2

! min! (3)

Using squared residuals is advantageous in that larger residuals receive a greater
weight than smaller residuals and the solution for the objective function (Eq. 3) is
algorithmically easy to determine (Pindyck and Rubenfeld 1998, p. 5). We do not
derive the solution for the objective function (Eq. 3) here because a wide range of
software (such as those presented in section “Software”) can perform this operation.
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For more details on deriving the solution, see Wooldridge (2009, p. 27) and Gujarati
(2003, p. 58), among many others.

Fig. 1 Regression line with residuals and squared residuals
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Goodness of Fit

The assessment of goodness of fit for a linear regression analysis builds on the idea
that the best estimate of the predicted value of a dependent variable is its mean value
if nothing is known about the independent variables. Thus, a linear regression
analysis is only meaningful if it can explain deviations from this mean value.
More precisely, we determine goodness of fit by evaluating the extent to which
considering the independent variables improves the “simple” prediction of just
taking the mean value of the dependent variable. The coefficient of determination,
called R2 (see Eq. 4), measures goodness of fit by calculating the proportion of
explained variance from the regression equation compared with the variance indi-
cated by simply taking the mean value �y:

R2 ¼

X
i� I

byi � �yð Þ2
X
i� I

yi � �yð Þ2 (4)

Thus, the linear regression analysis always explains at least the variance of the
simple approach in that even if all independent variables have no explanatory power
(the extreme worst case), the intercept captures the mean value of the dependent
variable; in other words, the linear regression analysis reduces to simply predicting
the mean value. Fortunately, adding one or more independent variables frequently
improves this prediction. At the other extreme, the improvement in prediction might
be so large that the predicted values of the dependent variable exactly match their
observed values. In this case, the regression equation explains the total variance of
the simple approach. R2 can therefore take values between 0% and 100%. Negative
values for R2 can only arise when the researcher estimates the regression equation
without an intercept, which is possible with most statistical programs; however,
without an intercept, the linear regression analysis does not necessarily explain the
variance of the simple approach.

These considerations should also make clear that including an additional inde-
pendent variable never leads to a reduction of R2, because the explanatory power of
the additional variable is at least zero, even if that variable explains nothing. In the
extreme case that the number of observations corresponds to the number of esti-
mated coefficients (more precisely, the intercept b0 plus the number of regression
coefficients bk), we would essentially estimate a linear system of equations. The
estimation of such a linear system always results in R2 = 100%, its largest possible
value. To account for the fact that R2 can only increase and does not penalize the use
of variables that have no explanatory power, researchers frequently use the adjusted
R2 (R2

adj), defined as follows (Wooldridge 2009, p. 200):

R2
adj ¼ R2 � Kj j � 1� R2

� �
Ij j � Kj j � 1

, (5)
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where

|I| = number of elements in the index set of observations (equivalent to the number
of observations) and

|K|= number of elements in the index set of independent variables (equivalent to the
number of regression coefficients).

Note that both numerator and denominator of the fraction are positive; therefore,
the adjusted R2 has at best the same value as the (unadjusted) R2. Large differences
indicate that the regression equation contains many independent variables that do not
explain the dependent variable (i.e., they have no explanatory power).

Significance Testing

Data are usually available only for a sample and not for an entire population, whether
in the context of a large amount of surveys carried out by market research companies
or data collected via panels and laboratory or field experiments. In the same vein, the
presented 16 districts represent a (randomly selected) sample. In such a situation, it is
necessary to determine the extent to which the results drawn from the sample also
apply for the entire population. To do so, we must make an assumption about the
distribution of the residuals.

For regression analysis (and many other methods), it is common to assume a
normal distribution for the residuals. This assumption is based on the central limit
theorem, which states that the mean from a random sample for any population (with
finite variance), when standardized, has an asymptotic standard normal distribution
(Wooldridge 2009, p. 758).

Using this assumption, we can conduct significance tests for the regression
coefficients by calculating the error probability (often abbreviated as p-value) that
the regression coefficients are nonzero. The significance test compares the deter-
mined error probability with a predetermined level of significance (often 5%). If the
error probability is less than this predetermined level of significance, then the effect
is considered significant.

To test the overall significance of a regression – that is, that all regression
coefficients of the independent variables are 0 (b1 = b2 = . . . = bk = 0) – we
conduct the following F-Test with | K | and (| I | – | K | –1) degrees of freedom:

Femp ¼
R2

Kj j
1� R2

Ij j � Kj j � 1

: (6)

If the F-value (Femp) computed from Eq. 6 exceeds the critical F-value from the
F table at a predetermined level of significance (often, as mentioned above, 5%),
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the researcher can reject the null hypothesis that all independent variables have no
effect on the dependent variable. Alternatively, many statistical software programs
immediately report the error probability (p-value) for the F-value. If the error
probability is less than the predetermined level of significance, the researcher can
also reject the null hypothesis.

Whereas the F-test verifies the existence of a significant relationship between all
independent variables and the dependent variable, the t-test determines the signifi-
cance of each individual regression coefficient separately. Thus, it tests whether the
null hypothesis of the coefficient being equal to 0 cannot be rejected with a certain
error probability, frequently 5%. The t-test has (| I | – | K | –1) degrees of freedom and
is calculated as follows:

tk, emp ¼ bk
sk

k �Kð Þ, (7)

where

tk, emp = empirical t-value for the kth regression coefficient and
sk = estimated standard error of the kth regression coefficient.

If the empirical t-value exceeds the critical t-value (from the t-distribution) at the
chosen level of significance or, alternatively, the error probability (p-value) is less
than the predetermined level of significance, then the coefficient is not equal to
0, and the impact of the kth independent variable is significant.

Standardization of Coefficients

Often, it is necessary to compare the importance of the independent variables against
one another. However, directly comparing the regression coefficients is hardly
meaningful because the independent variables usually have different orders of
magnitude (e.g., in Table 1, the advertising budget is measured in dollar values
and person is measured in number of salespersons). The standardized regression
coefficients betak allow for a meaningful comparison. They are calculated by
multiplying the (unstandardized) regression coefficients bk with the standard devi-
ation σxk of the associated independent variable and dividing the result by the
standard deviation of the dependent variable σy:

betak ¼ bk � σxk
σy

k �Kð Þ: (8)

If the dependent and independent variables are standardized before running the
regression analysis, then the regression coefficients betak and bk will be the same.
Thus, comparing the absolute values of all standardized regression coefficient betak
shows the importance of the influence of the individual independent variables:
Higher absolute values indicate a stronger influence.
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Note, however, that using the standardized regression coefficient is discouraged
when the standard deviations of the independent variables can be influenced. For
example, if a company varied its product price to a greater extent than its advertising,
then the standardized regression coefficients will indicate a stronger influence of the
price due to the high standard deviation of the price (see Eq. 8). Therefore, it is
preferable to calculate the elasticities of the independent variables, which are
dimensionless and measure the responsiveness of the dependent variable to a change
in one of the independent variables. Stated differently, they measure the percentage
change of the dependent variable that corresponds to a 1% change of the independent
variable. In the case of a linear regression, the elasticity is defined as follows:

ey, xk ¼
@y

y
@xk
xk

¼ @y

@xk
� xk
y
¼ bk � xky k �Kð Þ: (9)

Although the elasticity derived from Eq. 9 varies with the value of the indepen-
dent variables, the common approach to calculate the elasticity for the independent
variable xk is to use the mean values of the independent variable xk and the dependent
variable y.

Interpretation of Results

Substantive insights should guide the interpretation of the results, rather than simply
statistical criteria. In other words, researchers should first consider whether the
regression equation captures all relevant variables via a meaningful functional
relationship and then examine whether the signs of the regression coefficients are
plausible. For the company in our example, the regression coefficients for advertis-
ing and person should be positive and negative, respectively, with regard to price.
Then, to assess the size of the regression coefficients, calculating elasticities is often
helpful. For example, advertising elasticities with values greater than 1 usually make
little sense. The same holds for price elasticities with absolute values smaller than 1.
Next to evaluating the substantive criteria, researcher should inspect statistical
criteria such as the R2, the overall significance of the regression equation (F-test),
the significance of the regression coefficients (t-test), and the subsequent assump-
tions for the least squares method.

Results of Numerical Example

In this section, we use the software program R to estimate the regression equation
(codes for R but also other software programs such as STATA and SPSS are available
on the authors’ website). Figure 2 displays the result for this linear regression
analysis with three marketing instruments (person, price, and advertising budget as
independent variables and quantity as the dependent variable.
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The number of observations (here 16) is equal to the sum of the degrees
of freedom (here 12) and the number of estimated coefficients (here 4). The R2

(“R-squared”) and the adjusted R2 (“Adjusted R-squared”) have values of 91.9%
and 89.9%, respectively. The error probabilities determined for the F-test
(“p-value”) and the t-tests (column “Pr (> | t |)”) are lower than the predetermined
significance level of 5%; thus, the data indicate that all three marketing
instruments have a significant effect. For example, the value 0.013 in column
“Pr (> | t |)” means that if we repeatedly draw samples from the entire population,
the probability of not observing a relationship between the advertising budget
and the quantity is 1.3%.

The column titled “Estimate” provides the values for the (rounded) regression
coefficients; their standard errors are in the column “Std. Error.” In contrast to other
software programs, R does not automatically calculate the standardized beta values;
therefore, separate calculations were necessary (values shown below the regression
results in Fig. 2). In line with our expectations, person and the advertising budget
have a positive impact, and price has a negative impact on quantity. Yet, we cannot
use these regression coefficients to determine the strength of the effects. Instead, we
must rely on the standardized beta values, which indicates that price has a slightly
higher impact than the salesperson and that both marketing instruments show a
considerably higher impact than advertising. Calculating the elasticities using Eq. 9,

Call:
lm(formula = Quantity ~ Person + Price + Advertising, data = regdata)

Residuals:
Min      1Q  Median      3Q     Max 

-7650.1 -3383.9   287.8  3211.0  5047.8 

Coefficients:
Estimate  Std. Error t value Pr(>|t|)

(Intercept) 210159.444  23729.909   8.856    0.000 ***
Person 6723.478    840.997   7.995 0.000 ***
Price -3832.503    444.013  -8.632    0.000 ***
Advertising 0.069      0.024   2.903    0.013 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4546 on 12 degrees of freedom
Multiple R-squared:  0.9189,    Adjusted R-squared:  0.8986 
F-statistic: 45.29 on 3 and 12 DF,  p-value: 8.077e-07

-----------
"standardized coefficients - beta"

Person    Price Advertising
0.665   -0.725  0.242

----------------------------------------------------------------
Elasticities, at average values (not provided by R directly)

Person Price     Advertising    
0.446      -2.206      0.257

Fig. 2 Results of the linear regression analysis
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we find an elasticity of the salespersons of 0.45, a price elasticity of �2.21, and an
advertising elasticity of 0.26. All elasticities show plausible signs and proportions
(see also the meta-analyses conducted by Hanssens et al. 1990 and Albers et al.’s
2010 as well as Assmus et al. 1984; Bijmolt et al. 2005; Lodish et al. 1995;
Sethuraman et al. 2011; Tellis 1988).

Assumptions

Thus far, we have focused on the method and the results of the linear regression.
Next, we continue by examining whether the underlying statistical assumptions for a
linear regression are fulfilled. These assumptions relate to the residuals; the relation-
ship between dependent and independent variables, between the independent vari-
able and the residuals, or between the independent variables; or the number of
observations.

Assumptions for the residuals:

• Normal distribution of the residuals ei
• Expected value of zero for the residuals E(ei) = 0
• No correlation between residuals and independent variables, i.e., corr(xi,k, ei) = 0
• Constant variance of the residuals (homoscedasticity), i.e., E(ei

2) = σ2

• No correlation between the residuals (missing autocorrelation), i.e., E(ei�ei’) = 0

These assumptions essentially mean that the residuals resulting from the regres-
sion equation do not depend on the size of the observed variables (homoscedastic-
ity), any of the independent variables, or the other residuals, particularly not on the
residual of the previous period, as often occurs in the presence of time series
(autocorrelation). In our example, the residual values should therefore be indepen-
dent of the values of the three marketing instruments.

Endogeneity refers to the important assumption of the regression analysis that
there is no relationship between one of the independent variables and the residuals.
This independence should be present in our example because the company was naive
in its marketing, which means that the company randomly chose the respective
values for the marketing instruments. Therefore, no correlation should exist between
the residuals, which reflect high or low level of marketing success, and the marketing
instruments.

In reality, this assumption is often not fulfilled, because companies do not set their
marketing activities randomly but systematically. These situations suffer from endo-
geneity. A typical example for such a situation occurs if the company does more
marketing in districts where the company expects to be particularly successful. In
our regression, “particularly successful” means that the quantity is higher than
expected so that residuals are positive. Consequently, the independent variables
correlate with the residuals.
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Assumptions regarding the relationship between dependent and independent
variables

• Consideration of all relevant independent variables
• Linearity of the regression equation (i.e., functional form)

To derive meaningful conclusions, we must ensure that the regression
equation includes all relevant independent variables to avoid risking that the regres-
sion coefficients reflect the impact of the missing (also called omitted) variables.
Furthermore, we assume in our linear regression analysis a linear relationship
between the independent and dependent variables.

Assumptions regarding the relationship between the independent variables

• No multicollinearity between the independent variables

The regression analysis assumes that there is no linear relationship between the
independent variables, that is, that there is a lack of multicollinearity. If multi-
collinearity occurs, because, for example, a high correlation exists between two
independent variables, then a problem will occur: The effect of neither of the two
variables on the dependent variable can be clearly derived.

Number of observations

• Sufficient number of observations

We can only estimate the regression equation in Eq. 1 if a sufficient number of
observations are available. More precisely, the number of observations must be at
least as large as the number of estimated coefficients (intercept bo plus the total
number of regression coefficients bk). Yet detecting a significant influence requires
that the number of observations is much larger than the number of estimated
coefficients. It is difficult to come up with a general statement about the ratio of
the number of observations and the number of estimated coefficients, because this
ratio always depends on the characteristics of variables in the data set. However, it is
advisable that the number of observations is three times, better five times, as large as
the number of estimated coefficients.

Procedure

Next, we describe the procedure for conducting a linear regression. We start by
discussing the efficiency of the estimators. Afterwards, we discuss the problems that
occur in case of multicollinearity, autocorrelation, heteroscedasticity, and outliers. In
addition, we describe the transformation of variables often required to create a linear
model.
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Efficiency of Estimators

The estimated regression coefficient is efficient if it (1) is unbiased and (2) has the
least variance of all unbiased coefficients (Gujarati 2003, p. 79). However, the least
squares method only yields efficient estimates if the assumptions presented in
section “Assumptions” hold. If the assumptions do not hold, then we must use a
different estimation method or an alternative specification of the regression equation.

When examining the assumptions of the least squares method, we recommend
investigating for the presence of multicollinearity, autocorrelation, and hetero-
scedasticity. If a sufficiently large number of observations are available, then the
assumption of a normal distribution of the residuals is of minor importance, as it is
usually fulfilled because of the central limit theorem (Stock andWatson 2015, p. 96).
Koutsoyiannis (1977, p. 197) notes that this assumption is even fulfilled when
samples have only 10–20 observations. In addition, the absence of a normal distri-
bution signifies only that the F- and t-tests (discussed in section “Significance
Testing”) are not meaningfully applicable. The estimated regression coefficients
are still unbiased (Koutsoyiannis 1977, p. 197).

Test for Multicollinearity

Multicollinearity occurs when the independent variables are mutually linearly
dependent. Multicollinearity usually leads to high standard errors of the estimated
coefficients such that it is difficult to interpret them adequately. Inspecting the
correlation matrix helps detect multicollinearity in the form of a linear dependency
between two independent variables. High correlation values, often greater than�0.5
and +0.5, indicate multicollinearity, particularly if there are few observations. In this
case, it is necessary to test the degree of the multicollinearity problem. We recom-
mend running additional regressions that leave out some of the highly correlated
variables. If the regression coefficients of the kept variables change substantially,
multicollinearity represents a serious problem.

Running several linear regressions can help diagnose multicollinearity in the form
of a linear dependence between more than two independent variables. In each
regression, we use one of the original independent variables as a dependent variable
and keep the others as independent variables. The difference between 1 and the R2

for such a regression is called “tolerance,” and the inverse of this difference, which
most statistical software programs report, is the “variance inflation factor” (VIF
value). We can only assume a linear independence of the variables if the R2 values of
these regressions are low, which means that tolerance values are high, i.e., close to
1 and VIF values are low. Lower tolerance and higher VIF values, in contrast,
indicate problems with multicollinearity. Although VIF values greater than 10 clearly
indicate multicollinearity, even values of greater than 3, particularly with smaller
data sets, point to problems with multicollinearity (see Hair et al. 2014, p. 200; for
additional tests to uncover multicollinearity, see, e.g., Leeflang et al. 2000,
pp. 348, 357).
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In our example, the correlation matrix (see Fig. 3) indicates consistently low
correlations between the independent variables, which shows there are no linear depen-
dencies between two independent variables present. In addition, the VIF values close to
1 indicate that no linear dependencies between several independent variables exist.

With regard to the three marketing instruments, multicollinearity is thus not a
problem for our data. Problems begin to emerge, however, if we also consider mailings
(see Table 1), because the number of mailings is highly correlated (0.989) with the
number of salespersons. Adding mailings to the linear regression analysis changes the
results for the salespersons completely (Fig. 4); they now exert a negative influence on
the quantity, while the number of mailings is highly positive. The high VIF values for
the variables person and mailings also indicate the presence of multicollinearity.

An econometric solution for multicollinearity is difficult, although ridge regres-
sion (see Leeflang et al. 2000, p. 360) and partial least squares (Hair et al. 2017)
might help. Increasing the number of observations can also help, in particular if the
added observations exhibit a lower degree of linear dependence (here, salespersons
and mailings). Alternatively, we could combine the linear dependent variables into a
single variable (e.g., using factor analysis). We could also eliminate one or several of
these variables from the linear regression analysis. For example, eliminating the
salespersons from the regression decreases the parameter for mailings to 6.627 and
its elasticity to 0.432.

Usually, however, it is difficult to find a truly satisfying solution for the multi-
collinearity problem because the number of observations is typically fixed and
deleting variables is not helpful because the effects of these variables are often of
primary interest. Therefore, in our numerical example, we can only assess the joint
effect of both variables but not the specific effect of each variable, salespersons and
mailings, on quantity. However, this information would certainly be of interest for
the marketing manager in this case because this knowledge would enable her to
optimize the marketing mix. For better determining the influence, the marketing
manager should vary the number of salespersons and mailings so that a high
correlation no longer occurs, ideally in the form of a field experiment.

Correlation Matrix

Person Price Advertising
Person *****   0.143 -0.080     
Price 0.597   ***** -0.158     
Advertising 0.767   0.559  *****     

upper diagonal part contains correlation coefficient estimates 
lower diagonal part contains corresponding p-values 

---------------------------------------------------------
VIF-Values

Person Price Advertising
1.024  1.044 1.029

Fig. 3 Testing for multicollinearity
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Test for Autocorrelation

Autocorrelation means that the residuals correlate with each other. Such correlation is
most common in time series analyses, when the independent variables do not ade-
quately cover the cyclical fluctuations in the time series. Autocorrelation usually leads
to a situation where the predicted values are too high for some periods and too low for
others. Thus, a series of negative residuals alternates with a series of positive residuals.

Autocorrelation causes an underestimation of the standard errors of the regression
coefficients and, thus, an overestimation of the significance level of the t-test. (The
standard error appears in the numerator of the t-test; see Eq. 7.) The estimated
regression coefficients remain undistorted. However, they are no longer efficient
because the standard error is not correctly detected (Wooldridge 2009, p. 408).

Correlation Matrix
Person Price Advertising Mailings

Person *****  0.143 -0.080   0.989  
Price 0.597  ***** -0.158    0.120  
Advertising 0.767  0.559  *****   -0.115  
Mailings    <0.001  0.659 0.672     *****  

upper diagonal part contains correlation coefficient estimates 
lower diagonal part contains corresponding p-values
----------------------------------------------------------------

Model Summary
Call:
lm(formula = Quantity ~ Person + Price + Advertising + Mailings, 

data = regdata)

Residuals:
Min      1Q  Median      3Q     Max 

-5964.3 -3963.1    73.7  2805.2  5867.2 

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 203009.252  23379.266   8.683    0.000 ***
Person -1372.882   5815.151  -0.236 0.818
Price -3711.737    435.531  -8.522    0.000 ***
Advertising 0.078      0.024   3.288    0.007 **
Mailings         7.949      5.654   1.406    0.187
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4372 on 11 degrees of freedom
Multiple R-squared:  0.9312,    Adjusted R-squared:  0.9062 
F-statistic: 37.23 on 4 and 11 DF,  p-value: 2.473e-06
----------------------------------------------------------------

VIF-Values
Person Price Advertising Mailings 
52.968 1.086   1.113 52.962

----------------------------------------------------------------
Elasticities, at average values (not provided by R directly)
Person Price     Advertising    Mailings 
-0.091      -2.137        0.291         0.518

Fig. 4 Result of the regression analysis with multicollinearity problems
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Most tests for autocorrelation examine the first-order autocorrelation, that is, the
correlation between two consecutive residuals. In addition to graphical inspection of
the residuals, the Durbin-Watson statistic (Wooldridge 2009, p. 415) is a common
method to identify first-order autocorrelation:

dw ¼

X
i� I 0

ei � ei�1ð Þ2
X
i� I

ei
2

(10)

where

dw = value of the Durbin-Watson test and
I0 = index set of observations without the first observation.

If the difference between the two successive residuals is very small (large),
positive (negative) autocorrelation is present, and the numerator in Eq. 10 takes
small (large) values. The Durbin-Watson value dw approaches 0 (4) in this situation.
A value of 2 indicates that no first-order autocorrelation is present. For an accurate
representation of the level of significance for the Durbin-Watson test, refer to
Wooldridge (2009, p. 415) or Gujarati (2003, p. 970). Also note that tests for
autocorrelation often make little sense for cross-sectional data unless the order of
observations follows a particular trend.

In time series, the value of the dependent variable of the previous period often can
serve as an independent variable, typically called the “lagged variable.” In this case,
the Durbin-Watson statistic is not suitable for the detection of autocorrelation, and
the Durbin h test should be used (see, e.g., Gujarati 2003, p. 503).

In our numerical example, considering autocorrelation is meaningless because we
use cross-sectional data, in which temporal correlation cannot be present. At most, a
spatial autocorrelation might be present (see Gujarati 2003, p 442, for an explana-
tion). Autocorrelation, however, can be a substantive problem because it is often an
indication of missing (i.e., omitted) independent variables. Therefore, we illustrate
the problem of autocorrelation with the numerical example in Table 2.

The columns with the x- and y-values describe the relationship between the x- and
y-values in the following form:

y ¼ 5þ 2� x: (11)

The columns “True Error1” and “True Error2” provide the true residuals for two
examples that illustrate first-order autocorrelation. These two residuals differ only by
their signs. We compute the dependent variables y1 and y2 by adding the values of
“True Error 1” and “True Error2” to the y-values, that is, y1 = y + True Error1 and
y2 = y + True Error2.

Table 3 and Fig. 5 present the results of the linear regression analyses for
the two numerical examples with the dependent variables y1 and y2 and the
independent variable x. Note that the estimated residuals are systematically
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under- or overestimated in both examples and that the estimated regression equation
does not reflect the actual functional relationship stated in Eq. 11. However,
the estimated regression coefficients are still unbiased because the coefficients of
Eq. 11 can be retained if we use a large number of random samples and run
linear regression analyses on each of them. This result is also visible in Table 2
because the mean values of the constants and the regression coefficients of
the two regression equations correspond to the coefficients in Eq. 11
11:29�1:29

2 ¼ 5, respectively 0:86þ3:14
2 ¼ 2

� �
.

We can solve autocorrelation by detecting the factors responsible for the temporal
fluctuations. Otherwise, we should consider econometric solutions such as the
Cochrane-Orcutt procedure, the Hildreth-Lu procedure, or the Prais-Winsten esti-
mate (Gujarati 2003, p. 482). These econometric methods, however, can only solve
the problem if the regression equation is correctly specified.

Test for Heteroscedasticity

Heteroscedasticity means that the residuals do not have a constant variance. For
example, the estimation of market shares for companies with high market shares
might have a larger error than companies with small market shares (e.g., Gujarati
2003, p. 392). Heteroscedasticity leads to a situation in which the least squares
method does not treat all observations equally and instead puts a greater emphasis on

Table 2 Numerical example to illustrate the problem of autocorrelation

Case x y y1 y2 True Error1 True Error2

1 2 9 11 7 2 �2

2 3 11 15 7 4 �4

3 4 13 17 9 4 �4

4 5 15 17 13 2 �2

5 6 17 15 19 �2 2

6 7 19 15 23 �4 4

7 8 21 17 25 �4 4

8 9 23 21 25 �2 2

Table 3 Results of the linear regression analyses in the case of autocorrelation

Regression 1 (with y1 as dep.
var.)

Regression 2 (with y2 as dep.
var.)

Intercept_1 Slope_1 Intercept_2 Slope_2

Value 11.286 0.857 �1.286 3.143

Standard error 1.882 0.316 1.882 0.316

Significance level t-test 0.00 0.03 0.52 0.00

R2 0.55 0.94

Significance level F-test 0.03 0.00

Durbin-Watson value 1.27 1.27
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the prediction of values with a high variance such that these observations receive a
greater weight. The coefficients are still unbiased but are no longer efficient because
they do not have the smallest estimation error (Stock and Watson 2015, p. 206).

We can detect heteroscedasticity by making a graphical comparison of the residuals
with each of the independent variables or the dependent variable or by applying the
Goldfeld-Quandt test, the Breusch-Pagan test, or the White test (Gujarati 2003, p. 400;
Leeflang et al. 2000, p. 335). In our numerical example, the graphical comparison in
Fig. 6 does not show a relationship between the standardized residuals and the stan-
dardized predicted values of the dependent variable, which indicates that hetero-
scedasticity is not present.
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yi  = −1.286+3.143 • xi

yi  = 11.286+0.857 • xi

Fig. 5 Graphical
representation of the
regression equations in the
case of the autocorrelation
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Unfortunately, heteroscedasticity is often not eliminated by collecting additional
variables because the assumption of equal variances frequently does not make sense,
as in our example of the estimation of market shares. It might help to transform variables
in the regression equation (e.g., dividing the regression equation by the independent
variable that causes the heteroscedasticity; Leeflang et al. 2000, p. 338). Alternatively,
we can use a weighted linear regression analysis (“weighted least squares”) because it
resolves the different weighting that results from heteroscedasticity (Gujarati 2003,
pp. 415). When the data set consists of a large number of observations, calculating
heteroscedastic robust standard error (Wooldridge 2009, p. 271) with procedures such as
White robust standard errors (Gujarati 2003, pp. 439; White 1980) or the Newey-West
estimator (Greene 2008, p. 643; Gujarati 2003, p. 439) also can be effective.

Identification of Outliers

The goal of linear regression analysis is usually that all observations have a compa-
rable influence on the result; thus, it is optimal to avoid situations in which very few
observations strongly influence the result. So-called outliers, whose values differ
substantially from others in the data set, can cause such disproportional influence.
Therefore, to examine for the presence of outliers, the easiest method is a visual
inspection of the distribution of the observed values or the distribution of the residuals.
In addition, a wide range of statistical methods are also effective. For example, the
Mahalanobis distance is based on the standardized squared values of the independent
variables, while Cook’s distance analyzes changes of the residuals that occur when the
considered observation is removed from the regression equation. Chatterjee and Hadi
(1986) provide a good overview of these and other statistical methods.

In our numerical example, the inspection of the residuals, the Mahalanobis dis-
tance, and the Cook’s distance do not show conspicuous values. However, district
17, which we have not yet used, has a much higher quantity than other districts. The

Fig. 6 Graphical inspection
of heteroscedasticity
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values of Cook’s distance and Mahalanobis distance indicate that district 17 may
represent an outlier. Including district 17 in our regression analysis causes a strong
change in the coefficients and the significance levels compared with the previous
results (Fig. 7). The corresponding elasticities for the number of salespersons, price,
and advertising also change significantly (0.27, �2.64, and 0.03, respectively). In
addition, the R2 drops to 63.77%.

If the outliers are due to imputation errors, their values are easy to adjust. Otherwise,
the solution is more difficult and depends largely on the question explored with the
regression analysis. If the resulting recommendations should hold for all observations,
eliminating outliers is not very satisfactory. Typically, however, recommendations are
designed for the majority of the observations, so eliminating the outliers is appropriate.

In our example, we recommend eliminating the outlier (district 17) because the
marketing manager is probably more interested in making recommendations that
apply to the majority of the considered districts. However, at the same time, the
marketing manager should carefully think about why district 17 is so different from
the other districts. In any case, researchers should always carefully and precisely report
which observations are considered outliers to prevent the appearance of data manip-
ulation (Laurent 2013).

Transformation of Variables

When modeling quantity, it is frequently beneficial to estimate nonlinear relation-
ships. The following equation is such a relationship that occurs in a multiplicative
regression equation (i.e., a multiplicative sales response function):

Model Summary

Call:
lm(formula = Quantity ~ Person + Price + Advertising, data = 
regdata_w17, x = TRUE, y = TRUE)

Residuals:
Min     1Q Median     3Q    Max 

-14644  -5243  -1448   3443  29168 

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 286804.698  51573.602   5.561    0.000 ***
Person 4294.625   1864.581   2.303    0.038 *
Price        -4710.844   1024.335  -4.599    0.000 ***
Advertising      0.009      0.054   0.159    0.876
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10840 on 13 degrees of freedom
Multiple R-squared:  0.6377,    Adjusted R-squared:  0.5541 
F-statistic: 7.628 on 3 and 13 DF,  p-value: 0.003423

Fig. 7 Results of the linear regression analysis in the presence of an outlier
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Q ¼ α � Personβ � Priceγ � Advertisingδ (12)

In contrast to the linear regression equation outlined in Eq. 1, the characteristics
of this multiplicative regression equation are such that it captures interaction
effects between the marketing instruments and varying marginal returns for each
marketing instrument (see Gujarati 2003, p. 175 for a discussion of other func-
tional forms).

It is still possible to use linear regression analysis to estimate such a nonlinear
relationship, but to do so, transforming the variables so that a linear relationship
between the independent variables and the dependent variable in the estimated
regression equation is necessary. In the multiplicative regression equation, such a
linear relation occurs if we take the logarithm of all variables:

ln Qð Þ ¼ ln αð Þ þ β � ln Personð Þ þ γ � ln Priceð Þ þ δ � ln Advertisingð Þ: (13)

The linear regression equation is then as follows:

LN_Qi ¼ a0 þ β � LN_Personi þ γ � LN_Pi þ δ � LN_ADi þ ei i� Ið Þ, (14)

where the variables LN_Qi, LN_Personi, LN_Pi, and LN_ADi are defined as
follows:

LN_Qi = ln(Qi),
LN_Personi = ln(Personi),
LN_Pi = ln(Pricei),
LN_ADi = ln(Advertisingi), and
α’ = ln(α).

We again ignore district 17. Figure 8 displays the results. Although the R2 and the
F-value are high, the R2 only describes the goodness of fit of the logarithmic model
shown in Eq. 14 and not that of the initial multiplicative model (Eq. 13). Therefore,
calculating the R2 of the initial model using the estimated values of the regression
coefficients in Eq. 13 presents an alternative. The significance levels of all variables
are comparable to those of the linear model. An important advantage of a multipli-
cative regression equation is that the regression coefficients represent the elasticities
of the respective marketing instruments (Gujarati 2003, p. 176), which makes
interpreting the results easier.

The results also show that all marketing instruments have the expected signs and
plausible values. Inserting the estimated regression coefficients of Eq. 14 into Eq. 13
yields the following (rounded) results for the multiplicative regression equation:

Q ¼ exp 16:98ð Þ � Person0:40 � Price�2:34 � Advertising0:22
¼ 23, 676, 653 � Person0:40 � Price�2:34 � Advertising0:22 (15)

Due to its more plausible properties, the multiplicative regression equation is
more popular than the linear regression equation (see, e.g., Tellis 1988).
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Implications of the Analysis

In this section, using our numerical example, we determine the optimal price and
the amount of money that should be spend on advertising and salespersons. To do
so, we rely on the estimated multiplicative regression equation (i.e., sales
response function) shown in Eq. 16. We also ignore the marketing instrument
mailings.

Quantity ¼ 23, 676, 653 � Person0:40 � Price�2:34 � Advertising0:22 (16)

The profit function builds on this sales response function. Costs per unit are $30
and the costs per salespersons are $120,000 per year. Thus, profit is:

Profit ¼ Price� 30ð Þ � 23, 676, 653 � Person0:40 � Price�2:34 � Advertising0:22
� 120, 000 � Person� Advertising

(17)

Its derivation leads to:

@Profit

@Price
¼ 23, 676, 653 � Person0:40 � �1:34ð Þ � Price�2:34 � Advertising0:22

�30 � 23, 676, 653 � Person0:40 � �2:34ð Þ � Price�3:34 � Advertising0:22
(18)

@Profit

@Person
¼ Price� 30ð Þ � 23, 676, 653 � 0:40 � Person-0:60 � Price�2:34

� Advertising0:22 � 120, 000
(19)

Call:
lm(formula = log(Quantity) ~ log(Person) + log(Price) 

+ log(Advertising), data = regdata)

Residuals:
Min       1Q   Median       3Q      Max 

-0.10317 -0.02581  0.01209  0.03504  0.07761 

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)        16.981      1.493  11.372    0.000 ***
log(Person)         0.400      0.047 8.565    0.000 ***
log(Price)         -2.339      0.248  -9.440    0.000 ***
log(Advertising)    0.217      0.082   2.647    0.021 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05198 on 12 degrees of freedom
Multiple R-squared:  0.9276,    Adjusted R-squared:  0.9095 
F-statistic: 51.23 on 3 and 12 DF, p-value: 4.098e-07

Fig. 8 Results for the linear regression of the multiplicative regression equation
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@Profit

@Advertising
¼ Price� 30ð Þ � 23, 676, 653 � Person0:40 � Price�2:34

�0:22 � Advertising�0:78 � 1

(20)

By setting the derivatives to 0 and solving for the three marketing instruments, we
can determine the optimal price and spending for salespersons as well as advertising
budget. For our example, we obtain the following results (calculation with
unrounded values):

Price� ¼ 3652:40
Person� ¼ 36603, 070 :53
Advertising� ¼ 36327, 402:06:

The optimal value leads to (again calculating with unrounded values) a quantity
of 67,398 units, revenue of $3,531,459.94, profit contribution (i.e., profit before
considering the budget for advertising and salespersons) of $1,509,505.85, and profit
of $579,033.27.

Endogeneity

Endogeneity is currently one of the most important topics in linear regression
analysis. Endogeneity means that one or more of the independent variables correlate
with the residuals and therefore influences the relationship between the dependent
variable and the independent variable. Its existence leads to a systematic distortion of
the estimated regression coefficient. It can occur for several reasons, such as an
omitted independent variable, simultaneity in the variables, measurement error in an
independent variable, autocorrelation with delayed dependent variable, or self-
selection.

We use our numerical example to discuss this fundamental problem. To do so, we
first compute the residuals resulting from the linear regression analysis and the
regression coefficients that are depicted in Fig. 2. We then add a column with
these residuals to Table 1 and sort all districts according to the size of the residuals,
which are defined as the difference between the observed and predicted (also called
estimated) value of the dependent variable ei ¼ yi � byið Þ. Positive residuals represent
districts in which the company was more successful than an “average” district.
Table 4 presents the results. For ease of exposition, we ignore the variable mailings
and the outlier district 17 for the subsequent considerations.

A fundamental assumption of the linear regression analysis is that the
correlation between each of the independent variables and the residuals is equal to
0 (corr (xi, k, ui) = 0). In line with our initial assumption that the company’s
marketing is naive (i.e., random), this assumption appears realistic.

Now, more realistically, we assume that the company knows in which districts it
is particularly successful and also selects its marketing instruments in such a way
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that it intensifies its marketing activities in the districts where it is already particu-
larly successful. Thus, the company sets the highest of its 16 advertising budgets in
the districts with the highest (positive) residuals, the second highest advertising
budget in the district with the second highest residuals, and so on. We assume that
the regression coefficients and residuals (see the results in Fig. 2) still apply and
consider them the true parameters and the true residuals. Of course, given the newly
allocated advertising budgets, the quantities in each district change. Yet, the total
quantity of all 16 districts and the total advertising budget remain unchanged.
However, the correlation between the true residuals (see Table 5) and the advertising
budget is now 0.965.

Running a linear regression analysis with the data presented in Table 5 now leads
to the results depicted in Table 6 (in the row “Endogeneity for advertising”). The
coefficient for advertising is now more than twice as high (0.149 vs. 0.069; see
Table 6). The reason for this increase in value is that the coefficient now reflects its
own effect and the effect of the systematic allocation of the advertising budgets to
districts with higher quantity. The estimate of the regression coefficient is therefore
inconsistent and, thus, biased.

Endogeneity is difficult to detect because we do not observe the true residuals.
Stated differently, the true relationship between advertising budget and the true
residuals displayed in Table 5 with a correlation of 0.965 is unknown. We only
observe the residuals that result from the linear regression analysis with the obser-
vations displayed in Table 5. The correlation of these residuals with the advertising
budget is, by definition, 0.

The analogous procedure for the other two marketing instruments, price and
salespersons, results in similar effects (see Table 6). Here, we assign the lowest

Table 4 Districts with sales information sorted by the residuals

District Quantity Salespersons Price Advertising Residuals

15 81,410 6 52 363,501 5,047.79

11 107,836 6 45 359,511 4,922.35

3 70,830 4 50 297,909 4,788.31

4 101,192 6 45 271,884 4,341.61

6 105,369 7 47 367,644 2,834.12

5 78,319 6 51 299,919 2,523.77

13 67,817 4 50 288,303 2,439.98

7 68,564 3 47 241,362 1,660.99

9 88,834 7 49 296,100 �1,085.46

2 91,735 5 46 370,062 �1,352.74

8 95,523 7 46 244,575 �2,328.75

1 81,996 7 49 228,753 �3,263.45

10 89,511 5 46 372,498 �3,745.29

14 59,207 6 54 289,470 �4,367.71

12 83,310 7 50 324,837 �4,765.38

16 71,431 3 46 361,974 �7,650.14
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Table 5 Quantity of modified allocation of advertising budgets across districts

District Quantity Salespersons Price Advertising (endogenous) True residuals

15 82,032.54 6 52 372,498 5,047.79

11 108,566.07 6 45 370,062 4,922.35

3 75,655.24 4 50 367,644 4,788.31

4 107,531.34 6 45 363,501 4,341.61

6 104,976.67 7 47 361,974 2,834.12

5 82,442.41 6 51 359,511 2,523.77

13 70,344.93 4 50 324,837 2,439.98

7 72,615.79 3 47 299,919 1,660.99

9 88,959.17 7 49 297,909 �1,085.46

2 86,617.28 5 46 296,100 �1,352.74

8 98,629.46 7 46 289,470 �2,328.75

1 86,116.50 7 49 288,303 �3,263.45

10 82,549.12 5 46 271,884 �3,745.29

14 56,100.54 6 54 244,575 �4,367.71

12 77,534.03 7 50 241,362 �4,765.38

16 62,212.91 3 46 228,753 �7,650.14

True regression equation:
Quantity = 210,159.444 + 6723.478 * Person – 3,832.503 * Price +0.069 * Advertising+ residual

Table 6 Regression results when endogeneity for the variables advertising, price, and salespersons
is present

Advertising Price Salespersons Intercept

Without Coefficient 0.069 �3,832.503 6,723.478 210,159.444

Endogeneity Standard
error

0.024 4,44.013 840.997 23,729.909

p-value 0.013 0.000 0.000 0.000

R2 0.919

Endogeneity Coefficient 0.149 �3,733.320 6,381.400 182,421.558

For advertising Standard
error

0.005 101.972 195.945 5245.791

p-value 0.000 0.000 0.000 0.000

R2 0.996

Endogeneity Coefficient 0.068 �5,318.478 6,579.367 283,245.887

For price Standard
error

0.004 73.352 140.682 3917.548

p-value 0.000 0.000 0.000 0.000

R2 0.999

Endogeneity Coefficient 0.072 �3,679.197 9,460.590 186,682.532

For
salespersons

Standard
error

0.008 144.168 272.228 8040.702

p-value 0.000 0.000 0.000 0.000

R2 0.995
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prices and highest number of salespersons to the district with the highest residuals,
and so forth. The correlation between the true residuals and price is �0.984, and
between true residuals and the number of salespersons is 0.940. We still assume that
the other two independent variables have the values shown in Table 4.

Again, it is clear that the size and significance level of the regression coefficients
increase substantially when the values of the respective variables are set systemat-
ically, that is, according to the quantities of the districts. Ebbes et al. (chapter
▶ “Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers”)
provide a more detailed discussion of solutions in such situations.

Further Topics

As mentioned at the beginning of this chapter, linear regression analysis aims to
relate a metric-scaled dependent variable with one or more metric-scaled indepen-
dent variables. In practice, however, researchers often aim to include nonmetric
information – for example, discrete variables such as gender, income groups, or
shopping locations – or nonlinear (e.g., U-shaped) relationships.

Dummy variables are frequently used to include discrete information. For
representing k characteristics, we require k – 1 dummy variables. The most
common type of coding is indicator coding, in which each of the k – 1 dummy
variables is represented by 1 (present) or 0 (not present). The kth characteristic that
is not represented by 1 is then the reference characteristic. The estimated
k – 1 coefficients represent the difference of the respective characteristic with
respect to the reference characteristic. We can thus interpret the coefficients as the
difference in the intercepts of the characteristics. An alternative approach for the
coding of dummy variables is so-called effect coding (for more details, refer to
Hair et al. 2014, p. 173).

It is also possible to include nonlinear curve-shaped relationships in the regres-
sion by using appropriate transformation of the respective variables (Albers 2012).
An example of such a relationship is a diminishing marginal effect of a marketing
instrument such as advertising. In many situations, several types of data transforma-
tions are appropriate for linearizing a curvilinear relationship (Hair et al. 2014,
pp. 174–175). Examples of direct approaches are arithmetic transformations such
as taking the square root or the logarithm of a variable. Another method is the use of
polynomials, most often, only the first (xi) and second order (xi

2) of the independent
variables. Polynomials can help represent complex relationships, thereby making it
possible to interpret and statistically test each coefficient individually. The indepen-
dent variables would then describe the overall effect of the polynomial.

The discussion of nonlinear relationships thus far reflects the relationship of the
dependent variable and an independent variable; however, situations in which a second
independent variable influences the effect of an independent variable on the dependent
variable, or a moderating or an interaction effect, are also common. To represent
such an interaction effect, it is necessary to create a new variable by multiplying the
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two independent variables. Thus, if two variables xi,1 and xi,2 interact – in other words,
the variable xi,2 moderates the influences of variable xi,1 (or vice versa) – then we add
the product of the two variables to the regression equation. The coefficient of these
two variables (xi,1 ∙ xi,2), also called the moderator, reflects the change in the effect of
the variable xi,1 if the variable xi,2 changes. For a further discussion of the mis-
specification and interpretation of interaction effects, refer to Irwin and
McClelland (2001).

For our numerical examples in this chapter, we use either cross-sectional (Table 1)
or longitudinal (Table 2) data. However, many marketing studies use panel data (also
called pooled data) (Wooldridge 2009, p. 10), which combines longitudinal and
cross-sectional data. Their analysis requires the consideration of specific issues (e.g.,
the consideration of structural differences between the individual cross-sectional
data) that are beyond the scope of this chapter. For further details, refer to
Hsiao (2014).

Furthermore, researchers should consider whether the data have a hierarchical
structure. In that case, hierarchical or multilevel regressions are recommended. Not
accounting for a hierarchical data structure in turn leads to an error in the estimation
of the coefficients. For a good introduction to the topic of multilevel modeling, see
Snijders and Bosker (2012).

Software

Software for estimating a regression analysis is available in many forms. Most
spreadsheet programs (e.g., Microsoft Excel) enable the calculation of some simple
analyses, but these programs are limited with respect to graphical representation of
the results as well as the number of statistical and econometric tests. In addition, they
offer only a limited range of functions to transform data easily, examine different
variants of the regression analysis, detect heteroscedasticity and autocorrelation,
identify outliers, and apply nonlinear regression analysis.

More sophisticated programs such as SPSS (now owned by IBM) allow for
performing these analyses easily. Although SPSS is easy to use, it does not include
all methods for the detection and management of autocorrelation and hetero-
scedasticity (e.g., the Durbin’s h statistic). Other statistical programs such as
SAS, STATA, EViews, and LIMDEP provide a higher functionality, although
they are slightly less user-friendly. Furthermore, none of these programs are
available free of charge. An open source program, PSPP, is intended as an
alternative to IBM SPSS. In principle, matrix-oriented programs such as R,
MATLAB, or Gauss also allow for applying all econometric methods because
the user works directly with matrices. However, these programs are less easy to use
and have a considerably greater learning curve. R’s advantage is that it is open
source and available free of charge. In summary, most spreadsheet programs are
sufficient for the occasional computation of regression analysis, but for more
detailed analyses, researchers should use of one of the aforementioned statistical
or matrix-oriented programs.
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Summary

We use a numerical example to describe in detail one of the most important statistical
methods, linear regression analysis. It examines the linear relationship between a
dependent variable and one or more independent variables but can be easily used to
also estimate nonlinear relationships if they can be linearized, as is the case for a
multiplicative sales response functions (and many other functions). We use an
extensive numerical example to illustrate all aspects that we cover in this section
(autocorrelation, multicollinearity, heteroscedasticity, outlier detection, endogeneity,
optimization of marketing mix), and we provide the code (for R, SPSS, and STATA)
that we used to perform all calculations on our website (www.skiera.de). In addition,
we also provide an Excel spreadsheet that contains all calculations, which should
help in even better understanding of all calculations. Yet, we would like to highlight
that Excel is not a good environment to conduct these calculations.
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Abstract

Questions like whether a customer is going to buy a product (purchase vs. non-
purchase) or whether a borrower is creditworthy (pay off debt vs. credit default)
are typical in business practice and research. From a statistical perspective, these
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questions are characterized by a dichotomous dependent variable. Traditional
regression analyses are not suitable for analyzing these types of problems,
because the results that such models produce are generally not dichotomous.
Logistic regression and discriminant analysis are approaches using a number of
factors to investigate the function of a nominally (e.g., dichotomous) scaled
variable. This chapter covers the basic objectives, theoretical model consider-
ations, and assumptions of discriminant analysis and logistic regression. Further,
both approaches are applied in an example examining the drivers of sales contests
in companies. The chapter ends with a brief comparison of discriminant analysis
and logistic regression.

Keywords

Dichotomous Dependent Variables · Discriminant Analysis · Logistic Regression

Introduction

Decision makers and researchers regularly need to explain or predict outcomes that
have only one of two values. For example, practitioners might aim to predict, which
customers will respond to their next mailing campaign. In this case, the outcome is
either response or no response. Variables with such a nominal scaling can be
described as dichotomous or binary. Table 1 lists several marketing-based examples.
When approaching these issues systematically, it becomes obvious that traditional
ordinary least squares (OLS) regression analyses are not suitable for analyzing these
types of problems, because the results that such models produce are generally not
dichotomous. For example, if product purchase (coding of the dependent variable
Y = 1) and non-purchase (Y = 0) are considered, an OLS regression could predict
purchase probabilities of less than zero or above one, which cannot be interpreted. In
addition, a binary dependent variable would violate the assumption of normally
distributed residuals and would render inferential statistical statements more difficult
(Aldrich and Nelson 1984, p. 13). Discriminant analysis and logistic regression are
suitable methodologies for the analysis of problems in which the dependent variable
is nominally scaled.

Table 1 Potential applications of discriminant analysis and logistic regression in marketing

Subject of investigation Grouping

Direct marketing/mail order business Order (yes – no)

Nonprofit marketing Donation (yes – no)

Retailing Purchase/non-purchase (choice)

Staff selection (salespeople, franchisees) Successful/unsuccessful employee

Customer win-back Defected customers return (yes – no)

Branding Repurchase (yes – no)

Product policy New product success versus failure

Innovation adoption Adopter versus non-adopter
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Although both logistic regression and discriminant analysis are suitable for
explaining or predicting dichotomous outcomes, discriminant analysis is optimal
for classifying observations when the independent variables are normally distributed
(conditional on the dependent variable Y ). In this case, the discriminant analysis is
more efficient, because it utilizes information about the distribution of the indepen-
dent variables, which the logistic regression does not (Agresti 2013, p. 569).
However, if the independent variables are not normally distributed (e.g., because
they are categorically scaled) logistic regression is more appropriate, because it
makes no assumptions about the independent variables’ distribution. Further, in
comparison to discriminant analysis, extreme outliers affect logistic regression
less. Generally, logistic regression is preferred to discriminant analysis (e.g., Agresti
2013; Osborne 2008). Nevertheless, one way to validate the results of a logistic
regression is to see whether an alternative method can replicate the findings and
discriminant analysis can serve as such an alternative (Cambell and Fiske 1959;
Anderson 1985).

In section “Discriminant Analysis,” we discuss the basic objectives, theoretical
model considerations, assumptions, and different steps of discriminant analysis.
Analogously, the third section addresses the logistic regression. An applied example
is presented in section “Applied Examples,” in which both methods are used to
explain which factors drive the use of sales contests in companies. This chapter ends
with a conclusion and a brief comparison of discriminant analysis and logistic
regression.

Discriminant Analysis

Foundations and Assumptions of Discriminant Analysis

Discriminant analysis is a multivariate (separation) method for the analysis of
differences between relevant groups. It can help determine which variables explain
or predict the observations’ membership of specific groups. Depending on the
investigation objectives, this enables the approach to undertake either diagnostic or
predictive analyses.

The four key objectives of discriminant analysis can be described as follows (Hair
et al. 2010, p. 350; Aaker et al. 2011, p. 470):

• Determining the linear combinations of independent variable(s) that lead to the
best possible distinction between groups by maximizing the variance between the
groups relative to the varaince observed within the groups. This linear combina-
tion is also called a discriminant function or axis. By inserting the independent
variables’ attribute values into the discriminant function, researchers can calculate
a discriminant score for each observation.

• Examining whether, based on the group means obtained through the discriminant
scores (centroids), the groups differ significantly from each other.
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• Identifying the variables that contribute most effectively to the explanation of
intergroup differences.

• Allocating new observations for which the attribute values are known to the
relevant group (either classification or prediction).

Based on the distance between the group centroids, it is possible to determine the
statistical significance of a discriminant function. Undertaking such analyses
requires a comparison of the distribution of the groups’ discriminant scores. The
less the distributions overlap, the more the groups based on the discriminant function
differ. Figure 1 illustrates this basic concept of discriminant analysis according to the
distributions of the two groups A and B: besides showing the separation value Y�

(i.e., the critical discriminant score) through which the examined observations can be
classified, the discriminant axis is also shown next to the two group centroids YA and
YB . The area of overlap (i.e., the white areas under the curves) between the two
distributions corresponds to the proportion of misclassified observations in group A
(i.e., to the right-hand side of Y�) and group B (i.e., to the left-hand side of Y�).

Discriminant analysis is considered a dependency analysis, which distinguishes
between nominally scaled dependent variables and metrically scaled independent
variables. When comparing discriminant analysis with regression and analysis of
variance (ANOVA), the following analogies and differences are specifically found:

• Discriminant analysis is based on a model structure similar to the one deployed in
multiple regression. The main difference lies in the nominal level of the depen-
dent variable’s measurement. In regression analysis, a normal distribution of the
error terms is assumed, and the independent variables are known or pre-
determined. In discriminant analysis, the reverse applies: the independent vari-
ables are assumed to have a multivariate normal distribution, while the dependent
variable is fixed; that is, the groups are defined a priori (Aaker et al. 2011, p. 471).

• If a reverse relationship existed, such that the variables of interest are dependent
on a group membership, an approach such as a one-factorial multivariate analysis

Separation value Y∗

Group A Group B

Assigned to group A Assigned to group B
YA

__
YB

Y
_

Fig. 1 Distributions of the discriminant scores of two groups A and B
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of variance (MANOVA) would be appropriate. Accordingly, discriminant analy-
sis can also be regarded as the reversal of a MANOVA.

To apply discriminant analysis, certain assumptions have to be complied with. For a
comprehensive overview of the assumptions of discriminant analysis, see Hair et al.
2010, pp. 354 et seq. and Tabachnick and Fidell 2013, pp. 384 et seq. As in multiple
regression analysis, this includes the absence of multicollinearity and autocorrelation.
Further, the observed relationships should be of a linear nature. Finally, the independent
variables should be normally distributed. Nonetheless, discriminant analysis is relatively
robust regarding the violation of the normality assumption, provided the violation is not
caused by outliers, but by skewness. If the group sizes are very different, the sample
should be sufficiently large to ensure robustness: based on a conservative recommen-
dation, robustness is assumed if the smallest group includes 20 cases and only a few (up
to five) explanatory variables (Hair et al. 2010, p. 375; Tabachnik and Fidell 2013,
p. 384). The equality of the independent variables’ variance-covariance matrices in the
different groups is the most important assumption for the application of discriminant
analysis. Again, inferential statistics are relatively robust against a violation of this
assumption, given that the group sizes are not too small or too uneven. However, the
classification accuracy might not be robust even if reasonable group sizes are adopted,
because in such cases observations are frequently misclassified into groups with greater
variance. If classification is a key objective of the analysis, the homogeneity of the
variance-covariance matrices should always be tested (Tabachnik and Fidell 2013,
pp. 384 et seq.). Finally, all independent variables are required to be at least interval-
scaled, since the violation of this assumption leads to unequal variance-covariance
matrices.

Discriminant Analysis Procedure

The application of discriminant analysis involves several steps, which we discuss in
the following.

Step 1: Problem and Group Definition As mentioned, discriminant analysis can be
used to explain the differences between groups in a multivariate manner. However, it
can also serve as a procedure to classify observations with known attribute values,
but unknown group membership. To apply discriminant analysis, the dependent
variable has to be defined first; that is, the groups to be analyzed need to be
determined. The dependent variable can be drawn directly from the specific exam-
ination context (e.g., product purchasers vs. non-purchasers) or from the findings of
preceding analyses. For example, customer segments identified by means of cluster
analysis might be further investigated by undertaking discriminant analysis. The
cluster analysis might be used to reveal groups and a subsequent discriminant
analysis might use either the same or different variables for further analytical
purposes. In the first case, the aim of the investigation would be to verify the
clustering variables’ adequacy in terms of their discriminatory meaning. In the
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second case, the groups generated by means of cluster analysis are explored in
greater depth. For instance, an initial cluster analysis generates consumer segments
based on their purchase behavior. A subsequent discriminant analysis might then be
used to explain the segment-specific differences in consumer purchase patterns by
means of psychographic variables.

If, in its original form, the dependent variable is based on a metric scale, it can be
classified into two or more groups (e.g., low/medium/high), which can be analyzed
by the subsequent discriminant analysis. The group definition is also related to the
number of groups to be analyzed. The simplest case is two-group discriminant
analysis (e.g., ordering vs. non-ordering in mail order businesses). However, if the
classification involves more than two groups, a multigroup discriminant analysis
should be used. In determining the number of groups, the number of observations per
group should be at least 20. Consequently, combining several groups into a single
category might be appropriate.

Step 2: Model Formulation As part of discriminant analysis a discriminant function
should be estimated, which ensures an optimal separation between the groups and an
assessment of the discrimination capability of the applied variables. The discrimi-
nant function is a linear combination of the applied variables and generally adheres
to the following scheme:

Yi ¼ β0 þ
XJ
j¼1

βjXji, (1)

where

Y: Discriminant score
β0: Constant
βj: Discriminant coefficient of independent variable j

By using the attribute values Xji for each observation i, the discriminant function
generates an individual discriminant score Yi.

Step 3: Estimation of the Discriminant Function The parameters βj are estimated
such that the calculated discriminant scores provide an optimal separation between
the groups. This result requires a discriminant criterion that measures the intergroup
differences. The estimation procedure is then carried out such that the discriminant
criterion is maximized.

Considering the distance between the group centroids for the purpose of evalu-
ating the differences between the groups might initially seem obvious. However,
also the variance of the discriminant scores within a group has to be considered.
While a larger distance between two group centroids improves the distinction of the
groups, the distinction is made more difficult when the variance of the groups’
discriminant scores increases. This situation is illustrated in Fig. 2, where two
pairs of groups A and B are represented as distributions on the discriminant axis.
The centroids of the pairs of groups A (YA= -2) and B (YB ¼ 2

�
are identical, but the
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standard deviations of the discriminant scores differ (standard deviations upper
distributions = 1; standard deviations lower distributions = 2). Based on a compar-
ison of the pairs shown at the top and at the bottom of Fig. 2, we can observe that,
although the lower groups indicate identical centroids, they also have greater
variances – in this case, generating a lower discrimination.

Thus, assessments of discriminant analysis performance should aim at optimizing
both the distance of the group centroids and the spread of the observations. To
achieve optimal separation efficiency between the groups, we refer to the well-
established regression- and ANOVA-based principle of variance decomposition:

SS ¼ SSb þ SSW

Total variance ¼ Between � group varianceþWithin� group variance

¼ Explained varianceþ Unexplained variance

(2)

Thus, a discriminant function should be determined such that the group means
(centroids) differ significantly from one another, if possible. For this purpose, we
refer to the following discriminant criterion:

Separation value Y*

Group A Group B

Group A Group B

Assigned to group A Assigned to group B
0–2–4–6–8–10 2 4 6 8 10

0–2–4–6–8–10 2 4 6 8 10

Fig. 2 Groups with different centroids and variances
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Γ ¼ Variance between the groups

Variance within the groups
(3)

This criterion can be made more precise and converted into an optimization
problem as follows:

Γ ¼

PG
g¼1

Ig Yg � Y
� �2

PG
g¼1

PIg
i¼1

Ygi � Yg

� �2 ¼
SSb

SSw
! Max!

bj
, (4)

where

G: Number of groups studied
I: Group size

In order to account for different group sizes, the variance between the groups is
multiplied by the respective group size I. The discriminant coefficients βj ( j = 1,
. . ., J ) have to be determined so that the discriminant criterion Γ is maximized. The
maximum value of the discriminant criterion

γ ¼ MAX Γf g (5)

is referred to as the eigenvalue, because it can be determined mathematically by
solving the eigenvalue problem (for further details refer to Tatsuoka 1988, pp. 210 et
seq.).

In the multigroup case (i.e., with more than two groups), more than one discrim-
inant function and more than one eigenvalue must be determined. The maximum
number of discriminant functions is given by K = Min {G-1, J}. Generally, the
number of independent variables J exceeds the number of groups, so that the number
of groups usually determines the number of discriminant functions to be estimated.
The following applies to the order of the respective discriminant functions and their
corresponding eigenvalues:

γ1 � γ2 � γ3 � . . . � γK:

This way, the first discriminant function explains the majority of the independent
variables’ variance. The second discriminant function is uncorrelated (orthogonal) to
the first and explains the maximum amount of the remaining variance once the first
function has been determined. Since additional discriminant functions are always
calculated in order to explain the remaining variance’s maximum share, the func-
tions’ explanatory power declines gradually.

The following measure represents a discriminant function’s relative importance
by deriving the respective eigenvalue share (ES):
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ESk ¼ γk
γ1 þ γ2 þ . . .þ γK

: (6)

The eigenvalue share equals the share of variance explained by the kth discrim-
inant function relative to the variance explained by all discriminant functions K
combined. The eigenvalues always add up to one.

Figure 3 illustrates the discriminant analysis’s estimation principle by means of a
graphic representation. In this case, the determination is based on a two-group dis-
criminant function. It is assumed that two attribute values X1 and X2 are available for
each of the subjects examined, which are shown in the scatter plot in Fig. 3, in which
filled circles represent the members of group A and empty circles members of group B.
In this example the optimal discriminant function is Y = -0.09X1 þ 0.86X2. Based on
this function four members of group A are misclassified as members of group B. The
arbitrarily selected discriminant function Y = 0.6X1 - 0.25X2 shows a worse classi-
fication performance by having 19 misclassifications in total. A projection of the
respective attribute value combinations on the discriminant axes corresponds to the
examined subjects’ discriminant values.

Step 4: Assessment the Discriminant Function Performance Researchers have two
basic approaches at their disposal to assess a discriminant function’s perfor-
mance. The first approach compares the classification of observations with the
observations’ actual group membership. This approach is explained later in this
chapter in relation to logistic regression, where a specific example is also

8

6

4

2

0

–2

–1 0 4 2 3 4 5 6 7 8

Y = 0.6X1 – 0.25X2

Y = –0.09X1 + 0.86X2

X2

Separation value: 5.03
(19 misclassifications)

Separation value: 3.38
(4 misclassifications)

9 10 11 12 13
X1

Fig. 3 Graphical representation of a two-group discriminant analysis
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provided. It is also specifically applicable in the context of the discriminant
analysis.

A second fundamental way of assessing the discriminant function’s quality is
based on the discriminant criterion described above. The eigenvalue γ represents the
maximum value of the discriminant criterion and, thus, forms a starting point for
assessing the discriminant function’s quality or discriminant power. Since γ has the
disadvantage of not being standardized to values between zero and one, other
metrics based on the eigenvalue have been established for quality assessment,
including the canonical correlation coefficient (c):

c ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ

1þ γ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance explained

Total variance

r
(7)

In the two-group case, the canonical correlation equals the simple correlation
between the estimated discriminant values and the binary grouping variables. The
most common criterion for testing the quality of the discriminant function is Wilks’s
lambda (Λ):

Λ ¼ 1

1þ γ
¼ Unexplained variance

Total variance
(8)

As can be seen from the above formula, Wilks’s lambda is an inverse measure of
goodness; that is, lower (higher) values imply a better (worse) discriminant power of
the discriminant function. Wilks’s lambda can be transformed into a test statistic,
thereby enabling inferential statements on the diversity of groups. By applying the
transformation

V ¼ � N � J þ G

2
� 1

� �
lnΛ, (9)

where

N: Number of observations
J: Number of independent variables
G: Number of groups
Λ: Wilks’s lambda

the resulting test statistic is approximately χ2-distributed with J (G-1) degrees of
freedom. Thus, a statistical significance testing of the discriminant function can be
performed. Given that the test statistic increases with lower values of Λ, higher
values imply a greater diversity between the groups.

In the case of multigroup discriminant analysis, each discriminant function can be
evaluated by means of the above measures on the basis of their respective eigen-
value. Here, the kth eigenvalue γk measures the proportion of the explained variance
which can be attributed to the kth discriminant function. There is a clear analogy to

338 S. Tillmanns and M. Krafft



the principal components analysis procedure in which the components are extracted
from the independent variables (like the “main components”) in the form of dis-
criminant functions (Tatsuoka 1988).

All discriminant functions and their eigenvalues are considered to assess the
overall differences between the groups. The multivariate Wilks’s lambda, which is
calculated by multiplying the univariate lambdas, is a measure that can capture this:

Λ ¼ ∏
K

k¼1

1

1þ γk
, (10)

where

K: Number of possible discriminant functions
γk: Eigenvalue of the k

th discriminant function

To statistically check whether the groups differ significantly from one another, a
χ2-distributed test statistic can be generated by using transformation (9).

Other test statistics representing approximations of the F-distribution and Wilks’s
lambda are available and can be applied to test the significance of group-related
differences. These statistics cannot only be applied to a MANOVA but also to
discriminant analysis (e.g., Hotelling’s trace, Pillai’s trace, and Roy’s GCR). Other
measures, such as Rao’s V and Mahalanobis’s D2 are particularly applied in the
context of stepwise discriminant analyses (Tabachnik and Fidell 2013, p. 399; Hair
et al. 2010, p. 435).

As with all statistical tests, a statistically significant test result does not necessarily
imply a substantial difference. In a sufficiently large sample size, even small
differences are likely to have statistical significance. Consequently, the absolute
values of the mean differences between the groups, the canonical correlation coef-
ficients, and Wilks’s lambda, should not be overlooked. For the sake of interpret-
ability, it is advisable to limit analyses to two or three discriminant functions, even if
further discriminant functions prove to be statistically significant.

Step 5: Examination and Interpretation of the Discriminant Coefficients If testing
the discriminant function(s) result(s) in a sufficient discriminatory power between
the groups in step 4, the independent variables can be examined. Assessing the
importance of individual independent variables can be used to, first, explain the key
differences between the groups, thereby contributing to the interpretation of group-
based differences. Second, unimportant variables can be removed from the model if
the goal is to specify a parsimonious model. As an alternative to simultaneously
including all variables into the model for estimation, a stepwise estimation may be
undertaken. Here, only variables are included in the discriminant function one at a
time, which contribute significantly to the discriminant function’s improvement,
depending on the level of significance that the researcher specifies.

Individual variables’ discriminatory relevance can be checked by using univariate
and multivariate approaches. As part of a univariate assessment, each of the
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variables can be tested separately to determine whether their mean values between
the groups differ significantly from one another. Likewise, undertaking discriminant
analyses of each of the variables based on Wilks’s lambda serves to isolate their
discriminant power. The F-test can also be used here. The result then corresponds to
a one-factorial analysis of variance with the groups as factor levels.

A review of the univariate discriminatory relevance is insufficient if there are
potential interdependencies between the variables. For example, while a particular
variable may have little discriminatory meaning when viewed in isolation, it may
significantly contribute to an increase of discriminant power in combination with
other variables.

Multivariate assessments of individual variables’ discriminatory power and of
their importance as part of the discriminant function can be undertaken by using the
standardized discriminant coefficients. These represent the influence of the indepen-
dent variables on the discriminant variable and are defined as follows:

β�j ¼ βj � sj, (11)

where

βj: Discriminant coefficient of independent variable j
sj: Standard deviation of independent variable j

Standardization allows for assessments independent of independent variables’
scaling and their meaning. The higher the absolute value of a standardized coeffi-
cient, the greater the discriminatory power of the associated variable. The
unstandardized discriminants are, however, required to calculate the discriminant
scores (Hair et al. 2010, p. 381).

Deriving the correlation coefficients between the values of the respective inde-
pendent variables and the discriminant scores is another alternative method to
interpret the independent variables’ influences. These correlation coefficients are
called discriminant loadings, canonical loadings, or structure coefficients. Compared
to (standardized) discriminant coefficients, potential multicollinearity between the
independent variables affects them less. Therefore they often provide benefits in
terms of an unbiased interpretation of the independent variables. As a rule of thumb,
loadings exceeding a magnitude of 0.4 indicate substantially discriminatory vari-
ables (Hair et al. 2010, pp. 389 et seq.). The identification of variables with
sufficiently high loadings allows for creating profiles of groups in terms of these
variables and to identify differences between the groups. The signs of discriminant
weights and loadings reflect the groups’ relative average profile.

A sufficiently large sample size is required to obtain stable estimates of the
standardized discriminant coefficients and discriminant loadings. As a guiding
value, a minimum of 20 observations per independent variable is required (Hair
et al. 2010, p. 435; Aaker et al. 2011, p. 477).
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Step 6: Prediction In discriminant analysis, several alternative prediction
approaches are available. Predictions can be based on classification functions, the
distance concept, or the probability concept (Backhaus et al. 2016, pp. 246 et seq.).
Classification functions and the probability concept allow the consideration of a
priori probabilities. Such probabilities can reflect theoretical knowledge about dif-
ferent group sizes before any prediction is conducted. The consideration of a priori
probabilities is especially useful, if the examined groups differ in their size. Further-
more, the probability concept allows to allocate specific costs to the misclassification
of observations into a certain group. Specifically, this builds on the distance concept
and thus should be addressed last.

Classification Functions
Fisher’s classification functions can be used to predict an observation’s group-
membership. They require the variances in the groups to be homogeneous and one
classification function has to be determined for each group. Thus, in a two-group
case, two functions have to be determined:

F1i ¼ β01 þ
XJ
j¼1

βj1Xji

F2i ¼ β02 þ
XJ
j¼1

βj2Xji

(12)

For the classification of an observation, the value of each function Fi has to be
calculated. An observation is assigned to the group for which it yields the maximum
value.

As mentioned above, classification functions allow the consideration of a priori
probabilities P(g). A priori probabilities must add up to one and are implemented in
the classification function as follows:

Fg :¼ Fg þ lnPðgÞ (13)

It is also possible to determine individual probabilities Pi(g) for each observation
i.

Distance Concept
According to the distance concept, an observation i needs to be assigned to a group
g, such that the distance to the centroid is minimized (i.e., to which it is closest on the
discriminant axis). This corresponds to determining whether an observation lies
either left or right of the critical discriminant score Y* (see Fig. 1). The squared
distance is the measure usually deployed in the K-dimensional discriminant space
between observation i and the centroid of group g:
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D2
ig ¼

XI
i¼1

Yki � Ykg

� �2
, (14)

where

Yki: Discriminant score of observation i according to discriminant function k
Ykg: Centroid of group g regarding discriminant function k

It is, however, not necessary to consider all possible K discriminant functions to
execute the classification. Usually, it is sufficient to limit the analysis to the signif-
icant or relevant discriminant functions, which substantially facilitates the
calculation.

Classification based on the distance concept requires the variances in the
groups to be nearly homogeneous. This assumption can, for instance, be checked
using Box’s M as a test statistic. When the assumption of homogeneous vari-
ances in the groups is violated, modified distance measures need to be
calculated.

Probability Concept
The probability concept, which builds on the distance concept, is the most flexible
approach to the classification of observations. It allows the consideration of a priori
probabilities and different misclassification costs in the examined group. Without
these modifications, the probability concept generates the same results as the dis-
tance concept.

Regarding the classification of observations with the probability concept, a priori
probabilities and conditional probabilities are combined in order to derive a post-
eriori probabilities according to the Bayes theorem:

P gj Yið Þ ¼ P Yij gð ÞPi gð ÞPG
g¼1 P Yij gð ÞPi gð Þ , (15)

where

P(g| Yi): A posteriori probability, that an observation is in group g, given a discrim-
inant score Yi is observed.

P(Yi| g): Conditional probability, that a discriminant score Yi is observed, given that it
appears in group g.

Pi(g): A priori probability, that an observation is in group g

An observation i is assigned to group g, for which the value of P(g| Yi) is
maximized. For example, if G = 2, observation i is assigned to group 1 if

P Yij g1ð ÞPi g1ð ÞP2
g¼1 P Yij gð ÞPi gð Þ >

P Yij g2ð ÞPi g2ð ÞP2
g¼1 P Yij gð ÞPi gð Þ : (16)
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The a posteriori probabilities can be calculated on the basis of the observations’
distances to the group centroids (see Tatsuoka 1988, pp. 358 et seq. for more details).
Another advantage of the probability concept lies in the possibility of explicitly
incorporating the costs of a misclassification in the decision rule. The field of
medical diagnostics can be used as an example: the consequences of not diagnosing
a malignant disease are certainly more fatal than coming up with an erroneous
diagnosis. Hence, the expected value of the costs involved might be considered in
such calculations:

Eg Cð Þ ¼
XG
h¼1

CghP hj Yið Þ: (17)

The costs, which are quantified by Cgh, arise if an observation is assigned to group
g, though it belongs to group h. Thus, an observation i is assigned to the group gwith
the lowest expected costs Eg(C).

Marketing decisions in which misclassification costs could play a major role are
for example new product introductions. In this regard, high costs may arise due to
misclassifications of products as a “success” or a “flop” in terms of either their
launch or non-launch. Further, in the mail order business, substantial mis-
classification costs may result from customers either being sent or not sent a
catalogue of relevant product assortments.

Logistic Regression

Foundations and Assumptions of Logistic Regression

The application of logistic regression has become increasingly popular in recent
years. There is little difference between logistic regression and discriminant
analysis with respect to their objectives and applications. On the one hand,
logistic regression may be used to examine the variables and the specific degree
to which they contribute to explaining group membership (diagnosis). On the
other hand, it allows for classifying new observations into groups (prediction).
The following section describes the basics underlying logistic regression’s esti-
mation method. Initially, the measures with which to assess the entire model are
explained only generically, because an example in section “Logistic Regression”
is used to clarify the quality measures as well as the options for interpreting the
coefficients. This example draws on a study that Mantrala et al. (1998) conducted
to address the (non-)adoption of sales contests. The dependent variable takes two
values:

Y ¼ 1, if sales contests are used,

0, if sales contests are not used:

�
(18)
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Compared to a linear regression, linking one or more independent variables to a
dependent variable that can only take one of two values (i.e., 0 and 1) is more
complicated. However, this linkage can be established through a logistic regression
model, which can be derived as either a latent variable model or a probability
model (see Long and Freese 2014). In the following, both approaches are
explained.

In the latent variable model, a non-observed (i.e., latent) variable Y� is assumed,
which is related to the observed independent variables in the following way:

Y�
i ¼ β0 þ

XJ
j¼1

βjXji þ ϵi, (19)

where

β0: Constant
βj: Coefficient of independent variable j
ϵi: Error term

Equation 19 is identical to a linear regression, in which the dependent variable
can range from -1 to 1, but it differs with regard to the dependent variable, which
is non-observable. In order to transform the continuous non-observable dependent
variable into a dichotomous one (i.e., one that can only take the values 0 and 1), the
following linkage is established:

Yi ¼ 1, if Y�
i > 0,

0, otherwise:

�
(20)

Thus, Yi is assigned a value of 1 ifY
�
i takes positive values and a value of 0 if Y

�
i is

smaller or equal to 0. In our abovementioned example, Y�
i can be viewed as the

propensity to adopt (as opposed to the non-adoption of) sales contests.
To illustrate the latent variable model, we assume a single independent variable in

the following. For any given value of X of this variable, we can link the observable
dependent variable Yi to its non-observable counterpart through the following
equation:

P Y ¼ 1jXð Þ ¼ P Y� > 0jXð Þ (21)

Equation 21 represents the probability of an event occurring (e.g., the use of a
sales contest), with either Y = 1 or Y� > 0 representing the occurrence of the event,
which is conditional on the value X of the independent variable. If Y� is substituted
by Eq. 19 (and restricted to a single independent variable), Eq. 21 results in:

P Y ¼ 1jXð Þ ¼ P β0 þ β1X1i þ ϵið Þ > 0jXð Þ (22)
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It can be rearranged in:

P Y ¼ 1jXð Þ ¼ P ϵi > � β0 þ β1X1ið ÞjXð Þ (23)

In this equation, the probability of the event occurring depends on the distribution
of the error ϵi. Depending on the assumptions about this distribution, either a probit
or a logit model can be derived. Similar to logit models, probit models are capable of
modeling a dichotomous dependent variable. While a normal distribution with a
variance of 1 is assumed for the probit model, a logistic distribution with a variance
of π

2

3
is assumed for the logit model. In the logistic regression model, this leads to the

following equation:

P Y ¼ 1jXð Þ ¼ e β0þβ1X1ið Þ

1þ e β0þβ1X1ið Þ (24)

In a more general form, which allows for more than one independent variable, this
becomes:

Pi ¼ eZi

1þ eZi
¼ 1

1þ e�Zi
, (25)

where Zi serves as a linear predictor of the logistic model for the ith observation
with Zi = β0 + β1X1i + β2iX2i þ . . . þ βJXJi.

The probability model is an alternative to the latent variable model, which allows
the logistic model to be derived without referring to a latent variable (see Theil 1970;
Long and Freese 2014). In order to derive a model with an outcome ranging from
0 to 1, the probabilities of an event occurring have to be transformed into odds:

OddsðY ¼ 1Þ ¼ PðY ¼ 1Þ
PðY ¼ 0Þ ¼

PðY ¼ 1jXÞ
1� PðY ¼ 1jXÞ (26)

Odds indicate how often something happens relative to how often it does not
happen (i.e., Y = 1 vs. Y = 0). The odds therefore represent the chance of an event
occurring. The natural logarithm of the odds is called logit (logistic probability unit),
which ranges from -1 to 1, and is linear:

ln Odds Y ¼ 1ð Þð Þ ¼ β0 þ
XJ
j¼1

βjXji (27)

The logistic function, which is an S-shaped curve, has the advantageous charac-
teristic that even for infinitely small or large values of the logit Zi the resulting values
of Pi are never outside the interval of [0,1] (Hosmer et al. 2013, pp. 6 et seq.).

The nonlinear characteristics of Eq. 25 are represented in Fig. 4, in which the
exponent Xi is systematically varied from -9 to þ9. The figure shows the
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prediction of an indifferent result if the sum of the weighted factors (i.e., Zi)
equals zero. Its symmetry at the turning point of Pi = 0.5 is another essential
feature of the logistic function. The constant β0 of the linear predictor Zi moves
the function horizontally, while higher coefficients lead to a steeper slope of the
logistic function. Negative signs of the coefficient βj change the origin of the
curve, which corresponds to the dotted line in Fig. 4 (Menard 2002, pp. 8 et seq.;
Agresti 2013, pp. 119 et seq.).

As mentioned, in empirical research the actual (non-)entry of an event and not its
probability of entry is observed. The logistic regression approach regarding the
occurrence of an event (Yi = 1) and its opposing event (Yi = 0) can thus be
expressed as follows for each observation i:

Pi Yð Þ ¼ 1

1þ e�Zi

� 	Yi

1� 1

1þ e�Zi

� 	1�Yi

(28)

Thus, the information required to establish the probabilities regarding the
z-values (logits) can be calculated using Eq. 25.

The coefficients of the logistic model βj can now be estimated by maximizing the
likelihood (L) of obtaining the empirical observation values of all possible cases.
Since the observed values Yi represent realizations of a binomial process with the
probability Pi, which vary depending on the expression of Xji, we are able to set up
the following likelihood function, which has to be maximized:

Fig. 4 Progression of the logistic function curves
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L ¼ ∏
N

i¼1

1

1þ e�Zi

� 	Yi

1� 1

1þ e�Zi

� 	1�Yi

! Max! (29)

Compliance with specific assumptions is required to apply logistic regression
usefully. Compared to discriminant analysis, logistic regression offers the advantage
that the assumptions of multivariate normality and identical variance-covariance
matrices between the groups are not required. It should be ensured that the indepen-
dent variables do not exhibit multicollinearity, errors are independent, and the
linearity of the logit is given (Field 2013, pp. 768 et seq. and pp. 792 et seq.).

The Variance Inflation Factor (VIF) is commonly derived to assess multi-
collinearity. Empirical research often quotes critical VIF values that must not be
exceeded. Nevertheless, it should be noted that multicollinearity problems might
already arise with very small VIFs (Baguley 2012). Hence, in order to control for
multicollinearity, researchers should exclude their specific independent variables
from the model one at a time and verify whether the remaining independent variables
experience a substantial change regarding their level of significance or the direction
of their effect.

In logistic regression, the outcome variable is categorical and, hence, there is no
given linear relationship between independent and dependent variables. Neverthe-
less, the assumption of linearity in logistic regression assumes a linear relationship
between any metric independent variable and the logit of the outcome variable. A
significant interaction term between an independent variable and its log transforma-
tion indicates that this assumption has been violated (Field 2013, p. 794; for further
approaches to test this assumption refer to Hosmer et al. 2013, pp. 94 et seq.).

In addition, one should ensure that outliers and other influential observations do
not affect the estimated results. Some statistical packages, like SAS, offer a huge
variety of outlier statistics for logistic regression, which might be used to alter results
in different directions. Hence, researchers should always report whether substantial
changes occur in their results when outliers have been removed.

Finally, a reasonable sample size must be used, since maximum likelihood
estimation is adopted with this method and requires a large number of observations
based on its asymptotic properties. With respect to a study by Peduzzi et al. (1996) it
is recommended that the ratio of the group size to the number of independent
variables should be at least 10:1 for the smallest group. For instance, in a sample
where 25% of the observations have an outcome of Y = 1 (representing the least
frequent outcome) and 4 independent variables are available, 160 observations are
needed (160 observations * 0.25 (share of the observations with the least frequent
outcome) = 40 observations; 40 observations / 4 variables =10 observations for
each independent variable). Even though this recommendation is widely accepted in
literature, Agresti (2013, p. 208) and Hosmer et al. (2013, p. 408) note that this is
merely one guideline and models that violate it should not necessarily be neglected.
For example, Vittinghoff and McCulloch (2006) conclude in their simulation study
that at least 5-9 observations for each independent variable in the smallest group
should be sufficient. A more stringent threshold is provided by Aldrich and Nelson
(1984), who view 100 degrees of freedom as a minimum for a valid estimation.
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Logistic Regression Procedure

The application of logistic regression comprises different steps, which are addressed
in more detail below.

Step 1: Problem and Group Definition As stated, similar to two-group discriminant
analysis, logistic regression is suitable for the multivariate explanation of differences
between groups or for the classification of group-based observations for prediction
purposes. Logistic regression is therefore generally appropriate when a single
categorical variable is used as a dependent variable. When more than two groups
are given, ordered or multinomial logistic regressions can be applied, which repre-
sent generalizations of binary logistic regression. If the dependent variable has a
metric scale, either those observations that are furthest from one another can be
coded as 0 and 1 or the metric variables can be classified into multiple groups (e.g.,
low, medium, high). This approach is called the “polar extreme approach” (Hair et al.
2010, p. 352).

Step 2: Model Formulation Model formulation may be used to assess which of the
independent variables should be analyzed. In contrast to discriminant analysis, no
metric scale is required of the explanatory variables. Rather, dummy or categorical
variables can be considered. It is important to clarify whether these nonmetric
variables are indicator or effect coded. With indicator coding, the reference category
is assigned the value of 0 and the resulting coefficient should be interpreted as a
relative effect of a category compared to the reference category. Effect-coded vari-
ables may be interpreted as a category’s relative influence compared to the average
effect of all the categories. Unlike in indicator coding, one of the categories is
assigned the value of -1. The coefficients of the categories of effect-coded variables
add up to zero, so that the reference category’s coefficient can be calculated from the
coefficients of the other categories (for further details, see Hosmer et al. 2013, pp. 55
et seq.).

Generally, the selection of the independent variables should be based on sound
logical or theoretical considerations. Nevertheless, especially in the context of Big
Data, a large number of interdependent independent variables with unknown quality
are often available. In this case, theoretical considerations might not be possible.
However, a limited set of variables still needs to be selected to avoid overfitting.
Overfitting often occurs when a large number of variables are included in a predic-
tion model. This might result in a good prediction performance, if a logistic
regression model is applied to the observations used for its estimation. Nevertheless,
as soon as a prediction is conducted for observations outside the original sample, the
prediction performance is likely to suffer. Thus, researchers and practitioners might
therefore reduce the dimensions of their data by applying a principal component
analysis and only including a limited number of factors into their logistic regression
model. Alternatively, variable selection approaches can be used. Tillmanns et al.
(2017) provide an extensive comparison of different approaches that can handle a
large number of independent variables in models predicting a binary outcome.
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Finally, a sufficiently large number of observations is required (see section
“Foundations and Assumptions of Logistic Regression”), which should be distrib-
uted as evenly as possible between the analyzed groups. If a sufficiently large sample
is given, it also makes sense to split the observations into an estimation sample and a
holdout sample. The regression function estimated on the basis of the estimation
sample can then be used to cross-validate the results with those from the holdout
sample.

Step 3: Function Estimation Before the regression model can be estimated, the
assumptions underlying logistic regression need to be checked (see section “Foun-
dations and Assumptions of Logistic Regression”). If these assumptions are met, the
model can be estimated. As in multiple regression analysis or discriminant analysis,
this can be done by using a stepwise procedure (“forward/backward elimination”) or
by the simultaneous entry of each of the independent variables into the estimation
equation (“enter”). If the logistic regression is used to test hypotheses, the latter
method is required. In preliminary estimation runs, the potential presence of influ-
ential observations or outliers should also always be checked. In this process, the use
of Cook’s distance is recommended. In cases where the sample is very unbalanced
(i.e., one outcome is very rare), researchers might consider ReLogit (Rare Events
Logistic Regression) as an alternative approach (for a detailed explanation see King
and Zeng 2001).

The maximization of the likelihood function shown in Eq. 29 is achieved with
statistical packages, such as SAS or SPSS, using the Newton-Raphson algorithm.
The principle underlying maximum likelihood estimation is to select the estimates of
parameter βj in a stepwise iterative analytical approach, such that the observation of
the estimated value is assigned a maximum likelihood.

Figure 5 illustrates two logistic functions fitted to two different samples. On the
ordinate, the dependent variable Y is shown, wherein P(Y = 1) represents the
probability of occurrence of an event. On the abscissa, the values of an independent
variable Xi are represented. The logistic function reflects the predicted (estimated)
probabilities for the occurrence of the event under the independent variables’
different values. The actual observation values are marked by points. In the upper
part (a), the logistic function is suitably adapted to the observed data: high indepen-
dent variable values correspond to the occurrence of the event, and vice versa.
However, in the lower part (b), the logistic function is not suitably adapted to the
observed data, which is expressed by the large overlap between the two groups in the
central region of the abscissa. Entering a cutoff point of 0.5 for classifying observa-
tions shows that, in example (a), four observations are misclassified whereas eight
observations are misclassified in example (b).

Step 4: Assessment of the Model Performance Before starting with the interpreta-
tion of the individual coefficients, it is important to first investigate whether an
estimated logistic regression model is in fact suitable. When reviewing this issue,
one cannot rely on the traditional measurements and tests used in linear regression
analysis (such as the coefficient of determination or F-values), because the
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coefficients obtained from logistic regression are determined by using maximum
likelihood estimation. Goodness-of-fit in maximum likelihood applications is
usually assessed by using deviance (or -2LL), which is calculated as -2*log
(likelihood). A perfect fit of the parameters is equivalent to a likelihood of 1,
corresponding to a deviance of 0 (Aldrich and Nelson 1984, p. 59; Hosmer et al.
2013, p. 155).

Fig. 5 Fit of the logistic function with different samples
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In terms of interpretation, the likelihood is comparable to that of least squares
errors in conventional regression analysis. Further, -2LL is used, because it is
asymptotically χ2-distributed with (N-p) degrees of freedom, where N is the number
of observations, and p the number of the parameters. Good models reflecting a
“high” likelihood of close to 1 result in a deviance that is close to 0, while a bad fit is
mirrored in high deviance values. Deviance values are unlimited in positive range.

Whether a deviance has to be considered as rather “high” or “low” depends on the
particular sample used and the analysis deployed. The value of the deviance can be
used to test a hypothesis H0, which posits that the overall model shows a perfect fit
with the data. With either low deviance values or high significance, H0 cannot be
rejected and the model can be deemed as showing a good fit with the data (Menard
2002, pp. 20 et seq.).

In addition to the deviance, likelihood ratio tests and pseudo-R2 statistics can be
applied, which provide additional indicators permitting assessments of the full
model fit compared to the null model, which only comprises an estimated value
for β0, i.e., the intercept of the linear predictor Zi. In this process, the deviance is
applied, which can also be used for comparing incremental differences of different
models. The absolute difference between the deviance of the null model and the full
model provides an asymptotically distributed χ2 value, which can be tested against
the null hypothesis that the full model coefficients are not significantly different from
0. Thus, a likelihood-ratio test can be conducted, which is comparable to the F-test in
linear regression analysis. This test statistic is called the Model Chi-Square. High χ2

values and low significance levels suggest that the final model’s coefficients are
significantly different from 0. For this test, the 5% level is usually set as the critical
level of significance (Hosmer et al. 2013, p. 40; Menard 2002, p. 21; Tabachnik and
Fidell 2013, pp. 448 et seq.).

In logistic regressions, the deviances of the full and the null model can be used to
calculate McFadden’s R2. This pseudo-R2 metric is expressed in the following
equation:

McFadden
0
s R2 ¼ 1� LL1

LL0
, (30)

where

LL1: Natural logarithm of the likelihood of the full model.
LL0: Natural logarithm of the likelihood of the null model

There are additional pseudo-R2 statistics, which are also based on a comparative
goodness-of-fit of the null model and the full model. Similarly, the R2 statistics of
Cox and Snell, as well as of Nagelkerke suggest that higher values correspond to
enhanced model fit, with the maximum value of 1 corresponding to perfect model fit.

Assessments of the model performance can also be undertaken on the basis of the
attained classification results, where the predicted values Pi are compared with the
actual (observed) values Yi. As part of the Hosmer-Lemeshow test, the accuracy of
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predictions is checked against the null hypothesis, which posits that the difference
between the predicted and observed values is equal to zero (Hosmer et al. 2013,
pp. 157 et seq.). These observations are divided into 10 groups of approximately
equal size based on the predicted values Pi. By means of a Chi-Square test, the extent
to which the observed and predicted frequencies differ is checked. A low χ2 value of
the test statistic, coupled with a high significance level, implies a good model fit.

Further, to assess the predictive accuracy of logistic models, the confusion matrix
or classifications matrix is considered. In this 2*2 matrix, the predicted group
memberships on the basis of the logistic regression model are compared to the
empirically observed group memberships (Menard 2002, p. 31). The correctly
classified items are then available on the main diagonal, while the misclassified
observations appear off the main diagonal. The proportion of correctly classified
elements – as facilitated by logistic regression (which is called the match quality or
the hit ratio) – should be higher than the matches obtained from a random allocation.
This is a limitation, since the matches attained by using the model are inflated when
the parameter estimation of logistic regression and the calculation of the hit rate are
based on the same sample (Morrison 1969, p. 158; Hair et al. 2010, p. 373; Afifi et al.
2012, p. 265). Using the estimated coefficients from a calibration sample is therefore
expected to generate lower hit rates for other (holdout) samples. With approximately
equal groups represented by the dependent variable, using the maximum chance
criterion (MCC) to assess the classification performance is recommended. By
applying the MCC metric, the classification performance is based on the share of
the larger groups within the total sample (Morrison 1969, p. 158; Hair et al. 2010,
p. 384; Aaker et al. 2011, p. 478). Nevertheless, if two groups of rather unequal size
are considered, adopting the MCC metric is inadequate.

The proportional chance criterion (PCC) is particularly recommended when
analyzing two groups of unequal size or when seeking a classification that is equally
as good for both groups. The PCC is equivalent to a random hit rate of α2 þ (1-α)2,
where α represents the proportion of a group to the total number of observations
(Morrison 1969, p. 158; Hair et al. 2010, p. 384; Aaker et al. 2011, p. 478). Whether
to use the PCC, MCC, or a different classification criterion depends on the particular
subject of investigation. For example, it may be meaningful to minimize the mis-
classification of only one of the two groups, when assessing credit risks or failure of
new products.

The Receiver Operator Characteristic (ROC) is another well-established mea-
sure for assessing a logistic regression model’s classification performance (see
Hosmer et al. 2013, pp. 173 et seq. for a more detailed discussion). Within this
analysis, the sensitivity (i.e., the true positive rate: the probability that a certain
outcome is predicted to occur, given that the outcome occurred) and specificity
(i.e., the true negative rate: the probability that a certain outcome is predicted not to
occur, given that the outcome did not occur) are derived. Classification perfor-
mance depends on the choice of an appropriate cutoff point (i.e., the probability
that is necessary to assign a predicted outcome of either 0 or 1 to an object).
Generally, an outcome of 1 is predicted for probabilities greater than 0.5. Never-
theless, the choice of an appropriate cutoff point has implications for the
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classification performance in terms of sensitivity and specificity. Hence, it is
worthwhile deriving a cutoff point that maximizes both sensitivity and specificity.
The ROC curve considers all possible cutoff points by plotting sensitivity versus 1
- specificity and represents the likelihood that an object with an actual outcome of 1
has a higher probability than an object with an actual outcome of 0. If the logistic
regression model has no predictive power, the curve has a slope of one, resulting in
an area under the ROC curve of 0.5. Higher values indicate a good predictive
power and typically range between 0.6 and 0.9 (Hilbe 2009, p. 258). Hosmer et al.
(2013, p. 177) provide a general rule for evaluating classification performance
regarding the area under the ROC curve: ROC = 0.5: no discrimination; 0.7 �
ROC < 0.8: acceptable discrimination; 0.8 � ROC < 0.9: excellent discrimina-
tion; ROC � 0.9: outstanding discrimination.

Table 2 provides an overview of the different criterions, which can be used to
assess the performance of a logistic regression.

Step 5: Examination and Interpretation of the Coefficients If the total model fit is
considered acceptable, one can start testing and interpreting the coefficients in
terms of their significance, direction, and relative importance. It should be noted
that the parameter estimates of a logistic regression are much more difficult to
interpret than those attained with linear regression. In linear regression, the coef-
ficient corresponds to the absolute change in the dependent variables with a one-
unit increase in the independent variables. The nonlinear nature of the logistic
function makes the interpretation more difficult. For a demonstration, refer to
Fig. 4 and suppose two variables X1 and X2. For example, Zi might increase from
A to A’ or from A’ to A” because of an increase of X1 by one unit. The resulting
change of the probability for Y = 1 depends heavily on the starting point of the
increase – A or A’. These starting points in turn depend on the value of the other
variables in the model, like X2 in our example. Thus, in logistic regression
coefficients represent only the change in the dependent variable’s logit with a
one-unit change in the independent variables (Aldrich and Nelson 1984, p. 41; Hair
et al. 2010, p. 422; Agresti 2013, p. 163). The logit is the natural logarithm of the
“chance of winning;” that is, the ratio of the probability that the dependent variable

Table 2 Acceptable ranges for logistic regression performance measures

Criterion Range of (acceptable) values

Deviance (-2LL) Deviance close to 0; significance level close to 100%

Likelihood-ratio test
(“Model χ2”)

Highest possible χ2 value; significance level < 5%

Hosmer-Lemeshow test Lowest possible χ2 value; significance level close to 100%

Proportional chance
criterion (PCC)

Classification should be better than the proportional chance:
α2 þ (1-α)2, with α = relative size of a group

Area under the ROC
curve

ROC = 0.5: no discrimination
0.7 � ROC < 0.8: acceptable discrimination
0.8 � ROC < 0.9: excellent discrimination
ROC � 0.9: outstanding discrimination
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is equal to 1 divided by its counter probability (see Eqs. 26 and 27). For interpre-
tation purposes, it may be easier to use the “odds ratios,” or effect coefficients,
which are obtained by means of the eβ transformation (Hosmer et al. 2013, pp.
50–51). Specifically, odds ratios show how the odds change with a one-unit
increase in the independent variables. The odds describe the ratio of the probability
of occurrence of an event to its counter probability (i.e., chance) as displayed in Eq.
26. Odds range from 0 to1, whereby values below one indicate that the chance of
an event occurring becomes lower with increasing values of the independent
variable and values above one indicate the opposite.

To verify the significance of the independent variables, either the Wald statistic or
the likelihood-ratio test can be used. The confidence interval of individual coeffi-
cients can be determined based on the χ2-distributed Wald statistic, which is calcu-
lated from the square of the ratio of the coefficient and the variable’s standard error.
This formula applies to metric variables with one degree of freedom only. For
categorical variables, the variable’s degrees of freedom have to be considered in
addition. With the likelihood-ratio test, the full model is tested against a reduced
model, which is reduced by the variable under consideration. The significance test is
performed on the basis of the difference between both models’ deviances, which
again follows a χ2-distribution.

The direction of the variables’ effects with significant coefficients can be
interpreted directly. As can be seen in Fig. 4, negative signs imply that the
probability Pi decreases, while positive signs imply increasing probabilities with
higher values of the variable under consideration. Statements regarding the relative
importance of each variable can be made based on the aforementioned “odds
ratios.” Their level is, however, dependent on the scaling of the variables. Further-
more, a constant change in the odds ratios does not result in a constant change in
probabilities, and the magnitude of the effect on the probabilities is not symmetric
around one (Hoetker 2007). Hence, alternative interpretations are discussed in the
following.

In order to derive the relative importance of each predictor, different options are
available. First, a standardized coefficient can be calculated to reflect the strength of
the effect independent from the scaling of the independent variables. This effect
strength can be interpreted similar to the standardized coefficients used in linear
regression, as this metric specifies the number of standard deviations by which the
logit changes when the independent variable increases by one standard deviation (for
further details refer to Menard 2002, pp. 51 et seq.).

Marginal effects, i.e., the partial derivative of the logit function for an indepen-
dent variable Xj, represent another alternative (Leclere 1992, pp. 771 et seq.). The
marginal effect of Xj can be derived by applying the following formula:

@Pi

@Xj
¼ e

� β0þ
PJ

j¼1
βjXj


 �

1þ e
� β0þ

PJ

j¼1
βjXj


 � !2
βj (31)
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Equation 31 can be reduced to:

@Pi

@Xj
¼ βjPi 1� Pið Þ (32)

Regarding the relative importance of different variables, it has to be considered
that marginal effects depend on the scale of the examined variables. Furthermore,
marginal effects vary across different values of an independent variable as can be
seen easily in our example in Fig. 4. Because of the different gradients of the curve in
points A, A’, and A”, the marginal effects at these points are substantially different.
The issue regarding marginal effects’ dependence on the scaling of independent
variables can be resolved by standardizing the independent variables on the one
hand, while on the other hand using their elasticities to interpret the logistic regres-
sion coefficients.

Elasticities are easier to interpret than the coefficients’ scale-variant partial
derivatives, because they are dimensionless and quantify the percentage change in
the probability Pi under a 1% change in the respective independent variable of the
logistic model. The elasticity of the probability Pi regarding infinitesimally small
changes of Xj is obtained by adoption of the following equation (Leclere 1992,
p. 772):

ej, i ¼ Xj

Pi

@Pi

@Xj
¼ Xj

Pi

e
� β0þ

PJ

j¼1
βjXj


 �

1þ e
� β0þ

PJ

j¼1
βjXj


 � !2
(33)

The equation can be simplified to

ej, i ¼ Xj

Pi

@Pi

@Xj
¼ Xj 1� Pið Þ � βj: (34)

The elasticity thus results from the multiplication of the partial derivative of
probability Pi (with respect to the independent variable Xj) with Xj divided by Pi.
For Xj the mean value Xj is often applied (Leclere 1992, pp. 773 et seq.). As with
partial derivatives, elasticities depend on the initial values of Pi and the independent
variables’ values. However, the lacking dimensionality of elasticities allows direct
comparisons of various independent variables’ relative influence on the probability
Pi.

From the perspective of non-econometricians, sensitivity analysis may be an
appealing way of interpreting logistic regression models. In order to conduct a
sensitivity analysis, the probability Pi is examined for different values of the
independent variable. Usually, the value of a single independent variable is
varied systematically (e.g., þ10%, þ20%, ..., -10%, -20%), while the other
variables are kept constant. The difference between the initially estimated and
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the resulting new probability Pi can then be interpreted as the relative importance
of each significant independent variable for Pi. The advantage of sensitivity
analysis lies in the visualization of the absolute effect of the independent vari-
ables’ different values on the probability Pi (Leclere 1992, pp. 772 et seq.). In
section “Interpretation of the Coefficients,” we provide an example for such a
sensitivity analysis.

Several authors emphasize that the interpretation of interaction effects in logistic
regression is often insufficient, as the marginal effect of an interaction between two
variables is not simply the coefficient of their interaction and the associated level of
significance (e.g., Hoetker 2007). Ai and Norton (2003) show that the interaction
effect of two independent variables X1 and X2 is the cross-derivative of Pi with
respect to each. For two continuous variables X1 and X2 this results in the following
equation:

@2Pi

@X1@X2

¼ β12Pi 1� Pið Þ

þ β1 þ β12X2ð Þ β2 þ β12X1ð Þ Pi 1� Pið Þ 1� 2Pið Þð Þ (35)

Based on Eq. 35, Norton et al. (2004, p. 156) emphasize four important
implications for the interpretation of interaction effects in logistic regression.
First, eq. (35) shows that the interaction effect is not equal to the coefficient of
the interaction β12 and an interaction can even exist, if β12 = 0. Second, the
statistical significance of an interaction must be derived for the entire cross-
derivative and not just the coefficient of the interaction. Third, the interaction
effect is conditional on the independent variables. Fourth, Eq. 35 consists of two
additive terms, which can take different signs. Accordingly, the interaction effect
may have different signs for different values of the independent variables and
therefore, the sign of the interaction coefficient does not necessarily represent the
sign of the interaction effect. Thus, we recommend to derive the interaction effects
for each observation and plot it against the predicted values of the dependent
variable in order to reveal the full interaction effect (see e.g., Norton et al. 2004 for
an example).

Step 6: Prediction At the beginning of section “Logistic Regression,” we pointed
out that logistic regression can also be used for prediction purposes. As in discrim-
inant analysis, a holdout sample can be applied to validate the prediction perfor-
mance of a logistic regression. Alternatively, cross-validation can be undertaken by
means of the U-method or the jackknife method (Hair et al. 2010, pp. 374 et seq.;
Aaker et al. 2011, p. 478). Examples for applying logistic regression in a prediction
context include the check of creditworthiness, where financial service providers first
analyze good and poor credit agreements, in order to then be in a position to assess
current loan applications and their associated risks. The methods presented in the
preceding sections are illustrated below in an application to sales contests among
sales people.
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Applied Examples

Research Question and Sample, Model, Estimation, and Model
Assessment

Mantrala et al. (1998) examine the use of sales contests (SCs) in the USA and
Germany. Although SCs represent commonly used motivational tools in practice,
they are often neglected in research. The authors therefore develop hypotheses based
on institutional economics that investigate the influence that the sales force size (x1),
the ease and adequacy of output measurement (x2), the replaceability of sales people
(x3), and the length of the sales cycle (x4) has on the probability that SCs are used.
This might help managers to determine, whether their firm should use sales contests
according to market standards. In addition to 118 observations from the USA, the
study considers 270 German cases. Of the 270 original cases, 39 have missing values
for at least one of the four variables. The remaining 231 observations are made up of
91 sales forces that do not use SCs (39.39%) and 140 sales forces that do deploy SCs
as part of their incentive system (60.61%). The latter data set is also described in
Krafft et al. (2004) and forms the basis of the following example. In our example,
231 observations are used to estimate four parameters, such that 226 degrees of
freedom remain. The data set thus meets the most stringent criteria in terms of
sample size and the ratio of sample size to parameters to be estimated. Table 3
provides an overview of the independent variables’ mean values and whether they
differ significantly with regard to the use of sales contests. The analyses are based on
one-factorial analyses of variances and provide initial evidence that the independent
variables can discriminate between the groups in our sample. This initial analysis is
especially suitable for a discriminant analysis, which requires a metric scale for the
independent variables.

Discriminant Analysis

Model Estimation and Model Assessment
The estimation of the discriminant function yields an eigenvalue of 0.255. As
mentioned in section “Discriminant Analysis Procedure,” higher values indicate a

Table 3 Determinants of the adoption of sales contests

Independent variable

Means

F
Total
(n = 231)

No SC
(n = 91)

SC
(n = 140)

Sales force size (x1) 269.16 42.12 416.74 13.58 ***

Adequacy of output measures (x2) 0.51 0.44 0.55 18.99 ***

Replaceability of sales people (x3) 7.98 6.89 8.69 11.83 ***

Length of the sales cycle (x4) 12.27 19.08 7.85 24.85 ***

***p < .001
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higher quality of the discriminant function. Since the measure is not standardized to
values between zero and one, Wilks’s lambda is a more appropriate measure to
indicate a discriminant function’s discriminant power. Wilks’s lambda is an inverse
measure of goodness, such that lower values represent a better discriminant power.
In the given application, Wilks’s lambda yields a value of 0.797 and indicates that
the discriminant function significantly discriminates between companies that use
sales contests and those that do not use them (χ2 (4), p < 0.001). A classification
matrix can be applied to derive the predictive power of the discriminant function and
is depicted in Table 4. Given the group sizes in our example, the proportional chance
criterion (PCC) is 52.25% (i.e., 0.612 þ (1 - 0.61)2). In relation to the PCC, the hit
rate of 69.70% (i.e., (61 þ 100) / 231) can be considered sufficient.

Interpretation of the Coefficients
Even though Table 3 provides initial evidence about the discriminatory meaning of
the variables in our example, particularly by highly significant F statistics, the
interdependencies between the variables are not considered and a multivariate
assessment might provide more valuable insights. Examining the standardized
discriminant coefficients and the discriminant loadings, which are displayed in
Table 5, is one such approach.

In our example, the standardized discriminant coefficients and discriminant
loadings indicate that the length of the sale cycle and adequacy of output measures
are the best predictors for the use of sales contests. Notably, slight differences can be
observed with regard to the relative importance of both variables. Because

Table 4 Classification matrix regarding the (non-)adoption of sales contests after applying a
discriminant analysis

Predicted group
membership

Observed group
membership No sales contests

Adoption of sales
contests

Correct
classifications (%)

No sales contests 61 30 67.03

Adoption of sales
contests

40 100 71.43

Total 69.70

Table 5 Discriminant coefficients and loadings

Independent variable
Standardized discriminant
coefficients

Discriminant
loadings

Sales force size (x1) 0.443 0.482

Adequacy of output measures
(x2)

0.531 0.570

Replaceability of sales people
(x3)

0.311 0.450

Length of the sale cycle (x4) -0.526 -0.652
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discriminant loadings are superior to discriminant coefficients in terms of an unbi-
ased interpretation (see section “Discriminant Analysis Procedure”), we recommend
to take them into account for assessing variables’ relative importance.

Logistic Regression

Model Estimation and Model Assessment
According to the Cook’s distance statistic, we do not find any influential outliers in
our data set. After seven iterations of the logistic regression, no further improvement
in the model likelihood could be achieved (improvement < 0.01%). The full model
has a deviance of 232.109 (-2LL of the null model: 309.761). This relatively low
value in combination with a significance level of 1.000 for the deviance indicates a
good model fit. This is also confirmed by a high significance level of the Hosmer-
Lemeshow test. The logistic model exhibits a likelihood ratio value of 77.652, which
is highly significant ( p < 0.001). Thus, compared to the null model, the inclusion of
the four independent variables results in a significantly improved model fit. A LL1

value of -116.055 is obtained for the full model, while an LL0 value of -154.880 is
observed for the null model. The resulting McFadden’s R2 of 0.2507 for the final
model may be viewed as relatively good, given that only four variables are used.

Considering the proportional chance criterion (PCC) of 52.25%, an overall hit rate of
75.32% of correctly classified observations ((58 þ 116) / 231) indicates a good
prediction performance within the calibration sample. In addition, the hit rate of
63.74% for the (smaller) group of sales forces without SCs indicates a suitable classi-
fication performance. Table 6 shows the classification table of the logistic regression in
our example.

The predicted group memberships in Table 6 are based on a cutoff point of 0.5
for the predicted probability regarding the use of SCs. Consequently, if the
predicted probabilities are larger than or equal to 50%, the observations are
assigned to the SC group. In our example, a true positive rate (i.e., sensitivity) of
0.83 (i.e., 116 / (116 þ 24)) and a true negative rate (i.e., specificity) of 0.64 (i.e.,
58 / (58 þ 33)) are achieved. Especially if the groups under consideration are
unequal in size or if a misclassification is associated with costs, applying a different
cutoff point might be more reasonable. For example, misclassification costs might
appear if firms predict households’ responses to a direct mailing campaign and

Table 6 Classification matrix regarding the (non-)adoption of sales contests after applying a
logistic regression

Predicted group membership

Observed group
membership

No sales
contests

Adoption of sales
contests Correct classifications (%)

No sales contests 58 33 63.74

Adoption of sales
contests

24 116 82.86

Total 75.32
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seek to avoid reactance (i.e., costs) by those who are not interested in the offering,
but who would be misclassified as potential respondents. In this case, the firm
would try to limit the false positive rate. The Receiver Operator Characteristic
(ROC) curve in Fig. 6 visualizes the trade-off between the true positive rate and the
false positive rate, when different cutoff points are used in our example. If higher
cutoff points are chosen, the false positive rate decreases (e.g., from 0.36 (i.e., 33 /
(33 þ 58)) to 0.24 (i.e., 22 / (22 þ 69)) if a cutoff point of 0.6 instead of 0.5 is
chosen). Choosing a cutoff point of 0.49 would maximize the hit ratio to 0.77 in the
given setting. Generally, the area under the curve is frequently used as a meaning-
ful measure to evaluate the predictive performance of logistic regression models.
In the given example, it yields a value of 0.8164, indicating that the logistic
regression provides an excellent discrimination.

Interpretation of the Coefficients
Table 7 shows the coefficients of the four variables included in the logistic regres-
sion, as well as the constant. With the exception of the significance level and the
direction of the effect of each variable, a direct interpretation of the coefficients of the
logistic regression model is not possible. As an indicator of the change in odds
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resulting from a one unit change in the predictor, the odds ratios (see Table 7) are
helpful for interpreting the coefficients (see Field 2013, pp. 766 et seq. for a detailed
explanation).

In our example, the odds of the use of SCs are defined as follows:

odds ¼ probability, that SCs are used

probability, that no SCs are used
(36)

The probability of using SCs (i.e., P(SCs)) is derived by applying the logistic
regression coefficients in our example to formula (25), while the probability, that
SCs are not used is simply 1-P(SCs):

P SCsð Þ ¼ 1

1þ e� 2:3121þ0:008x1þ3:0574x2þ0:1110x3�0:0258x4ð Þ (37)

The odds ratio represents the odds before and after a one unit change of the
predictor variable:

odds ratio ¼ odds after a one unit change

original odds
(38)

In our example, the odds ratio for sales force size is derived by e0.0080 = 1.008
and indicates that an increase of the salesforce by one salesperson increases the odds
of using SCs by 1.008 or 0.8%. If the length of the sales cycle is increased by
one month, the odds of using SCs are reduced by 0.974, equivalent to 2.6% (e0.0258).
As mentioned in section “Logistic Regression Procedure,” odds ratios are dependent
on the scaling of the variables. This can easily be seen when comparing the
magnitude of the odds ratios with the mean values in Table 7. Further, a change of
odds ratios does not result in a constant change of probabilities. Thus, in order to
derive insights on the relative importance of the determinants of the use of SCs, we
calculated the variables’ elasticities based on the means of the non-SC observations.
If these means are used in the logistic regression function, we observe a probability
of P = 41.07% that SCs are used.

As elasticities are dimensionless, they can be compared directly with each other at
the absolute level. However, just like the partial derivatives, they are valid only for a
certain point examined in the logistic probability function (e.g., the means of the
non-SC observations in our application) and vary when other points (e.g., the means
of the SC observations in our application) are examined.

All elasticities shown in Table 7 exhibit absolute values that differ substantially
from 0; that is, the influence of the independent variables on the probability that SCs
are deployed is comparatively high. However, there are substantial differences
between the elasticities: in terms of magnitude, the strongest influence stems from
the variable “adequacy of output measures,” followed by “replaceability of sales
people,” “length of the sales cycle,” and “sales force size.”
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In the event that P = 41.07%, it may be deduced that with a 1% increase in the
size of the sales force (i.e., from 42.12 to 42.54 sales people), the probability Pi that
SCs are used increases by 0.20% to approximately 41.15%. If the length of the
19.08 week sales cycle is increased by 1% to approximately 19.27 weeks, the
probability Pi decreases by -0.29% to 40.95%. For the other two significant variables
used in our example, the effect of a 1% change in the influencing factors can be
calculated analogously.

For sales mangers it might be revealing to know, how the probability that SCs
are used changes when the values of the independent variables are changed by a
certain level (e.g., “what effect is observed on the probability that SCs are used,
when the length of the sales cycle increases from 10 to 15 weeks?”). In our
example of a sensitivity analysis in Table 7, the mean values of the non-SC
observations are selected as the baseline again. If only the mean values of the
non-SC observations are used in the logistic function, we derive a probability of
41.07% that SCs are used. For our sensitivity analysis, we now replace the mean
values of the non-SC observations with the mean values of the SC observations
one at a time for each independent variable. The values of the other variables are
at the same time kept constant at the means of the non-SC observations. The
estimated probabilities shown in Table 7 indicate that the largest influence on the
probability that SCs are used emanates from “sales force size.” If the number of
sales people increases from 42.12 (i.e., mean for sales forces that do not use SCs)
to 416.74 (i.e., mean value for sales forces that deploy SCs), the estimated
probability to use SCs rises from 41.07% to 93.23%. Notably, the variable is
ranked as least important with regard to its elasticity. This can be explained by the
substantial difference between the means of the non-SCs and SCs observations,
which exhibit a ratio of almost 1:10. While elasticities are good at indicating a
variable’s influence for a rather limited range of values, sensitivity analyses are
useful to reveal probability changes for larger changes of the independent vari-
able. The variable “adequacy of output measures” also exerts a substantial,
although clearly smaller influence on the change in the probability that SCs
are used. If this standardized multiple-item variable (which is normed between
0 and 1) equals 0.55 (i.e., the mean of cases where SCs are used), rather than
equaling 0.44, the probability of using SCs increases from 41.07% to 49.41%.
While a substantial impact is also exerted by the “length of the sales cycle” on the
estimated change in the dependent variables, the variable “replaceability of sales
people” exerts the lowest influence on Pi.

Logistic regression can also be used for prediction or cross-validation purposes.
As part of cross-validation, the estimated coefficients can be applied to a holdout
sample. In this case, only a part of the sample is used for calibrating the logistic
function, which is then used to predict the actual outcomes of the remaining sample.
Comparing the predicted outcomes with the actual outcomes of the holdout sample
provides a good indication about the predictive power of the logistic function.
Especially in direct marketing, it is crucial to know which customers will respond
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to a direct marketing instrument (e.g., direct mailings) in order to select the most
promising customers. In this case, choosing the logistic function with the best out-of-
sample prediction performance is pivotal for the success of a marketing campaign.
Evaluations of the predictive performance, which are based on the calibration
sample, might be particularly misleading when using models that suffer from
overfitting (see section “Logistic Regression Procedure” and Tillmanns et al. 2017
for further explanations).

However, the estimated function can also be used to facilitate management
decisions: companies considering whether or not to use SCs might use the findings
of the logistic regression model presented in our application. Based on the attribute
values given in a certain company, managers can derive the probability whether SCs
are used by companies with similar attribute values. As an illustration, we use the
observed attributes of a pharmaceutical company (see Table 8). The attributes of this
company are then applied to Eq. 25 with the coefficients of the logistic regression
model, which results in a probability of Pi = 28.05% that SCs are used. Since the
observed company currently does not use SCs, the current (non-)use of sales contests
corresponds to the typical practice as observed in the sample.

Conclusion

In the preceding sections, we addressed the fundamentals of discriminant analysis
and logistic regression. Table 9 provides a compact overview of both methods in
terms of their essential characteristics.

In principle, both methods are suitable for research questions in which the
dependent variable has a categorical scale level with two or more groups. They
might be applied for either classification or prediction purposes.

Compared to discriminant analysis, logistic regression has a number of key
benefits, which relate particularly to the comparatively high robustness of the
estimation results. For example, logistic regression allows to conduct analyses
even in cases where the assumptions of discriminant analysis are violated, such as
for the analysis of nonmetric independent variables (Hosmer et al. 2013, p. 22).
As in linear regression, categorical variables can be analyzed using dummy
variables, while in discriminant analysis, such variables would violate the
assumption of homogeneous variances in the groups (Hair et al. 2010, p. 341
and p. 426).

Table 8 Data for a pharmaceutical company regarding the use of sales contests

Independent variable Logit coefficient Observation at the sample company

Sales force size þ0.0080 18

Adequacy of output measures þ3.0574 0.39a

Replaceability of sales people þ0.1110 5a

Length of the sales cycle (in weeks) -0.0258 20
aFor further information on these scales refer to Krafft et al. (2004) and the literature cited there
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Further, the assumption of multivariate normally distributed independent vari-
ables, which is required for the use of discriminant analysis, is frequently not met in
practical applications. In these situations, logistic regression is also preferable. The
same holds for studies in which the analyzed groups have very different sizes
(Tabachnik and Fidell 2013, p. 380). Another important advantage of logistic
regression is that through the regression procedure, asymptotic t-statistics can be

Table 9 Overview of logistic regression and discriminant analysis

Logistic regression Discriminant analysis

Objectives

■ Identification of variables that contribute to
the explanation of group membership

■ Prediction of group membership for out-of-
sample observations

■ Determination of linear combinations of the
independent variables that optimize the
separation between the groups and minimize
the misclassification of observations

■ Identification of variables that contribute to
explaining differences between groups

■ Predicting the group membership for out-of-
sample observations

Estimation principle

Maximum likelihood approach Maximization of the variance between the
groups, relative to the variance within the
groups

Scaling of the variables

■ Dependent variable: nominal scale
■ Independent variables: metric and/or

nominal scales

■ Dependent variable: nominal scale
■ Independent variables: metric scales

Assessment of the significance and strength of influence of the independent variables

■ Wald test, likelihood ratio test
■ Odds ratio, standardized coefficients, partial

derivatives, elasticities, sensitivity analyses

■ F-test (univariate ANOVA)
■ Standardized discriminant coefficients,

discriminant loadings

Interpretation of the coefficients

Coefficients represent the effect of a one-unit
change in the independent variables on the
logit

Discriminant coefficients and weights reflect
the relative average group profile

Sample size (recommendations)

■ A minimum of 10 observations per
independent variable in the smallest group

■ Large samples sizes are recommended
because of the asymptotic properties of the
maximum likelihood estimates in the model
parameters

■ A minimum of 20 observations per group
■ A minimum of five observations per

independent variable. Better: 20
observations per independent variable to
attain stable estimates for the standardized
coefficients and weights

Assumptions/recommendations

■ Nonlinear relationships
■ No multicollinearity
■ Errors are independent
■ Linearity of the logit

■ Linear relationships
■ No multicollinearity
■ Multivariate normal distribution of the

independent variables
■ Homogeneity of the variance-covariance

matrices of the independent variables
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provided for the estimated coefficients. The confidence intervals obtained in dis-
criminant analysis are, on the other hand, not interpretable (Morrison 1969, pp. 157
et seq.).

Compared to discriminant analysis, logistic regression is thus an extremely robust
estimation method. However, it should not be concluded that logistic regression is
always the best choice. Discriminant analysis might provide more efficient estimates
with higher statistical power if group sizes do not turn out to be too unequal and in
cases where the assumptions of discriminant analysis are met (Press and Wilson
1978, p. 701; Tabachnik and Fidell 2013, p. 380 and p. 443). Further, because of the
asymptotic properties of the maximum likelihood estimation, the use of logistic
regression often requires larger sample sizes than discriminant analysis. Addition-
ally, researchers should examine whether the assumed nonlinear development of the
probability Pi is suitable for the specific research context. If, for example, a linear
change of Pi is more appropriate, the logistic regression should be avoided. Instead,
researchers should check whether linear approaches such as the linear probability
model (LPM) or discriminant analysis are more appropriate (Aldrich and Nelson
1984).
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Abstract

Many phenomena in marketing involve multiple levels of theory and analysis.
Adopting a multilevel lens to marketing phenomena can often yield richer and
more rigorous results. However, the consideration of multiple levels of theory and
analysis often leads to the challenge to cope with nested data structures in which a
lower level unit of analysis is nested within a higher level unit of analysis.
Explicitly acknowledging such nested data structures is important as its analysis
with single level analysis techniques may result in biased results and thus
incorrect conclusions because nested data structures often violate assumptions
of conventional single level analysis techniques. A methodological approach
which explicitly accounts for multiple levels of analysis and thus the nested
structure of data is referred to as multilevel modeling. This chapter attempts to
help researchers and practitioners interested in investigating multilevel phenom-
ena by providing an introduction to multilevel modeling. It therefore describes the
theoretic fundamentals of multilevel modeling by outlining the conceptual and
statistical relevance of multilevel modeling. Furthermore, it provides guidance
how to build a multilevel regression model using a step-by-step approach. The
chapter also discusses how to assess the fit of multilevel models, how to center
variables at different levels of analysis, and how to determine the sample sizes to
adequately estimate multilevel models. Moreover, it offers insights how the logic
of multilevel regression analysis could be expanded to multilevel structural
equation modeling, discusses different statistical software packages that can be
employed to estimate multilevel models, and provides a detailed example of
building and estimating a multilevel model.

Keywords

Random coefficient modeling · Hierarchical linear modeling · Nested data
structures · Hierarchical data · Between variance · Within variance · Random
intercept · Random slope · Cross-level interaction · Intraclass correlation
coefficient · Group mean centering · Grand mean centering

Introduction: Relevance of Multilevel Modeling in Marketing
Research

Many phenomena in marketing which raise the interest of marketing researchers and
practitioners involve multiple levels of theory and analysis. For example, marketing
researchers and practitioners may be interested investigating which skills salespeo-
ple do need to service their customers best (Homburg et al. 2011), how marketing
and/or sales managers may behave to increase their employees’ performance
(Wieseke et al. 2009), or to determine the effectiveness of different instruments of
the marketing mix in managing brands across different countries (Steenkamp et al.
2010). Indeed, all of these questions pertain to multiple levels – i.e., the salesperson
and the customer level, the manager and the employee level, and the customer and
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the country level. Recognizing the multilevel nature of marketing phenomena can be
important for at least two reasons.

First, the recognition and inclusion of different levels of theory often has the
potential to provide richer and more rigorous insights of the studied phenomenon. It
may provide richer insights because acknowledging the multilevel nature of a
phenomenon allows the identification of contextual factors which influence the
phenomenon under investigation. Or as Hitt et al. (2007, p. 1385) put it: “Using a
multilevel lens reveals the richness of social behavior; it draws our attention to the
context in which behavior occurs and illuminates the multiple consequences of
behavior traversing levels of social organization. For management to continue
advancing as a field in which scholars seek to explain the behaviors of individuals,
groups, and organizations, we must expand our theories and empirical investigations
to encompass these multilevel effects.” Originally referring to management, this
conclusion also strongly pertains to marketing research. Adopting a multilevel lens
may also provide more rigorous insights because it is associated with collecting data
at multiple levels. Such multilevel data collections can assure that each variable is
measured at the adequate level (e.g., salesperson variables at the salesperson level
and customer variables at the customer level) (Klein et al. 1994) and often result in
multisource data sets benefiting from advantageous characteristics such as a lower
susceptibility to common method bias (Johnson et al. 2014).

Second, it is important to account for the multilevel nature of marketing phe-
nomena because acknowledging multiple levels of analysis may have consequences
for the adequate methodological approach. Specifically, multilevel phenomena are
characterized by hierarchical data structures in which lower entities are nested within
higher entities (e.g., customers nested within salespersons or employees nested
within managers) (Heck and Thomas 2015). To acknowledge such nested data
structures is important because they may violate assumptions of conventional single
level analysis techniques and thus may result in biased standard errors and in
spuriously significant results (Hox et al. 2018; Wieseke et al. 2008).

A methodological approach to adequately account for the complexity associated
with hierarchical nested data structures is referred to as multilevel or random
coefficient modeling (Raudenbush and Bryk 2002; Hox et al. 2018). It can concep-
tually be regarded as a system of hierarchical regression equations. In such a
hierarchical system of regression equations, one equation captures the influence of
variables at the lower level, while one or more equations refer to the influences at the
higher level (Hox et al. 2018). Thereby, multilevel modeling can help to assure the
integrity between multilevel theory and multilevel analysis and thus help to unfold
the full potential of a multilevel lens to marketing phenomena.

This chapter attempts to help researchers and practitioners interested in investi-
gating multilevel phenomena by providing an introduction to multilevel modeling.
We begin with discussing the “Fundamentals of Multilevel Modeling” and describe
its conceptual and statistical relevance. Furthermore, we discuss core types of
constructs and models in multilevel contexts. Then, the section “Process of Multi-
level Modeling: The Two-Level Regression Model” begins with offering a detailed
description of the steps of estimating a two-level regression model and provides

Multilevel Modeling 371



information on how the model fit of a multilevel model is assessed. Afterwards, we
discuss different approaches of centering variables at lower and higher levels and
provide insights into sample size requirements for adequately analyzing multilevel
models. The Section “Multilevel Structural Equation Modeling” extends the multi-
level regression approach and explains how to apply multilevel structural equation
modeling. In Section “Software for Estimating Multilevel Models” we provide
information on core software packages for multilevel analysis and in section “Exam-
ple: Building and Estimating a Two-Level Model” we offer a detailed example of
building and estimating a multilevel model. Finally, we conclude this chapter by
offering an overview of the most important terms introduced in this chapter together
with their definitions.

Fundamentals of Multilevel Modeling

The Conceptual Relevance of Multilevel Modeling

The adequate analysis of nested data structures is important because such data
structures permeate marketing research (Wieseke et al. 2008). Specifically, market-
ing research in fields such as relationship marketing, international marketing, per-
sonal selling, sales management, services, organizational research in marketing,
research based on secondary data (e.g., research at the interface of marketing and
finance), longitudinal marketing phenomena, or meta-analyses attempts to address
research questions which involve nested data structures and multiple level of
analysis. Table 1 provides an overview of exemplary nested data structures in the
aforementioned fields of marketing research and additionally offers examples of
papers that conducted a multilevel approach to analyze their data.

Most of the nested data structures presented in Table 1 and thus the conceptual
relevance of multilevel modeling primarily stems to large extent from the hierarchi-
cal structure of (marketing) organizations. In this respect Klein et al. (1994, p. 198)
state that “By their very nature, organizations are multilevel. Individuals work in
dyads, groups, and teams within organizations that interact with other organizations
both inside and outside the industry. [...]. To examine organizational phenomena is
thus to encounter levels issues.” In the following, we outline the conceptual rele-
vance of multilevel modeling in marketing research by highlighting how different
entities are integrated in the conceptual structure of a marketing organization and
how they are thus nested in higher level entities (e.g., Hitt et al. 2007; Wieseke et al.
2008). Figure 1 illustrates an exemplary hierarchical structure in marketing
organizations.

Figure 1 visualizes customers as the centroid of the exemplary multilevel struc-
ture. As salespeople’s behavior is crucial for customer perceptions of the selling
interaction (e.g., Homburg et al. 2009a), the company’s products (e.g., Goff et al.
1997), and the organization as a whole (e.g., Homburg et al. 2011), customers are
nested within salespeople. Consequently, the aforementioned customer perceptions
depend in part on the salespeople by whom they are served. The study of Mikolon

372 T. Haumann et al.



et al. (2015), for example, investigates data from customers nested within service
provides. The study uses dyadic data of 310 customers that interacted with 108 ser-
vice providers to explore the role of complexity in professional service encounters.

Further, Figure 1 illustrates salespeople’s complex integration within their orga-
nization. First, salespeople work in sales teams which are part of larger organiza-
tional units (e.g., departments), which in turn are nested in organizations which are
nested in environments (e.g., industries). Consequently, salespeople are part of a
larger collective that may share values, attitudes, cognitions, experiences, percep-
tions or behaviors (Kozlowski and Klein 2000). The study of Ahearne et al. (2010)
provides an example of such a nested structure by investigating a data set comprising
1070 sales representatives nested within 185 selling teams.

Second, sales managers are usually responsible for sales teams and department
managers for company departments. Therefore, salespeople are nested in their

Table 1 Exemplary nested data structures in marketing research

Research area

Exemplary nested data structuresa

Exemplary papersLower level Higher level

Relationship
Marketing

Customers Organizations Homburg et al. 2009b; Maxham et al.
2008; Netemeyer et al. 2012; Palmatier
2008

International
Marketing

Individuals
(e.g.,
salespeople,
customers)

Countries
Cultures

Hohenberg and Homburg 2016;
Steenkamp et al. 2010; Walsh et al.
2014

Personal
Selling

Customers Salespeople Homburg et al. 2011; Mikolon et al.
2020; Wieseke et al. 2014

Sales
Management

Salespeople Leaders
Territories
Sales Teams

Ahearne et al. 2010; Auh et al. 2014;
Mathieu et al. 2007; Wieseke et al.
2009; Van der Borgh et al. 2019

Service
Research

Customers
Frontline
Employees

Service
Providers
Organizations

Brady et al. 2012; Donavan et al. 2004;
Mikolon et al. 2015

Organizational
Research in
Marketing

Frontline
Employees

Work Groups
Subsidiaries

de Jong et al. 2004; Homburg et al.
2011; Liao and Chuang 2007; Wieseke
et al. 2012

Marketing-
Finance
Interface

Firms Industries Anderson et al. 2004; Groening et al.
2016; Gruca and Rego 2005;
Josephson et al. 2016; Larivière et al.
2016; Misangyi et al. 2006

Longitudinal
Marketing
Phenomena

Observations in
Time

Individuals
(e.g.,
salespeople,
customers)

Boichuk et al. 2014; Fu et al. 2010
Lam et al. 2013

Meta-Analysis
in Marketing
Research

Effect Sizes/
Relationships

Samples/
Studies

Edeling and Fischer 2016; Krasnikov
and Jayachandran 2008; Roschk and
Hosseinpour 2020; Troy et al. 2008

Note: aIncluded levels of analysis (i.e., nestings) are only exemplary and for illustrative purposes.
The cited article may include further other levels of analysis.
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direct supervisors, who again may be nested in their department managers. Depart-
ment managers in turn may have to report to the organization’s chief marketing
officers at the top of the organization. As supervisors oftentimes have an enormous
impact on their subordinate employees (e.g., Bass and Bass 2009), it is important
to account for important supervisor characteristics when investigating processes at
lower organizational levels. An example yielding support for the importance of
supervisors in affecting their subordinates is provided by the study of Wieseke
et al. (2009).

Furthermore, Figure 1 illustrates that customers, salespeople, sales teams, and
departments are nested in organizations. Thus, researchers that are interested in
investigating inter-organizational differences of organizational entities or customers
will be confronted with the nesting of these entities in organizations. Palmatier’s
(2008) investigation of interfirm relational drivers of customer value reflects an
example of the analysis of such data where business-to-business customers
(n ¼ 466) are nested in different organization (n ¼ 27).

Finally, Figure 1 shows that organizations are nested in environments. Environ-
ments could be the industry, country, culture or market in which an organization
operates. The study of Gruca and Rego (2005) provides an example as it investigates
how consequences of customer satisfaction on shareholder value differentiate
between industries. The authors’ analyze data of 840 firm-year observations in
23 industries.

In addition to the hierarchical structure of marketing organizations, there are
further study designs that are associated with a nested data structure (Deadrick
et al. 1997). For example, longitudinal data or data of repeated measures can be
considered as hierarchical because repeated measurements are nested within indi-
viduals (Hox et al. 2018). When investigating longitudinal data employing a multi-
level modeling approach, the series of repeated measures can be modeled at the

Fig. 1 Exemplary multilevel structure in marketing organizations. (Note: Adapted from Hitt et al.
(2007))

374 T. Haumann et al.



lower level and the individual subjects at the higher level. The consideration of
repeated measures of individuals over time allows researchers to investigate “the
existence, nature, and causes of within-person [. . .] changes over time” (Deadrick
et al. 1997, p. 748).

The study of Fu et al. (2010) provides an example for the application of multilevel
modeling for the examination of longitudinal data. The study comprises survey data
of 534 salespeople and corresponding performance data of salespeople’s daily sales
during two product’s first several months in the market. The authors employ a
growth curve model to examine how the continuous outcome daily sales changes
over time and how it is affected by salesperson variables.

Another study design in which multilevel modeling can yield richer and more
accurate results refers to meta-analytical investigations (a general introduction to
meta-analyses inmarketing research is provided byBijmolt (2021) in the online version
of this handbook). Ameta-analysis reflects a systematic approach towards synthesizing
a larger number of results from empirical studies to summarize findings of a specific
research question (Glass 1976; Hox et al. 2018; Lipsey and Wilson 2001). Meta-
analyses may be characterized by nested data structures as multiple effect sizes of
relationships under investigation are nested within studies (Bijmolt and Pieters 2001).
Adopting a multilevel approach recognizes these nestings and additionally allows to
include differences between studies (e.g., research operational factors such as measure-
ment approaches, environmental factors such as industries or cultures, or sample or
manuscript related factors such as socio-demographical differences between samples or
manuscript statuses [e.g., published vs. unpublished]). Methodologically, a multilevel
approach to meta-analysis includes effect sizes of relationships under investigation at
the lower level and between study characteristics at the higher level (Hox et al. 2018).
Thereby, the study characteristics can be used as explanatory variables to explain
differences in the investigated relationships between studies (Hox et al. 2018).

An example for applying multilevel modeling to conduct a meta-analysis
reflects the study of Troy et al. (2008). In this study, the authors analyze 146 cor-
relations of 25 studies of cross-functional integration and new product success.
They use multilevel modeling to investigate moderating influences under which
the examined relationship of cross-functional integration and new product success
varies.

Thus, in sum, focusing solely on a single level of theory often impedes a profound
understanding of complex phenomena prevalent in marketing research (Wieseke
et al. 2008). Returning to the introductory thoughts, including the (multiple) relevant
levels of analysis into one’s theoretical framework has the potential to increase the
validity of its findings and thus its contribution to academic marketing research and
to provide richer insights for marketing practitioners.

The Statistical Relevance of Multilevel Modeling

The following section describes the methodological challenges that exist when
analyzing hierarchical data structures. Figure 2 illustrates a hierarchical data
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structure with two levels. In hierarchical data structures, usually one entity at the
higher level (A; e.g., a salesperson) relates to multiple entities at the lower level (A1-
A4; e.g., consumers served by the same salesperson). In such nested data structures,
the association between a specific higher level entity (A) and its nested lower level
entities (A1-A4) is referred to as a cluster (cluster A).

In hierarchical data structures, in which multiple entities from the lower level are
nested within a specific entity at the higher level, one can distinguish between
different types of variability of variables at the lower and the higher level. Figure 3
visualizes the different types of variability of lower and higher level variables.

Specifically, in a two level context, lower level variables (L) are characterized by
two types of variability, variability at the lower level (Level 1) which captures the
variability of a variable within a cluster (within variance between LA1-LA4 and LB1-
LB4 at Level 1) and variability at the higher level which captures the variability of the
lower level variable between clusters (between variance between the cluster mean of
cluster A and B at Level 2). In contrast, higher level variables (H) only possess
variance at the higher level (between variance between HA and HB at Level 2).

Turning to a mathematical formulation, these types of variability can be expressed
by decomposing the total variance of a variable in its parts at the lower level (i.e., the

Hierarchical Data Structure

B2B1 B3 B4

B

LOWER LEVEL
(LEVEL 1 / WITHIN-LEVEL / 

E.G. CUSTOMERS)

HIGHER LEVEL
(LEVEL 2 / BETWEEN-LEVEL / 

E.G., SALESPEOPLE)

A2A1 A3 A4

A

Fig. 2 Hierarchical data structure

Different Types of Variability of Lower and Higher Level Variables

LA2LA1 LA3 LA4 LB2LB1 LB3 LB4

Mean(LA1-LA4) Mean(LB1-LB4)

HA HB

Within 
Variance

Between 
Variance

Lower Level  
Variable
(Level 1)

Higher Level 
Variable
(Level 2)

Fig. 3 Different types of variability of lower and higher level variables
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within variance) and the higher level (i.e., the between variance). Consequently, the
variance of a variable x can be written as:

VT xð Þ ¼ VW xð Þ þ VB xð Þ ð1Þ
If x denotes a variable at the higher level, VT(x) equals VB(x) since higher level

variables possess no lower level variability. However, variables at the lower level
often possess meaningful variability at both levels.

This complex variance structure of lower and higher variables can have conse-
quences for the analysis of data. First, lower level observations belonging to different
clusters may not be independent from each other (which would be reflected in a
meaningful between variance of the lower level variable). However, independence
of observations is a core assumption of many single-level methods and a violation of
this assumption could lead to biased standard errors and incorrect hypothesis tests
(e.g., Hox et al. 2018; Wieseke et al. 2008).

Second, if one is interested in modeling the influence of a higher level variable at
a lower level variable using a disaggregated approach (i.e., by disaggregating the
higher level variable to the lower level), conventional single-level methods would
erroneously assume the disaggregated higher level observations to be independent
information and use the larger lower level sample size for hypothesizing testing
rather than the adequate higher level sample size. Erroneously using the larger
sample size may lead to downward-biased standard errors and thus again to incorrect
hypotheses tests (e.g., Hox et al. 2018; Wieseke et al. 2008).

These potential biases of using single-level methods to analyze hierarchical,
nested data structures clearly highlight the importance of adopting a methodological
approach that is able to adequately handle such multilevel data structures. This is
especially true if one is interested in analyzing models with variables from multiple
levels.

If one is only interested in analyzing relationships between lower level variables
which are however part of a nested data structure, the biases associated with
employing a single level method depends on the degree of non-independence of
observations and thus of the proportion of between variance of the lower level
variables. This proportion of between variance (VB) compared to the total variance
(VT) of a lower level variable is often referred to as intraclass correlation (ρ; also
referred to as intraclass correlation coefficient [ICC]) and is especially helpful in
evaluating the necessity of adopting a multilevel modeling technique for investigat-
ing single level models testing relationships between lower level variables from a
nested data structure. Using mathematical notation, the intraclass correlation for a
two-level data structure can be expressed as:

ρ ¼ VB

VT
¼ VB

VW þ VBð Þ ð2Þ

where VT reflects the total variance, VB the between variance, and VW the within
variance of a lower level variable (to compute intraclass correlations for three-level
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models see for example Hox et al. (2018)). The higher the intraclass correlation the
higher the non-independence of observation, the higher the potential biases, and thus
the more important it is to employ a multilevel modeling approach. Hox (2010)
suggests 0.05, 0.10, and 0.15 as small, medium, and large values for the intraclass
correlation. However, even for small intraclass correlations biases may be substantial
if cluster sizes are large. Therefore, a second helpful metric to determine the
necessity to adopt a multilevel modeling approach is the design effect which
additionally includes information about the average cluster sizes.

The design effect reflects “the ratio of the variance of estimation obtained with the
given sampling design, to the variance of estimation obtained for a simple random
sample from the same population, and with the same total sample size” (Snijders and
Bosker 2012, p. 287). The higher the design effect, the higher the variation between
clusters and the more relevant it is to employ a multilevel modeling approach.
Design effects can be calculated as a function of the intraclass correlation (ρ) and
the average cluster size (c) (Muthén and Satorra 1995):

deff ¼ 1þ c� 1ð Þ � ρ ð3Þ
A commonly used rule of thumb is that a design effect greater than 2 indicates that

the considered variable varies substantially between clusters and, thus, a multilevel
approach is necessary to analyze the data. However, as it is only a rule of thumb, Lai
and Kwok (2015) have shown that researchers should refrain from using this rule if
they are interested in effects of higher-level predictors or investigate data with a
cluster size that is less than 10.

Types of Constructs and Models in Multilevel Modeling

Depending on the specific research question, one may distinguish between different
types of constructs and models in multilevel modeling. We first discuss constructs
referring to individuals and collectives and then distinguish between different types
of multilevel models.

Types of constructs in multilevel modeling. In multilevel modeling, one can
distinguish between constructs that refer to an individual and constructs that refer to a
larger collective. Individual-level constructs refer to characteristics, experiences, atti-
tudes, perceptions, values, cognitions, or behaviors of individuals (e.g., a customer’s
satisfaction or a salesperson’s customer orientation) and can be relevant at different
levels of a multilevel model (Kozlowski and Klein 2000). For example, in a context
with sales managers supervising multiple salespeople one may be interested whether a
sales manager’s organizational identification at the higher level may affect the sales-
people’s level of organizational identification at the lower level (Wieseke et al. 2009).

Beyond individual level constructs, multilevel models are especially helpful for
studying larger collectives (e.g., teams, departments, organizations, or industries).
Constructs describing such larger collectives can refer to their (1) global, (2) shared,
or (3) configural properties (Kozlowski and Klein 2000).
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First, global properties refer to descriptive or easily observable characteristics of a
collective (e.g., the number of salespersons in a sales team or the type of sales
context [B2C vs. B2B]). Such information can be retrieved from archival data or
measured using a key informant approach (e.g., the sales manager responsible for the
respective sales team).

Second, shared properties emerge from experiences, attitudes, perceptions,
values, cognitions, or behaviors that are held in common by a collective of individ-
uals (e.g., a service- or team-climate within a sales team) (Kozlowski and Klein
2000). Such constructs are typically assessed at the individual level and then
aggregated to the adequate level of theory and analysis, i.e., the higher level.
When employing shared properties it is important to assure that the theoretical
foundation resides at the higher level, that the measurement refers to the entity at
the higher level (e.g., the group), and that the empirical aggregation of the individual
observations is justified. To justify the aggregation of lower level observations to a
higher level, researchers often refer to the level of within group or agreement, rwg or
rwg(J ) (James et al. 1984, 1993), the proportion of within to between variance of the
variable, i.e., the intraclass correlation (ICC1), and the reliability of the group mean
(ICC2) (Bliese 2000). A description of these criteria and their specific formulas
appears in the Appendix. More detailed discussions about these and further criteria
to justify aggregation can for example be found in Woehr et al. (2015), LeBreton and
Senter (2008), LeBreton, James, and Lindell (2005), or Bliese (2000).

Third, configural properties also refer to experiences, attitudes, perceptions,
values, cognitions, or behaviors. However, in contrast to shared properties,
configural properties do not reflect agreement or common understanding but
describe a pattern or variability between the individuals of the respective collective.
A typical example for a configural property is a form of consensus within a
collective. Ahearne et al. (2010), for instance, study how interpersonal climate
consensus and the consensus regarding leadership empowerment behaviors in
sales teams influence the effect of the respective shared properties (i.e., both
group-level perceptions) on team potency. Another typical example for a configural
property from service research refers to the consensus of service climate within a
group of service employees (e.g., Schneider et al. 2002).

Types of models in multilevel modeling. Multilevel models may focus on
relationships between constructs on a single level or on relationships across levels
(Kozlowski and Klein 2000). In single-level models, researchers are solely interested
in the relationships between constructs of one level of a nested data structure.
Despite this focus on a single level, it might yet be advantageous to adopt a
multilevel modeling approach. Specifically, even if one is solely interested in
relationships between lower level variables (e.g., how individual salespersons’
customer orientation affect their individual level of sales performance), it can be
worthwhile to adopt a multilevel modeling approach. First, as mentioned before the
nested data structure may violate the assumption of independence between observa-
tions of conventional single level analysis techniques. Second, if observations are
not independent from each other, adopting a multilevel modeling approach can
account for unobserved heterogeneity between the lower level observations (e.g.,
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Hamaker and Muthén 2020). However, if one wants to analyze a single-level model
and is solely interested in relationships between higher level variables and if the level
of theory and analysis of the included constructs reside at this level and no higher
levels exist, a single-level analysis technique can be employed (Kozlowski and
Klein 2000).

In contrast to single-level models, cross-level models include relationships
between variables of different levels. In cross-level models, a higher level predictor
variable may either directly affect an outcome variable at the lower level or moderate
a relationship between two variables at the lower level, which is typically referred to
as a cross-level interaction. For example, a sales manager’s empowering leadership
may affect her/his followers’ self-efficacy using a new sales technology system and
may additionally moderate the relationship between salespersons’ prior work expe-
rience and their technology self-efficacy (Mathieu et al. 2007).

Another type of multilevel models includes predictor and outcome variables from
multiple levels but do not assume cross-level relationships. A specific type of such
models, which gained some interest in multilevel research, are homologous models.
Homologous models examine whether a process at the lower level (e.g., the indi-
vidual level) is consistent with a similar process at the higher level (e.g., the team
level) (Chen et al. 2005). For example, such a model may examine whether the effect
of individual feedback on individual self-efficacy is consistent with the effect of
team feedback on collective self-efficacy (Chen et al. 2005). Figure 4 offers a
graphical overview of the discussed models for which employing a multilevel
analysis technique is recommended.

Beyond these models, another widely used application of multilevel modeling is
the analysis of longitudinal data. Longitudinal data has a nested structure such that
repeated observations over time are nested in an entity – for example daily data on
sales performance nested within a salesperson (Fu et al. 2010). Consequently,
multilevel models to analyze longitudinal data describe the development of the
outcome variable over time at the lower level. This development in its most simple
form is characterized by a (random) intercept and slope parameter. Additionally,
time-varying covariates may be added at the lower level. At the higher level, time-
invariant covariates, that may help to explain the variance in the random parameters
of the lower level, can be added to the model.

Consequently, such models can be used to effectively analyze panel data (please
see ▶ “Panel Data Analysis: A Non-Technical Introduction for Marketing
Researchers” in this handbook for a general introduction to panel data analysis and
an example of multilevel modeling of panel data). Furthermore, such models may be
easily extended to account for additional levels (e.g., salespeople in teams) or more
complex patterns of the development of the outcome variable over time, such as
quadratic or cubic patterns. This opportunity to analyze different patterns over time
makes multilevel modeling also an alternative to structural equation modeling to
estimate latent growth models (Hox et al. 2018). More detailed discussions of
multilevel models to analyze longitudinal data and estimate latent growth models
can for example be found in Hox (2011), Hedeker and Gibbons (2006), Duncan,
Duncan, and Stryker (2013), Stoel and Garre (2011), and Hox et al. (2018).
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Process of Multilevel Modeling: The Two-Level Regression Model

The major advantage of multilevel modeling is the opportunity to estimate effects
between variables on different levels of analysis while accounting for the hierarchi-
cal data structure. However, due to consideration of multiple levels of analysis, the
estimation of multilevel models oftentimes involves a high degree of complexity.
Therefore, multilevel models are usually estimated in a stepwise process. In the
following, we outline the five-step process of estimating a two-level regression
model as suggested by Hox et al. (2018) (please refer to Skiera, Jochen Reiner,
and Albers (2021) in this handbook for a general introduction to regression analysis).
In describing each step, we adopt a notation in which we outline the equation at the
lower level (i.e., Level 1 [L1]), at the higher level (i.e., Level 2 [L2]), and then
provide an integrated regression equation (I). After explaining the stepwise process

Core Types of Multilevel Models
A: Single-level model – lower level predictor-outcome relationship with random intercept and slope

Model Notation: L1: 

Higher Level

Lower Level

B: Cross-level model – direct effects of a lower and a higher level predictor on a lower level outcome variable

Model Notation: L1: 

Higher Level

Lower Level

C: Cross-level model including a cross-level interaction effect.

Model Notation: L1: 

Higher Level

Lower Level

D: Homologous Model similar model structure for the individual (I) level and the collective (C) level

Model Notation: L1: 

Higher Level

Lower Level

Fig. 4 Core types of multilevel models. (Notes: In this overview we exemplary focus on models
with two levels. In all described models, we allow the intercepts and slopes to vary across higher-
level entities. Multilevel models may of course include further interactions of variables residing at
the same level, which are not included here. In describing the homologous model in Panel D we
assume that the variables at the lower and higher level are measured separately)
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of the two-level model, we briefly discuss the assumptions of the multilevel regres-
sion model. In addition to the statistical description of the stepwise-estimation of a
multilevel model, the section “Building and Estimating a Two-Level Model” pro-
vides an example of this process in a marketing context.

Step 1: Baseline Model

Step 1 reflects the estimation of the baseline model. The baseline model (also
referred to as intercept-only or random-intercept model) does not include any
explanatory variables and does only include the intercept and the residuals at
Level 1 and 2. Equation (4) describes the Level 1 model, Equation (5) the Level
2 model, and Equation (6) the integrated form of the baseline model of a two-level
regression analysis.

L1 : Yij ¼ β0j þ eij ð4Þ

L2 : β0j ¼ γ00 þ u0j ð5Þ

I : Yij ¼ γ00 þ eij þ u0j ð6Þ
In Equation (4) Yij represents the value of the dependent variable of observation

i (i ¼ 1, . . . nj; e.g., customers) in cluster j ( j ¼ 1, . . . J; e.g., salespersons). β0j
reflects the (random) intercept-term at Level 1 which is allowed to vary between
clusters as expressed in Equation (5) (see Fig. 4a for a graphical illustration of a
random-intercept model). eij denote the Level 1 residuals which are assumed to have
an expected mean of zero (E(eij) ¼ 0) and a variance σ2e Var eij

� � ¼ σ2e
� �

. As the
baseline model does not include any exploratory Level 1 variables this residual
variance σ2e reflects the within variance of the dependent variable Yij at Level 1.

Equation (5) represents the equation for the (random) intercept. Here, γ00 reflects
the intercept value and u0j the residuals of the intercept equation at Level 2. Analo-
gously to the Level 1 residuals, the residuals of the random intercept equation at
Level 2 are assumed to have an expected mean of zero (E(u0j) ¼ 0) and a variance
τ00 (Var(u0j) ¼ τ00). Again, as the baseline model contains no exploratory variable,
τ00 reflects the between variance of the dependent variable Yij at Level 2. Substituting
Equation (5) into Equation (4) allows to derive the integrated form of the baseline
model (Equation 6).

Although the baseline model does not include exploratory variables, it provides
helpful and important information because it provides estimates of the variance of
the dependent variable at Level 1 (the within variance; σ2e) and Level 2 (the between
variance; τ00). Thus, the information from the baseline model allows the calculation
of the intraclass correlation, extending Equation (2):

ρ ¼ VB

VT
¼ VB

VW þ VBð Þ ¼
τ00

σ2e þ τ00
� � ð7Þ
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The baseline model thereby provides information about the non-independence of
observations regarding the dependent variable and hence about the potential bias of
ignoring the nested data structure and consequently the importance of adopting a
multilevel modeling approach.

Step 2: Adding Independent Variables at Level 1

In step 2 of the model estimation, independent variables at the lower level are added
to the model. Equation (8) describes the model at Level 1 with the inclusion of
one independent variable, Equations (9) and (10) show the Level 2 model, and
Equation (11) presents the integrated model equation:

L1 : Yij ¼ β0j þ β1jXij þ eij ð8Þ

L2 : β0j ¼ γ00 þ u0j ð9Þ

L2 : β1j ¼ γ10 ð10Þ

I : Yij ¼ γ00 þ γ10Xij þ eij þ u0j ð11Þ
New in the Level 1 equation is the term β1ijXij which characterizes the effect of the

Level 1 independent variable Xij on the dependent variable Yij. The regression coeffi-
cient of the Level 1 variable can be substituted by γ10 (Equation 10)1 as shown in the
integrated equation (Equation 11). The equation of the random intercept remains
unchanged (Equation 10) and can also be substituted in the integrated form. Of course,
it is possible in this step to add multiple lower level variables.

Step 3: Adding Independent Variables at Level 2

In step 3, independent variables at the higher level are included in the model.
Equation (12) presents the unchanged Level 1 equation, Equation (13) shows the
new equation of the random intercept, Equation (14) depicts the unchanged equation
of the regression coefficient β1j, and Equation (15) presents the integrated equation
of the two-level model.

L1 : Yij ¼ β0j þ β1jXij þ eij ð12Þ

1Please note that although Equation (10) is labeled as a Level 2 equation where γ10 is a fixed effect
reflecting the linear effect of the independent variable Xij on the dependent variable Yij at Level
1 (Raudenbush and Bryk 2002). In step 4 we will allow this regression coefficient to vary between
clusters which then results in Equation (18) characterizing a potentially meaningful Level
2 influence.
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L2 : β0j ¼ γ00 þ γ01Z j þ u0j ð13Þ

L2 : β1j ¼ γ10 ð14Þ

I : Yij ¼ γ00 þ γ10Xij þ γ01Z j þ eij þ u0j ð15Þ
In this model a new independent variable at Level 2, Zj, has been added. This

variable only varies between clusters (j) but not between Level 1 observations (i) as
indicated by its subscript. Thus, Level 2 independent variables only possess between
variance but no within variance and can therefore only explain the between variance
component of the dependent variable.

The influence of independent variables at Level 2 is reflected in the intercept
equation (β0j; Equation 13). Here, γ01 reflects the influence of Zj on the dependent
variable Yij. Again, this equation can be extended to include additional Level 2 vari-
ables. Furthermore, Equation (13) together with Equation (14) can be substituted
into Equation (12) to derive the integrated form of the model (Equation 15), now
additionally including the influence of the Level 2 independent variable.

Step 4: Testing for Random Slopes

In step 4, the random slope model investigates whether there is substantial variance
in the regression coefficient of a Level 1 variable across Level 2 observations. Thus,
the model evaluates whether the slopes significantly vary between clusters. Equa-
tions (16) and (17) reflect the unchanged Level 1 model and the random intercept
model, respectively. Equation (18) describes the revised equation of the regression
coefficient (β1j) and Equation (19) presents the integrated equation of the two-level
random slope model.

L1 : Yij ¼ β0j þ β1jXij þ eij ð16Þ

L2 : β0j ¼ γ00 þ γ01Z j þ u0j ð17Þ

L2 : β1j ¼ γ10 þ u1j ð18Þ

I : Yij ¼ γ00 þ γ10Xij þ γ01Z j þ eij þ u0j þ u1jXij ð19Þ
New to the model in step 4 is that the regression coefficient β1j is allowed to vary

between clusters, which is reflected in adding the residual of the slope u1j to the random
slope equation (Equation 18) which results in the term u1jXij in the integrated form
(Equation (19) (Fig. 4b illustrates a model with random slope parameter and Fig. 4c
shows a model with random intercept and slope parameters). Analogously to the
residual of the random intercept equation, the residual of the random slope equation
at Level 2 is assumed to have an expected mean of zero (E(u1j) ¼ 0) and a variance
τ11 (Var(u1j) ¼ τ11).

One can test whether this variance in the slope is meaningful by directly testing
whether τ11 is significantly different from zero and/or by comparing the fit of a
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model in which the slope is allowed to vary with a model in which the slope is fixed
across clusters using a deviance test (see section “Model Estimation & Assessing
Model Fit”). If the variance in the random slope is substantial, it is recommended to
allow the slope to vary across clusters. Furthermore, one may then include higher
level variables (i.e., variables at Level 2) to explain this variance, which leads to
cross-level interaction effects, which we explain in step 5.

If there are multiple random slopes, we recommend testing their significance in a
stepwise approach to prevent errors in the specification of the model and potential
issues in the model estimation. Furthermore, in models including random intercept
and random slope parameters, one should allow the intercept and the slope to covary
(Cov(u0j; u1j) ¼ τ01).

Step 5: Adding Cross-Level Interaction Effects

If there is substantial variance in the slope between clusters (or strong theoretical
reasons suggest a cross-level interaction effect; cf. Snijders and Bosker 2012), one
can continue with step 5 – the estimation of cross-level interaction effects. In step
5, independent variables at the higher level are added to the model to account for the
variance of the random slope. Thereby one can explore whether higher level vari-
ables explain the variation between clusters of an effect of a lower level variable on
the dependent variable (i.e., the variance in the slope between clusters).

Equations (20), (21), (22), and (23) describe this model. Equation (20) and (21)
show the unchanged Level 1 equation and the equation of the random intercept.
Equation (22) describes the revised equation of the random slope and Equation (23)
presents the integrated form of the model if Equations (21) and (22) are substituted
into Equation (20).

L1 : Yij ¼ β0j þ β1jXij þ eij ð20Þ

L2 : β0j ¼ γ00 þ γ01Z j þ u0j ð21Þ

L2 : β1j ¼ γ10 þ γ11Z j þ u1j ð22Þ

I : Yij ¼ γ00 þ γ10Xij þ γ01Z j þ γ11Z jXij þ eij þ u0j þ u1jXij ð23Þ
New to the random slope equation (Equation 22) is the term γ11Zj, which

describes the effect (γ11) of the Level 2 variable Zj on the random slope parameter
β1j. The interpretation of this effect becomes more intuitive if we derive the inte-
grated form of the model by substituting Equations (21) and (22) into Equation (20).
If γ11Zj from Equation (22) is substituted into Equation (20) it is multiplied by Xij

resulting in γ11ZjXij. This expression clarifies that γ11 reflects a cross-level interaction
effect, which indicates whether the relationship between the independent variable Xij

and the dependent variable Yij varies as a function of the Level 2 variable Zj and
thus determines whether Zj moderates the relationship between Xij and Yij across
clusters.
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Assumptions of Multilevel Modeling

Multilevel regression models share many assumptions of the linear multiple regres-
sion model2 (Hox et al. 2018; Snijders and Bosker 2012) such as the correct model
specification (e.g., with respect to the functional relationship and the absence of
omitted variables), perfect reliability of included variables, or the absence of multi-
collinearity of Level 1 and Level 2 variables (Raudenbush and Bryk 2002; Hox et al.
2018). Additional assumptions of the multilevel regression refer to the residuals at
both levels and the complex variance structure. We therefore present the assumptions
referring to the residuals of the two-level model presented in step 5 in Equations (24),
(25), (26), and (27):

eij � iid N 0; σ2e
� � ð24Þ

u j ¼
u0j

u1j

� �
� iid N 0;Tð Þ withT ¼ τ01 τ01

τ10 τ11

� �
� iid N ð25Þ

Cov eij; u0j
� � ¼ 0 ð26Þ

Cov eij; u1j
� � ¼ 0 ð27Þ

Specifically, Equation (24) describes that residuals at Level 1 are assumed to be
independently and identically normally distributed (iid) with an expected mean of
zero and a variance of σ2e. Equation (25) highlights that residuals at Level 2, u0j and
u1j, are assumed to be multivariate normal distributed with expected means of
0, variances of τ00 and τ11 and a covariance of τ01 ¼ τ10. Furthermore, Equations
(26) and (27) posit that residuals at Level 1 should be independent from residuals at
Level 2. Additionally, the residuals at both levels should be homoscedastic (see
Snijders and Bosker 2012 for details, potential relaxations, and guidance on how to
test this assumption) and independent from the predictor variables at the respective
level (Raudenbush and Bryk 2002). Furthermore, analogously to standard regression
analysis, the regressors at both levels should be uncorrelated with the error terms
to avoid potential problems associated with endogeneity (please see the chapter
▶ “Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers”
for a general introduction on how to deal with endogeneity in marketing research).

Model Estimation & Assessing Model Fit

Usually multilevel models are estimated by maximum likelihood estimation tech-
niques. Maximum likelihood methods produce estimates for the population

2Note that we focus here on assumptions of multilevel models which are estimated using a
maximum likelihood estimator. Other estimation techniques can be helpful if these assumptions
are not fulfilled (see section “Model Estimation & Assessing Model Fit” and Hox et al. 2018).
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parameters by minimizing the difference between the variance-covariance matrix of
the model and the empirical variance-covariance matrix (i.e., the variance-
covariance matrix of the observed data; Hox et al. 2018). The estimation process
is an iterative process, in which in each step the improvement of the model fit is
evaluated by comparing the model fit of the new model with the fit of the previous
model. The model fit is assessed by the (Log-) Likelihood. Usually, the differences in
the (Log-) Likelihood are relatively large in the beginning and become smaller by
every iterative step. If the improvement of model fit becomes very small, the
estimation is finished and the parameter estimates of the last step are used to conduct
significance tests. Eliason (1993) provides a general overview of maximum likeli-
hood estimation techniques and Heck and Thomas (2015) and Hox et al. (2018)
provide overviews of maximum likelihood estimation techniques for multilevel
models.

An alternative to employing a maximum likelihood estimator, is the Bayesian
estimation of multilevel models (e.g., Hamaker and Klugkist 2011). Bayesian
estimation of multilevel models can especially be helpful when dealing with small
samples and non-normality (Hamaker and Klugkist 2011). Detailed discussions of
Bayesian estimation of multilevel models can for example be found in Depaoli and
Clifton (2015), Gelman et al. (2014), Hamaker and Klugkist (2011), and Gelman and
Hill (2006).

After estimating the parameter estimates, the significance of regression coeffi-
cients can be tested. To test the significance of regression coefficients, regression
coefficients are divided by their respective standard error. In most statistical software
packages, the resulting test statistic follows the standard normal or t-distribution,
depending on the specific software (Hox et al. 2018).

As outlined in the previous section, multilevel models are usually investigated in
a stepwise procedure. As every model has an individual model fit, model compar-
isons assess whether each step improves the fit of the model to the data. Model
comparisons in multilevel modeling usually base on the deviance. The deviance
value between two models is calculated by the difference between the respective
Log-Likelihood values of each model multiplied by �2.

Graphical Illustration of Random Intercept and Slope Models

A: Random Intercept Model B: Random Slope Model C: Random Intercept & Slope Model

Fig. 5 Graphical illustration of random intercept and slope models
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Generally, models with a lower deviance fit better than models with a higher
deviance. Thus, to test whether a specific model which is nested in a more general
model shows a better model fit, we can compare its deviances by calculating the
difference of the deviance between the more general model (M0 with a deviance DM0

)
and the model of interest (M1 with a deviance DM1

):

DDiff ¼ DM0
� DM1

; df ¼ pM1
� pM0

ð28Þ
The difference in the deviances (DDiff) of this test, which is referred to as deviance

difference test or likelihood ratio test, follows the chi-square distribution. The
degrees of freedom reflect the difference of the number of parameters estimated in
the model of interest (pM1

) and the more general model (pM0
). The deviance difference

test is especially helpful if the stepwise procedure of multilevel modeling is
employed to assess the improvement in model fit from one step to the next.

However, as mentioned before, the deviance test can be only applied to compare
nested models. If the models that should be compared are not nested, relative model
comparisons can be conducted with the help of other criterions, such as the Akaike
information criterion (Akaike 1973) or the Schwarz information criterion (Schwarz
1978).

Furthermore, it is often of great interest to know how much variation in the
dependent variable is explained by the independent variables. In multiple regression
analysis, the squared multiple correlation coefficient R2 measures the explained
proportion of variance in the dependent variables. This logic can also be transferred
to multilevel regression analysis. However, as the variance structure in multilevel
models is not limited to one level of analysis, the evaluation of the explained
proportion of variance in the dependent variable becomes more complex and needs
to be assessed on multiple levels of analysis. For example, in a two-level model at least
two coefficients of determination have to be calculated. One coefficient of determina-
tion for the lower level of analysis and one for the higher level of analysis.

In the following, we provide an application-oriented description of the approach
of Snijders and Bosker (1993), to provide a suitable multilevel version of R2.
Snijders and Bosker (1993) treat the proportional decreases in the estimated variance
components in the baseline model as analogs of R2-values. Consequently, to calcu-
late multilevel R2-values the variance component of the baseline model is compared
to the variance component of the comparison model (Hox et al. 2018; Raudenbush
and Bryk 2002). The following equation can be used to calculate the R2-value for a
dependent variable at the lower level, where b denotes the baseline and m the
comparison model:

R2
L1 ¼

σ2b � σ2m
σ2b

ð29Þ

Further, to assess the R2-value for the random intercept, the following equation
can be used, where, again, b reflects the baseline model and m the comparison
model:
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R2
L2,int ¼

τ200jb � τ200jm
τ2
00jb

ð30Þ

Finally, the following equation shows how the R2-value for the random slope can
be calculated by comparing the baseline model b with the comparison model m:

R2
L2,slope ¼

τ211jb � τ211jm
τ2
11jb

ð31Þ

Variable Centering

The use of centering independent variables to establish a zero point on scales that
otherwise lack such a value or to investigate interaction effects is relatively common
in ordinary least squares regression (Aiken et al. 1991; Enders and Tofighi 2007).
Most importantly, independent variables are centered to ensure that the intercept of
the regression model is interpretable as the expected value of the dependent variable,
if all independent variables have their mean value. As multiple regression models are
invariant under linear transformations, the transformation of variables changes the
estimated parameters in a similar way. Consequently, it is always possible to
recalculate the untransformed estimates (Hox et al. 2018). Due to the hierarchical
structure of multilevel data, multilevel models are only invariant for linear trans-
formations when the model does not include random slopes, which vary at the higher
level. Thus, centering becomes more complex when investigating multilevel models.

Given the nested data structure in multilevel models with lower level observations
nestedwithin higher level observations, we can distinguish different forms of centering.
The traditionally most prevalent two approaches are grand mean centering and group
mean centering (for other centering approaches, such as latent mean centering, see
Asparouhov and Muthén (2019)). When grand mean centering is applied, the grand
mean value of a variable is subtracted from all observations of that variable in the
dataset (i.e., Xij � X or Z j � Z). When group mean centering is applied, one subtracts
the group mean of a cluster j from all observations i of that respective cluster
(i.e., Xij � X:j ; with X:j describing the group mean of cluster j). Consequently, for
variables at the higher level only grand mean centering can be applied, whereas lower
level variables can either be grand mean and group mean centered. As both techniques
produce parameter estimates that can differ in their value and their meaning and can
create differences in deviance values, the centering of variables in multilevel modeling
has been discussed vibrantly in the methodological literature (e.g., Enders and Tofighi
2007; Hofmann and Gavin 1998; Kreft 1996; Kreft et al. 1995; Longford 1989;
Paccagnella 2006; Raudenbush 1989; Wu and Wooldridge 2005). In this section, we
follow the recommendations of Enders and Tofighi (2007) who focus on two-level
cross-sectional data. Further recommendations on the centering of longitudinal data can
be found for example in Biesanz et al. (2004) and Asparouhov and Muthén (2019).
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In multilevel models, the independent variables of the higher level are usually
centered on their grand mean. The decision whether lower level variables should be
centered on their grand mean or on their group mean is more complex. According to
Enders and Tofighi (2007) centering independent variables on the grand mean is
appropriate if one primarily focuses on higher level effects and includes independent
variables at the lower level only as control variables and when interaction effects
between higher level variables are investigated. Group mean centering is appropriate
if the lower level effect of the independent variable on the dependent variable is of
substantial interest and when examining cross-level interaction effects and interac-
tion effects that include lower level variables (Enders and Tofighi 2007). Both
approaches can be applied if the focus is on the analysis of the differential effects
of a variable at the lower level and the higher level. However, Enders and Tofighi
(2007) highlight that these are only recommendations as the decision whether to
perform grand mean or group mean centering cannot be solely based on statistical
evidence. Therefore, it always depends on the individual research question whether
grand mean or group mean centering is the appropriate method.

In addition, the appropriate centering of independent variables is important for the
estimation of the multilevel model. Independent variables that are centered appro-
priately will increase the speed of the estimation and will lower the likelihood of
convergence problems (Hox et al. 2018). Thus, especially, if independent variables
have a high variation in their means and variances, the appropriate centering is
important to ensure the convergence of the model estimation process.

Sample Size Considerations

In multilevel modeling decisions about adequate sample sizes are somewhat more
complex than in conventional single level analysis. As multilevel models comprise
observations on multiple levels of analysis, also decisions about adequate sample
sizes refer to multiple levels. Therefore, questions arise about the minimum level-
specific sample size to estimate unbiased parameters and standard errors and the
potential biases caused by samples that are too small. Previous simulation studies
provide some answers to these questions for two-level models.

For example, Maas and Hox (2005) investigated how the number of level two
observations (here: number of groups; nj ¼ 30, 50, 100), the number of level one
observations nested within each level two unit (here: group sizes; nij ¼ 5, 30, 50),
and the intraclass correlation (ρ ¼ 0.1, 0.2, 0.3) influence the parameter estimates
and standard errors in a simple two-level regression model with one predictor at each
level and thus one direct effect at Level 1 and Level 2 and a cross-level interaction
effect (i.e., Yij¼ γ00 + γ10Xij + γ01Zj + γ11ZjXij + u0j + u1jXij + eij). Results on the basis
of 27,000 simulated data sets (1,000 for each simulation condition) show that all
parameter estimates (i.e., intercept, regression coefficients, and variance compo-
nents) in each condition are largely unbiased (with an average parameter bias
<0.05%). Furthermore, the results show that also the standard errors of the intercept
and regression coefficients are estimated accurately under each condition. However,
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standard errors for level two variance estimates are substantially underestimated if
the number of level two observations is too low. Specifically, standard errors of level
two variance parameters are estimated about 15% too small with a number of
30 level two observations. With 50 observations at level two estimates are more
acceptable and most accurate with 100 observations at level two. The intraclass
correlation of the dependent variable had neither a substantial effect on the accuracy
of the parameter estimates nor on the accuracy of the standard errors. Overall, Maas
and Hox’s (2005) results are in line with other simulation studies showing that a
larger number of level two observations are needed to accurately estimate level two
variance components (Hox et al. 2018).

In addition, Hox et al. (2018) formulate three rules of thumb for sufficient sample
sizes in two-level regression models employing standard estimation techniques.
These rules propose specific sample sizes depending on the part of the model the
researcher is interested in. In line with the recommendation by Kreft (1996; see also
Kreft and De Leeuw 1998), Hox et al. (2018) propose a 30/30 rule with 30 level two
observations and 30 level one observations per each level two unit if one is only
interested in the fixed part of the model (i.e., the direct effects of the level one and
level two predictor variables). If one is interested in cross-level interactions, a 50/20
rule with 50 level two observations and 20 level one observations per level two unit
is suggested. For researchers who are especially interested in (co-)variance and
standard errors at level two, Hox et al. (2018) propose a 100/10 rule with
100 level two observations and 10 corresponding level one observations.

Whereas these rules of thumb offer sound advice, in practice, it may be difficult
for researchers to meet the recommended sample sizes. In this respect, the discussed
simulation study provides additional insights by showing that researchers may yield
accurate regression coefficients and standard errors with smaller samples (Maas and
Hox 2005). As mentioned in the section “Model Estimation & Assessing Model Fit,”
another potential way for researchers to cope with small samples may be the use of a
Bayesian estimation technique, which does not rely on asymptotic results (Hamaker
and Klugkist 2011).

Although a sample which is large enough to yield accurate results is a prerequisite
for conducting any multilevel study, it does not guarantee that it is large enough to
detect existing effects in the population as significant. This uncertainty leads to the
question of sufficient sample sizes to assure a high statistical power. The statistical
power of significance test refers to the probability to detect an existing effect in the
population as significant by rejecting the null hypothesis (e.g., Cohen 1992). The
mistake to not reject the null hypothesis in the presence of an effect in the population
is known as type II error and occurs with the probability β. Therefore, statistical
power is defined as (1 – β) – the probability to reject a false null hypothesis (Cohen
1992). Cohen (1992) proposes a desired level of 0.80 to assure high statistical power
of a significance test.

The decision about adequate sample sizes to achieve high statistical power in
multilevel investigations a priori (i.e., before the data is collected) depends on the
focus of the model and several additional assumptions about the data and different
parameter estimates (e.g., Hox et al. 2018; Snijders 2005). Thus, general
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recommendations about sufficient sample sizes which assure a high statistical power
would be difficult (e.g., Snijders and Bosker 2012). However, software programs
may help to determine adequate sample sizes based on the researcher’s assumptions.
For example, PinT (Power in Two-level designs) developed by Bosker, Snijders, and
Guldemond (2003; see also Snijders and Bosker 1993) helps to decide about
adequate sample sizes by providing approximate standard errors of regression
coefficients for different combinations of level one and level two observations in
two-level models. Furthermore, Mathieu et al. (2012) developed a multilevel Monte
Carlo power tool, executable in R, which helps researchers to a priori estimate the
power of their cross-level interactions. Together these resources can be very helpful
in determining model specific samples sizes to assure a high statistical power when
collecting multilevel data.

Multilevel Structural Equation Modeling

In explaining the fundamentals of multilevel analysis we so far focused on the basic
multilevel regression model. In the following we extend this approach by integrating
the logic of structural equation modeling techniques to multilevel analysis (please
refer to Baumgartner and Weijters (2021) in this handbook for a general introduction
to structural equation modeling and to Hughes and Ahearne (2010) or Hunter and
Panagopoulos (2015) for examples of multilevel structural equation modeling in
marketing research). This integration of structural equation modeling techniques to
multilevel analysis, referred to as multilevel structural equation modeling, allows the
accurate modeling of latent variables, the consideration of measurement error, and
the simultaneous estimation of more complex relationships, such as the effects on
multiple dependent variables or the modeling of causal chains (e.g., Heck and
Thomas 2015; Hox et al. 2018). Thereby, multilevel structural equation modeling
allows a more accurate assessment of relationships between variables and the
investigation of more complex relationships in multilevel settings (Heck and
Thomas 2015).

Single level structural equation modeling combines the advantages of factor
analysis, defining latent variables by their observed indicators, and path analysis,
allowing the investigation of complex causal relationships (Bollen 1989; Matsueda
2014; Muthén 2002). Corresponding with both types of advantages, the definition of
latent variables by measured indicators is captured in the measurement model
whereas the structural relationships are captured in the structural part of the model.
The basic measurement model can be represented as:

yi ¼ vþ Ληi þ ei ð32Þ
where for observation i yi is a p� 1 vector of measured variables, v is a p� 1 vector
of intercepts terms, Λ is a p � m matrix of factor loadings, ηi is a m � 1 vector of
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latent variables, and εi is a p � 1 vector of measurement errors. The basic structural
model can be written as:

ηi ¼ αþ Βηi þ ζi ð33Þ

where ηi is a m� 1 vector of latent variables, α is a m� 1 vector of intercept terms, Β
is a m � m matrix of structural regression coefficients among the latent variables,
and ζi is a m � 1 vector of latent variable regression residuals. Residuals εi from the
measurement model and residuals ζi from the structural model are assumed to be
multivariate normal with means of zero and variance/covariance matrices Θ and Ψ.
Together the measurement and structural model imply a mean (μ) and covariance (Σ)
structure which are employed to estimate the parameters using for example a
maximum likelihood estimator.

Structural equation modeling techniques have only recently been more widely
applied to multilevel data structures (Heck and Thomas 2015). In accommodating
multilevel data structures, the model set up for a (multilevel) structural equation
model is more complex as some parameters of the measurement and structural model
are allowed to vary at the higher level (Heck and Thomas 2015; Preacher et al.
2010). In the case of two-level contexts, a multilevel structural equation model can
therefore be characterized by measurement and structural models for both the lower
and the higher level (Heck and Thomas 2015). The level one (within (W )) measure-
ment and structural model can be expressed as:

yij ¼ ΛWηWij þ eWij ð34Þ

ηWij ¼ ΒWηWij þ ζWij ð35Þ

where, for observation i nested in level two unit j, yij is a p � 1 vector of measured
variables, ΛW is a p�mmatrix of level one factor loadings, ηWij is a m� 1 vector of
latent variables, and εWij is a p � 1 vector of measurement errors at level one with
means of zero and a variance/covariance matrix Θw (Asparouhov and Muthén 2007;
Heck and Thomas 2015). In the structural part of the level one model, ΒWij is a
m�mmatrix of structural regression coefficients among the latent variables at level
one and ζWij is m � 1 vector of latent variable regression residuals at level one with
zero means and a variance/covariance matrix Ψw (Asparouhov and Muthén 2007;
Heck and Thomas 2015).

The measurement and structural model at level two (between (B)) can be written as:

y j ¼ v j þ ΛBηBj þ eBj ð36Þ

ηBj ¼ α j þ ΒBηBj þ ζBj ð37Þ
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Here, yj is a p� 1 vector of measured variables at level two, vj is a p� 1 vector of
intercept terms of the measured variables, ΛB is a p � m matrix of level two factor
loadings, ηBj is a m � 1 vector of latent variables, and εBj is a p � 1 vector of
measurement errors at level two with means of zero and a variance/covariance
matrix ΘB (Asparouhov and Muthén 2007; Heck and Thomas 2015). In the structural
part of the level one model, ΒBj is a m � m matrix of structural regression coefficients
among the latent variables at level two and ζBj is m � 1 vector of latent variable
regression residuals at level two with zero means and a variance/covariance matrixΨB

(Asparouhov and Muthén 2007; Heck and Thomas 2015). As in the single
level structural equation model, the measurement and structural models imply a mean
(μ) and covariance (ΣT) structure. However, in two-level structural equation models
the covariance structure (ΣT) can be decomposed in a level one (within) and a level
two (between) component which are orthogonal and additive (Heck and Thomas
2015):

ΣT ¼ ΣW þ ΣB ð38Þ
Multilevel structural equation models can be estimated employing a full infor-

mation maximum likelihood estimator which allows the accommodation of missing
data, unbalanced cluster sizes, and importantly random slopes (Hox et al. 2018;
Preacher et al. 2010; Mehta and Neale 2005).3

The global fit of multilevel structural equation models can be evaluated
assessing standard fit indices, such as the chi-square statistic, the comparative fit
index (CFI; Bentler 1990), the Tucker-Lewis Index (TLI; Tucker and Lewis 1973),
the root mean square error of approximation (RMSEA; Browne and Cudeck 1992;
Steiger and Lind 1980), or the standardized root mean residual (SRMR; Bentler
1995). However, those indices which are based on the chi-square statistic apply to
the entire model and thus comprise information about the model fit of both the level
one and the level two model. Furthermore, as the sample size at level one is
generally considerably larger than the sample size at level two, these global
model fit indices are often dominated by model fit at level one. Given the
confounding information in the standard global model fit indices, Hox et al.
(2018) propose to assess the model fit separately for each level of analysis (see
also Ryu and West 2009). To evaluate the fit indices for level one, one can estimate

3Sometimes a slightly different notation for multilevel structural equation models is employed
(Asparouhov and Muthén 2008; Preacher et al. 2010, 2011). Following this notation, the measure-
ment model can be expressed as: Yij ¼ vj + Λjηij + KjXij + εij. The level one structural model can be
written as ηij ¼ αj + Βjηij + ΓjXij + ζij and the level two structural model can be expressed as
ηj ¼ μ + βηj + γXj + ζj. This notation additionally includes exogenous covariates captured by the
vectors Xij and Xj respectively. Furthermore, elements of the matrices vj, Λj, Kj, αj, Βj, and Γj may
vary between level two units as expressed by the level two subscripts (j) (for further details of this
notation see Preacher et al. 2010).
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an independence model (as a baseline model for the comparative fit indices) and
the hypothesized model at level one with a saturated model at level two and then
calculate the respective fit indices. Analogously, one can estimate an independence
model and the hypothesized model at level two with a saturated model at level one
to assess the fit indices for the level two model (Hox et al. 2018). In addition to the
standard fit indices from structural equation modeling, the fit of nested models can
be compared by employing the likelihood ratio test (see also “Model Estimation &
Assessing Model Fit”; Mehta and Neale 2005). Furthermore, as in multilevel
regression models, information-theoretic criteria such as Akaike’s Information
Criterion (AIC, Akaike 1973, 1987) or the Bayesian Information Criterion (BIC,
Schwarz 1978) can be employed to evaluate non-nested models (Mehta and Neale
2005).

With respect to the implementation of multilevel structural equation models some
issues can be relevant. A first issue refers to the proportion of level two variance of
latent level one variables. If one would like to examine the proportion of level two
variance of a latent level one variable relative to its total variance (i.e., the counter-
part of the intraclass correlation coefficient in multilevel regression analysis), the
factor loadings have to be constrained to be invariant across both levels in order to
make the common variance attributed to the latent factor directly comparable (Heck
and Thomas 2015). In case of invariant factor loadings, the proportion of the
between variance of a latent level one variable relative to its total variance can be
expressed as:

ψB= ψB þ ψWð Þ ð39Þ
where ψB refers to the proportion of the factor variance at level two (between) and
ψW refers to the proportion the factor variance at level one (within).

A second relevant implementation issue refers to the centering of manifest vari-
ables in multilevel structural equation models. When a multilevel structural equation
model is employed which implicitly partitions each measured level one variable into
a latent level one (within) and level two (between) component, no explicit centering
of observed predictor variables is required (Preacher et al. 2010). However, group
mean centering of level one variables may be helpful for model convergence if the
level two variance of a level one variable is essentially zero. Group mean centering
of level one variables should be avoided, if the level two effects are of theoretical
interest (Preacher et al. 2010).

A third issue when implementing a multilevel structural equation model refers to
the residual variances of observed level one variables at level two. Residual vari-
ances at level two are often very small, reflecting a high reliability (Heck and
Thomas 2015). In such occasions it can be necessary to fix these very small level
two variances to zero in order to avoid estimation problems (Heck and Thomas
2015; Muthén and Muthén 1998–2017).

Overall, multilevel structural equation models offer several advantages such as
the accurate modeling of latent variables, the consideration of measurement error
and the simultaneous estimation of more complex relationships (which is especially
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helpful to estimate less biased indirect effects in mediation models; Preacher et al.
2010). However, these advantages come at the cost of a higher model complexity
which can make it challenging to generate a converging solution. In such cases it can
be helpful to start with a smaller, less complex model and successively add addi-
tional variables or relationships. Nevertheless, it sometimes can be difficult to
identify the exact source of the estimation problem, so that Heck and Thomas
(2015, p. 179) wisely advise: “[. . .] that patience is virtue when working toward a
solution.”

Software for Estimating Multilevel Models

In the last decades the number of multilevel studies in organizational and market-
ing research has increased substantially (Wieseke et al. 2008). This increase may in
part also be traced back to the growing availability of software for estimating
multilevel statistical models. Given the high number of different software packages
that allow multilevel analyses, it is well beyond of the scope of this chapter to
review each of these software packages. We therefore focus our brief review on
some of the most widespread software packages for multilevel analysis4. In doing
so we distinguish between software which has been specifically designed for
multilevel analysis and general purpose software that allows the estimation of
multilevel models.

One of the most widespread software packages that has been designed to conduct
multilevel analysis is HLM (Raudenbush et al. 2019a). HLM, currently available in
its eighth version, may be especially well suited for beginners due to its user friendly
graphical display, which allows to specify models on a step-by-step basis. Further-
more, HLM is accompanied by a freely available, comprehensive manual
(Raudenbush et al. 2019b). The theoretical background of many applications can
additionally be found in the textbook by Raudenbush and Bryk (2002). In its current
version, HLM allows multilevel analyses up to four levels, can estimate different
types of models (i.e., univariate, multivariate, and cross-classified), allows different
distributional properties of the outcome variables (e.g., normal, Bernoulli, Poisson
binomial, multinomial, ordinal, and over-dispersion), and offers different estimation
methods (e.g., REML, FML, PQL, AGH, and higher-order Laplace approximations
to maximum-likelihood5) (Palardy 2011). This variety of modeling options makes
HLM not only attractive for beginners but also for those who want to estimate more
advanced multilevel models.

4More detailed reviews of many different software packages that allow the estimation of multilevel
models can be found at the homepage of the Centre for Multilevel Modelling at the University of
Bristol (www.bristol.ac.uk/cmm/learning/mmsoftware/)
5REML ¼ Restricted maximum likelihood; FML ¼ Full maximum likelihood; PQL ¼ penalized
quasi-likelihood; AGH ¼ Adaptive Gauss-Hermite quadrature.
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Another important program which was explicitly designed to estimate multilevel
models is MLwiN (Rasbash et al. 2016a). MLwiN has been suggested to be “the
most extensive multilevel package” (Snijders and Bosker 2012, p. 325), but has also
been considered as less user-friendly than HLM “in the sense that it is not as
directive and requires greater user knowledge” (Wieseke et al. 2008, p. 333).
However, MLwiN comes with a wealth of information, including an extensive
manual (Rasbash et al. 2016b), which can be obtained from the homepage of the
Centre for Multilevel Modelling at the University of Bristol (www.bristol.ac.uk/
cmm/). MLwiN may fit models up to five levels, has a great modeling flexibility, and
allows a wide range of possible models (Snijders and Bosker 2012; Wieseke et al.
2008), including the estimation of multiple membership models, Bayesian analysis
of multilevel models, or bootstrapping of standard errors in multilevel models.

The most widespread general purpose statistical software in the social sciences
may be IBM SPSS. To estimate multilevel models in SPSS, one can use the routine
MIXED which allows the estimation of models with up to three levels (Snijders and
Bosker 2012). Furthermore, since Version 19 SPSS also allows the estimation of
multilevel models with categorical outcomes (using the GENLIN MIXED routine)
(Heck et al. 2014). However, multilevel modeling in SPSS has some limitations
regarding the modeling flexibility (Heck et al. 2014). Detailed introductions for the
estimation of multilevel models with continuous and categorical outcomes in SPSS
are provided by Heck et al. (2012, 2014).

Another general-purpose software which offers a high modeling flexibility for the
estimation of multilevel models is Mplus (Muthén and Muthén 1998–2017). Mplus
is accompanied by an extensive user guide with detailed examples which help users
to learn the Mplus command language. Furthermore, extensive resources like videos
of short courses, a helpful discussion forum, and further examples can be obtained
from the Mplus homepage (www.statmodel.com). Mplus currently allows the esti-
mation of multilevel models up to three levels (four levels for longitudinal models in
which time is the lowest level such as in a three-level latent growth model) and offers
a variety of models, estimators, and algorithms. Based on the general latent variable
framework, Mplus is especially well suited for the estimation of multilevel structural
equation models (Hox et al. 2018; Muthén and Asparouhov 2011). Heck and
Thomas (2015) offer a detailed introduction to multilevel modeling techniques
employing Mplus.

Multilevel models can also be estimated employing the open source environment
of R. The freely available program (www.r-project.org) is potentially the most
flexible modeling environment for statistical computing. Multilevel models can be
estimated employing different packages, such as nlme (Pinheiro et al. 2016) or lme4
(Bates et al. 2016). An introduction to multilevel modeling using nlme and lme4 is
provided by Bliese (2016) and Finch et al. (2014). Multilevel models can also be
estimated using other general purpose software like Stata or SAS. An extensive and
detailed introduction for the estimation of multilevel models in Stata is provided by
Rabe-Hesketh and Skrondal (2012). Introductions for estimating multilevel models
in SAS are offered for example by Singer (1998), Bliese (2002), or Albright and
Marinova (2010).
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Example: Building and Estimating a Two-Level Model

In order to offer an example for building and estimating a multilevel model, we
draw from the study of Netemeyer, Heilman, andMaxham (2012). In their study the
authors examine the effects of customer perceived similarity to store employees and
store employees’ organizational identification (aggregated at the store level) on
customer identification and customer spending in the context of a private label
women’s apparel retailer. Furthermore, they explored the cross-level interaction
between employees’ organizational identification and customer perceived
employee similarity on both outcomes. For our example, we adopt the framework
from Netemeyer et al. (2012) and focus on the direct and interactive effects of
customer perceived employee similarity and employees’ organizational identifica-
tion on customer spending. Figure 6 presents the conceptual framework of the
example.

To offer an example for the analysis strategy outlined in the section “Process of
Multilevel Modeling: The Two-Level Regression Model,” we created a fictitious
data set comprising 10,000 observations at level one (i.e., customers) nested within
500 observations at level two (i.e., stores) to build and test the model presented in
Fig. 4. Data for customer perceived similarity and store employees’ organizational
identification is created to reflect responses on seven-point scales. Data for total
annual customer spending is created to reflect the total dollar amount of customer
spending within one year6 (for the original measures see Netemeyer et al. 2012). In

Conceptual Framework of the Example

Employee Organizational 
Identification

Total Annual 
Customer Spending

Customer Perceived 
Employee Similarity

Level 2: Store Level

Level 1: Customer Level

Fig. 6 Conceptual framework of the example. (Notes: Adapted from Netemeyer et al. 2012)

6Note that we divided the total dollar amount of customer spending within 1 year by 100 to keep the
(residual) variance estimates at a lower level, which is helpful to assure a smooth model estimation
process.
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line with the recommendations in the section “Variable Centering,” we group mean
centered customer perceived similarity and grand mean centered employees’ orga-
nizational identification. We estimated all models using Mplus 8.5 and employed a
maximum likelihood estimator with robust standard errors (Muthén and Muthén
1998–2017). The data set and Mplus input and output files can be downloaded from
the companion homepage of the handbook. In addition, we also provide the R code
employing the lme4 package (Bates et al. 2016) on the companion homepage of the
handbook.

As outlined in the section “Process of Multilevel Modeling: The Two-Level
Regression Model” the starting point for testing a multilevel model is to estimate
an intercept-only model without any predictor variables. Results of the intercept-
only model presented in Table 2 (Model 1) show an estimated mean customer
spending amount of 17.628 (reflecting 1,762.80$). Furthermore, results of Model
1 are informative about the level one (σ2e ) and level two variance (τ00) of the
dependent variable (i.e., customer spending). With the estimates of both variance
components one may determine the intraclass correlation (ρ), by dividing the level
two variance by the total variance (i.e., ( τ00

τ00þσ2e
)). Results from Model 1 imply an

intraclass correlation of 0.3349 meaning that 33.49% of the variance of customer
spending can be explained at level two (i.e., the store level).

In a second step, one can now add the level one predictor variables. In our
example, the level one predictor variable which is added to the model is customers’
perceived similarity with the store employees. Results fromModel 2 in Table 2 show
that customers’ perceived employee similarity has a positive significant effect on
customer spending (γ10 ¼ 1.455, p < 0.01). Furthermore, the results show that the
level one variance decreases substantially from Model 1 to Model 2 (Model 1: σ2e ¼
12.259, Model 2: σ2e ¼ 8.955), which reflects the variance explained by adding the

level one predictor (here: customer perceived employee similarity; R2
L1 ¼ σ2b�σ2m

σ2
b

¼
12:259�8:955

12:259 ¼ :2695). This finding is also underlined by a significant increase of
model fit as suggested by the Satorra-Bentler-corrected log-likelihood difference
test (χ2 ¼ 1252.4561, p < 0.01) (Satorra and Bentler 1999).

In a third step, the level two predictors may be added to the model. Results from
Model 3 in Table 2 show that the level two predictor variable, employee organiza-
tional identification, has a positive significant effect on customer spending
(γ01 ¼ 1.538, p < 0.01). Furthermore, the results show a substantial decrease in
the estimate of the level two intercept variance component from Model 1 to Model
3 (Model 1: τ00 ¼ 6.337, Model 3: τ00 ¼ 2.619), which reflects the variance
explained by adding the level two predictor (here: employee organizational identi-

fication; R2
L2,int ¼

τ2
00jb�τ2

00jm
τ2
00jb

¼ 6:337�2:619
6:337 ¼ :5867). In addition, when comparing

Model 3 and Model 2, we again find a significant increase in model fit (χ2 ¼
410.0310, p < 0.01).

In a fourth step one can now test whether the slope between customer perceived
similarity and customer spending varies across level two units (here: stores), which
would be necessary for a level two predictor variable to significantly explain the
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variance in this slope and thus for a substantial cross-level interaction. Results from
Model 4 in Table 2 show that the estimate of the variance component of the slope is
significant (τ11 ¼ 0.712, p < 0.01) and thus fulfills the necessary condition for a
potential cross-level interaction.

In a fifth and final step, one can now try to explain (some of) the variance in the
random slope by a level two predictor variable (here: employee organizational
identification). Results of Model 5 in Table 2 show that employee organizational
identification explains variance in the random slope of customer perceived
employee similarity on customer spending as reflected in a significant cross-level
interaction effect between customer perceived employee similarity and employee
organizational identification on customer spending (γ11 ¼ 0.483, p < 0.01). Fur-
thermore, results show a substantial decrease in the estimate of the random slope
variance component (Model 4: τ11 ¼ 0.712, Model 5: τ11 ¼ 0.344), which reflects
the variance explained in the random slope by the level two predictor (here: employee

organizational identification; R2
L2,slope ¼

τ2
11jb�τ2

11jm
τ2
11jb

¼ :712�:344
:712 ¼ :5169). Furthermore,

explaining the variance in the random slope leads to a significantly better model fit (χ2

¼ 275.8173, p < 0.01) which underlines the substantiveness of the cross-level inter-
action effect.

Plotting the cross-level interaction effect can yield further insights into the
interplay between the level one and level two predictor variable in influencing the

Cross-Level Interaction Plot:
Customer Perceived Employee Similarity x Employee Organizational Identification
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dependent variable. Figure 7 presents the interaction plot for the cross-level
interaction effect between customer perceived employee similarity and employee
organizational identification on customer spending. Specifically, Figure 7
further supports the results presented in Model 5 in Table 2. by indicating that
the effect of customer perceived employee similarity on customer spending is
stronger if employee organizational identification is high rather than if it is low
(Table 2).

Conclusions

In the last decades the number of multilevel studies in marketing and manage-
ment has substantially increased (Wieseke et al. 2008), reflecting a growing
interest in the investigation of complex phenomena traversing different levels
of analysis. With this chapter we wanted to provide an applied introduction how
research pertaining to multiple levels of analysis can be conducted by employing
multilevel modeling techniques. Therefore, we provided insights about the fun-
damentals of multilevel modeling discussing the conceptual and statistical rele-
vance of multilevel modeling. Furthermore, we offered a step-by-step analysis
strategy how to build and estimate multilevel models. We offered insights how to
evaluate the goodness of fit in multilevel models and shed light on some impor-
tant issues for the implementation of multilevel models, such as different
approaches to the centering of predictor variables and recommendations for
sufficient sample sizes. Moreover, we provided insights to more advanced multi-
level modeling techniques, such as multilevel structural equation modeling, and
offered a brief overview of different software packages that allow the estimation
of multilevel models. Finally, we offered a detailed example of building
and estimating a multilevel model. Overall, we hope that this chapter may be
helpful for those who want to start adopting a multilevel lens to capture more of
the complexity inherent to many phenomena in marketing and management
research.

Cross-References

▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶ Panel Data Analysis: A Non-Technical Introduction for Marketing Researchers
▶Regression Analysis
▶ Structural Equation Modeling
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Appendix

Appendix Key Terms and Definitions

Term Definition

Nested/
hierarchical
data structures

Data structures in which lower entities are nested within higher entities (e.g.,
customers nested within salespersons, employees nested within managers, or
customers nested within countries) (Heck and Thomas 2015).

Intraclass
correlation
coefficient
[also Intraclass
correlation
coefficient
(1) – ICC(1)]

Measure of heterogeneity of a lower level variable between higher level
entities. The intraclass correlation coefficient reflects the proportion of between
to total variance of a lower level variable. ρ ¼ VB

VT
¼ VB

VWþVBð Þwhere VT reflects

the total variance, VB the between variance, and VW the within variance of a
lower level variable (Hox et al. 2018; Snijders and Bosker 2012).

Intraclass
correlation
coefficient
(2) – ICC(2)

Measure of group mean reliability of a lower level variable across higher level
entities. The ICC(2) is often expressed in terms of ICC(1) with ICC 2ð Þ ¼

kρ
1þ k�1ð Þρ where k reflects the cluster size (Bliese 1998, 2000; Snijders and

Bosker 2012).
Recommended range for aggregation: ICC(2) � .70 � .85 (LeBreton and
Senter 2008).

rWG Index to reflect the interrater agreement for a group regarding a single variable.

rWG ¼ 1� S2X
σ2E
where S2X reflects the observed variance on the variable X and σ2E

reflects the expected variance of X if there is a complete lack of agreement
among raters (LeBreton et al. 2005; LeBreton and Senter 2008).
Recommended threshold for aggregation: rWG � .70 (LeBreton and Senter
2008).

rWG(J ) Index to reflect the interrater agreement for a group regarding multiple

(J) essentially parallel items. rWG Jð Þ ¼
J 1�S

2

X j
=σ2e

� �

J 1�S
2

X j
=σ2e

� �
S
2

X j
=σ2e

� � where S
2

X j
reflects

the mean of the observed variances of the J essentially parallel items and σ2e
reflects the expected variance of X if there is a complete lack of agreement
among raters (LeBreton et al. 2005; LeBreton and Senter 2008).

Grand mean
centering

Subtracting the grand mean from the individual observations of a variable
(Xij � X).

Group mean
centering

Subtracting the group mean from the individual observations of a variable
(Xij � X j).

Random
intercept

An intercept that is allowed to vary between higher level entities
(β0j ¼ γ00 + u0j).

Random slope A slope that is allowed to vary between higher level entities (β1j ¼ γ10 + u1j).

Cross-level
interaction
effect

Indicates whether a relationship between an independent and a dependent
lower level variable varies as a function of a higher level variable and thus
determines whether the higher level variable moderates the relationship
between the independent variable and the dependent variable across clusters
(γ11XijZj).
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Abstract

The analysis of panel data is now part of the standard repertoire of marketers and
marketing researchers. Compared to the analysis of cross-sectional data, panel
data allow marketers to alleviate endogeneity concerns when linking an indepen-
dent variable (e.g., price) to an outcome variable (e.g., sales volume). The more
accurate estimates that result from panel data analysis help improve marketers’
decision-making in focal areas such as price setting and marketing bud-
get allocation. Besides, panel data allow marketers to track customer behavior
changes and distinguish real loyalty effects (i.e., same customer repeatedly buys a
brand) from spurious effects (i.e., the same number of, but each time different set
of, customers buys a brand). This chapter provides a nontechnical introduction to
panel data analysis. Marketers will learn how to manage and analyze panel
datasets in Stata. They will learn about the focal panel data estimators (pooled
OLS, fixed effects, and random effects estimator), their underlying assumptions,
advantages, and pitfalls. Besides, we introduce the between effects estimator, the
combined approach, the Hausman-Taylor approach, and the first differences
estimator as further techniques to analyze panel data. Finally, readers will receive
an introduction to advanced topics such as dynamic panel models, panel data
multilevel modeling, and using panel data to address measurement errors.

Keywords

Cluster-robust standard errors · Dynamic panel data models · Endogeneity · Fixed
effects estimator · Hausman test · Hausman-Taylor method · Measurement error ·
Omitted variable bias · Panel data analysis · Pooled OLS · Random effects
estimator · Serial correlation

Introduction: Relevance of Panel Data for Marketing Research

The analysis of panel data is now part of the standard repertoire of marketers and
marketing researchers. Panel data, sometimes referred to as longitudinal data, con-
tain observations about different cross-sectional units, also called clusters, across
time. Hence, like cross-sectional data, panel data contain observations across a
collection of clusters, and like time-series data, panel data contain observations
about these clusters repeatedly collected over time. Examples of panel data include
the following:

• Retail scanner data: Retailers track sales volume for their products over time.
• Online transaction data: Online retailers collect information about their customers

over time.
• Market research institute data: Organizations collect consumer survey data for

brands and products over time. For instance, the American Customer Satisfaction
Index (ACSI) tracks the evolution of customer satisfaction for different
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companies over time (e.g., Fornell et al. 1996). Similarly, the Young&Rubicum
Brand Asset Valuator monitors consumers’ brand sentiment for brands over time
(e.g., chapter ▶ “Assessing the Financial Impact of Brand Equity with Short
Time-Series Data” by Mizik and Pavlov in this Handbook).

Typically, the collection of panel data requires huge resources in time and money
from investigators. Yet, as compared to cross-sectional data, panel data offer sub-
stantial advantages that can easily compensate for their data collection efforts.

First, panel data allow to study changes at the individual level and to disentangle
real loyalty effects from so-called spurious carryover effects. As an example,
aggregated brand sales data might resemble a stable pattern, indicating high loyalty.
However, tracking changes at the individual level provides insights into whether the
aggregated effect results from a loyalty effect (i.e., the same consumers purchase
regularly) or an attraction effect (i.e., the company attracts new consumers but
existing consumers do not repurchase).

Second, panel data allow addressing a potential omitted variable bias, a serious
endogeneity threat in observational data. Broadly, endogeneity refers to a situation in
which an independent variable is correlated with the error term, violating the basic
exogeneity assumption of OLS and causing all coefficient estimates of the model to
be biased and inconsistent (both properties that lead to misleading hypothesis tests).
For instance, the investigator might be interested to know whether a company’s
distribution intensity contributes to its financial performance. If she omitted com-
pany factors such as brand strength, which likely drives both financial performance
and access to distribution channels, regression results might overstate the impact of
distribution intensity. In panel data analysis, we can control for general company
effects, thereby helping to rule out many threats from omitted variables (see also
chapter ▶ “Dealing with Endogeneity: A Nontechnical Guide for Marketing
Researchers” by Ebbes et al. in this Handbook).

Third and relatedly, in contrast to typical applications with cross-sectional data,
panel data allow to include time lags between dependent and independent variables.
Thereby, panel data open up opportunities for novel research questions and, again,
increase the researchers’ ability to rule out endogeneity concerns (chapters ▶ “Exper-
iments in Market Research” by Bornemann and Hattula, and ▶ “Field Experiments”
by Valli et al. in this Handbook further discuss criteria for evaluating causality).

This chapter aims to introduce a general approach to analyzing panel data from an
applied perspective, focusing on panel data management and analysis. Figure 1
outlines the process along which we structure our chapter. In the section “Process
for Panel Data Analysis,” we discuss the panel data research process step-by-step.
Based on a real-life research example, we first define our research objective
(section “Define the Research Question”); specifically, we are interested in estimat-
ing a price-response-function for a company’s newly launched headphone. Then, we
discuss the collected dataset, which can be downloaded from the Handbook’s Data
Appendix (section “Collect Panel Data”), and explain how researchers can prepare
the data for the analyses (section “Prepare Panel Data”). Afterward, readers learn
how to explore the unique structure in panel data (section “Explore Panel Data”), and

Panel Data Analysis: A Non-technical Introduction for Marketing Researchers 413



we discuss the focal panel data estimators (section “Analyze Panel Data Models”).
We conclude this section with a short interpretation of the results (section “Interpret
and Present Results”). In the section “Additional Methods in Panel Data Analysis,”
we provide more in-depth background information on panel data estimators. In the
section “Advanced Topics in Panel Data Analysis,” we explore more advanced
topics in panel data analysis, including dynamic panel models and random coeffi-
cient models. Note that we keep a strictly intuitive and applied approach throughout
the text but point the reader to the many excellent resources available that provide a
more formal treatment of panel data estimation.

Process for Panel Data Analysis

Any research process should start with a clearly defined research question and end
with a meaningful discussion of the results. However, a research process that
involves panel data considerably differs from a process based on cross-sectional
data alone regarding the data management and analysis part. Given that data
management and analysis is more intricate for panel data, we devote special attention
to describing how to prepare, explore, and analyze panel data.

Define research question

Collect panel data

Prepare panel data

Explore panel data

Analyze panel data

Interpret and present results

Fig. 1 Panel data research process

414 A. Vomberg and S. Wies



In the spirit of an applied approach to the panel data research process, we guide
the discussion in this chapter along a real-life dataset, using the statistical software
Stata. Although most statistical software packages are well equipped to analyze
panel data, Stata is particularly suited for such analysis given its convenient and
efficient command structure for panel data.

Define the Research Question

The most important issue relates to the relationships researchers want to investigate.
Developing an original and relevant research question is not trivial, yet, as men-
tioned earlier, panel data can offer exciting opportunities for examining more
complex phenomena.

In this chapter, we want to aid a consumer electronics company on its pricing
strategy for a newly launched headphone. We are interested in understanding how
price-setting influences sales volume. This question is relevant yet challenging
for the company as the headphone represents an expansion into a new category,
with which the company only has limited experience. Economic theory suggests
relying on so-called price-response-functions for price management. Price-
response-functions link price to sales volume and represent a prerequisite for
price optimization.

Collect Panel Data

Data for estimating price-response-functions can come from various sources, such as
customer surveys (chapter ▶ “Crafting Survey Research: A Systematic Process for
Conducting Survey Research” by Vomberg and Klarmann in this Handbook),
experiments (chapters ▶ “Choice-Based Conjoint Analysis” by Eggers et al. and
▶ “Willingness to Pay” by Klingemann et al. in this Handbook), or market-level
data. In this chapter, we focus on market-level data. The real-life case we follow
throughout the chapter is based on a dataset of a medium-sized European consumer
electronics company. The company created the dataset to estimate a price-response-
function for its most recently launched headphone.

An excerpt of the corresponding dataset available for analysis contains weekly
sales data (“sales”) of the headphone model across n ¼ 19 of the company’s
franchised stores (cross-sectional component, labeled as “storeid”) across a time
period of T ¼ 82 weeks (time-series component, labeled as “week”), ranging from
weeks 37 to 118. The company has recorded the headphone’s retail price (“price”)
for each store and week. Besides, the company has collected information about
whether the store featured major promotion activities for the headphone in a given
week (dummy-coded “promo”: 1 “promotional activity in the focal week” 0 “no
promotional activity in the focal week”). Moreover, the company has information on
two general store descriptors: whether the store design includes multiple floors
(dummy-coded “floor”: 1 “multiple floors” 0 “single floor”) and whether the store
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is in a premium location with high traffic (dummy-coded “location”: 1 “premium
location” 0 “nonpremium location”). The data is initially split across three different
data files, mimicking the often disordered situation researchers and companies face
when they seek to analyze data.

We begin by reviewing the steps necessary to combine the three files to arrive at
the final dataset that we will use in the chapter’s remainder. Access to the different
datasets is available via the Data Appendix. We provide the three individual raw
datasets (“Sales_Original.dta,” “Sales_Additional.dta,” and “Explanatory.dta”), as
well as the final dataset (“Dataset_Final.dta”). “Sales_Original.dta” contains the
original headphone sales data the firm collected across its sampled stores.
“Sales_Additional.dta” includes observations of an additional store for which data
was shared separately. “Explanatory_Long.dta” features the retail price variable as
well as the three other explanatory variables (promotional activities, “promo,” store
floor design, “floor,” and store premium location, “location”). The Data Appendix
also includes the script (the so-called “do-file” in Stata language) that summarizes
the programming commands we use and complements the text with more detailed
comments regarding the syntax.

Prepare Panel Data

Our overview begins with looking at three data management challenges that deserve
our attention when working with panel datasets. Specifically, we discuss how to
transform, combine, and prepare these datasets, so they are ready to use for our
statistical analysis.

Transforming the Data Structure: Converting Wide Format to Long
Format
In general, there are two ways of organizing panel data: wide format and long format.
In wide format, a cluster’s repeated measurements are stored in a single row, and
each measurement appears in a separate column. Hence, the dataset has as many
rows as it has clusters and as many columns as time periods � number of variables.
Many datasets, especially when coming from commercial data providers, store panel
data in wide format. Our original sales dataset (“Sales_Original.dta”) also comes in
wide format, with each row containing sales data for an individual store across all
weeks. Using the list command, we can see a subset of the first five stores and
their respective sales volume in the first ten weeks in the dataset in wide format
(Fig. 2).

. list storeid sales37-sales46 in 1/5, clean

storeid sales37 sales38 sales39 sales40 sales41 sales42 sales43 sales44 sales45 sales46
1. 1 309 339 291 208 224 194 181 179 168 312
2. 2 411 277 262 198 205 192 177 167 151 321
3. 3 161 162 161 164 173 166 156 165 144 166
4. 4 235 207 203 195 183 164 197 204 156 189
5. 5 139 139 144 144 141 143 140 63 62 61

Fig. 2 Dataset in wide format
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In contrast, in long format, each measurement occupies one row with as many
rows as clusters � time periods (for balanced data: n � T). The number of columns
equals the number of variables. We can convert the data from wide to long format by
using the Stata reshape long command (Fig. 3).

The command interprets the sales variables’ suffixes (e.g., sales37, sales38) as
denoting the grouping that needs to be expanded to long-form. As visible in the
output, we expanded the dataset from 18 observations (18 stores) to 1,476
observations (1,476 store-week pairs). In addition, Stata created a week identi-
fier, called “week,” and collapsed the sales variables (“sales37” – “sales118”) to a
new variable, called “sales.” Listing the first five observations of the new long-
format dataset (using the list command) reveals the following data structure
(Fig. 4).

Both datasets have exactly the same information. For panel estimation, however,
most statistical software packages, Stata included, require the panel data to be
organized in long format, with each observation being a distinct cluster-time pair.

Combining Panel Datasets: Appending and Merging Datasets
Data is often scattered across several data files, and our data example is no
exception. It is necessary to combine the individual files into a new file
containing all the variables and all the observations needed for analysis. There
are different operations through which one can combine panel datasets, and we
elaborate on the three most popular operations. First, one can add new observa-
tions to a given dataset, thereby appending data vertically by expanding the
number of rows. This operation is typically used when one receives additional
data for the same variables and seeks to add these new observations to the first
dataset. In our data example, assume the marketing manager responsible for the
study was able to add another store to the sample (see “Sales_ Additional.dta”),
containing 87 observations. The investigator now needs to append this store’s
data to the transformed long-format dataset. The append command is simple to
use and adds the rows from the second dataset to the end of the first dataset

. reshape long sales, i(storeid) j(week)

Data wide   -> long

Number of obs. 18 -> 1476
Number of variables 83 -> 3
j variable (82 values) -> week
xij variables:

sales37 sales38 ... sales118 -> sales

Fig. 3 Converting data from
wide to long format

. list storeid sales in 1/5, clean

storeid sales
1. 1 309
2. 1 339
3. 1 291
4. 1 208
5. 1 224

Fig. 4 Dataset in long format
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(append using “Sales_Additional.dta”). This expands the first dataset
to 1,563 observations.

Second, one can add new variables to a given dataset, thereby merging datasets
horizontally by expanding the number of columns. This operation is needed when
variables are stored across different data files. In our data example, we want to add a
set of variables that help explain sales levels. These explanatory variables include the
retail price, promotional activities, premium location, and floor design and are stored
in “Explanatory.dta.” Merging panel datasets requires that both datasets have vari-
ables in common on which the merging is based. If matching variables are found,
merging two datasets is straightforward using the merge command. In our example,
“store id” and “week” are the matching variables. We first sort on these matching
variables and then perform the merge for a one-to-one (1:1) matching (Fig. 5). Note
that alternative matching procedures involve one-to-many (1:m) or many-to-one
(m:1) matching, depending on how the respective datasets are structured. For
instance, if we would like to match a dataset that includes zip codes for the stores,
we could use the many-to-one matching, knowing that we have multiple stores
situated in the same zip code area.

The merge command creates a new variable called “_merge.” This variable
takes a value of 1 if the observation is only contained in the first dataset, a value of
2 if it is included only in the second dataset, and a value of 3 if the observation is
present in both datasets. In our example, the observations of the matching variables
perfectly match and are present in both datasets. As a result, the “_merge” variable
takes on the value of 3 for all 1,563 observations. In contrast to the append
command, the merge command does not add new observations to the dataset so
the sample size remains unchanged. After we performed the operation, we can delete
the “_merge” variable (drop _merge).

Finally, Stata offers a third type of combining datasets in which one can merge
datasets horizontally but form pairwise combinations within-cluster, using the
joinby command. This command is similar to merging datasets but creates all
possible combinations of the observations across both datasets. While not applicable
to our data example, it can be a useful command in other settings. For instance,
imagine two datasets. The first contains a list of executive team members (i.e., CEO
and CMO) across several companies. The second includes a list of awards the
companies have received (e.g., Innovative Design Award, Best Place to Work
Award). Both datasets contain a company identifier variable, which links the exec-
utives and awards that belong to the same company. Using the joinby command,
we can easily combine the datasets and create a new dataset that includes all
combinations of executives and awards, hence one row for each executive and
award combination per company.

merge 1:1 storeid week using "Explanatory.dta"

Result # of obs.

not matched 0
matched 1,563 (_merge==3)

.Fig. 5 Merging datasets
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Preparing the Dataset: Length and Missingness of Panel Data
A final consideration in preparing panel data is to examine the missingness of its
observations. When each cross-sectional cluster is observed in each time period, the
panel is called balanced. Unbalanced panels, in contrast, display missingness in the
data so that at least one cluster is not observed in every period. For instance, referring
to our example, a store might have joined the study only at a later point in time or
might have been closed for some weeks during the observation period for store-
remodeling purposes.

The Stata language includes several convenient commands to detect data patterns.
Importantly, however, these commands (as do all Stata commands involving panel
data) first require the data to be formally declared as panel data by using the xtset
command. The xtset command specifies a cluster identifier (here: store i, labeled
“storeid”) and a time identifier (here: week t, labeled “week”). We can access the
large array of panel commands belonging to the panel command family (xt com-
mands) in Stata with this setup. After having declared our data as panel data, using
the xtset command, we can inspect missingness patterns with the xtdescribe
command (Fig. 6).

Studying the missingness patterns over the different stores reveal that the data is
not balanced across stores. Roughly 5% of the observations belong to one store, for
which we have data after week 118. To simplify the discussion that follows in the
chapter, we create a balanced panel dataset that contains only those observations for
which we have data for all clusters, that is, only observations reported between
weeks 37 and 118. The resulting file will be our final dataset (“Dataset_Final.dta”),
with which we will work throughout the remainder of the chapter.

Explore Panel Data

Terminology
Recall that the unique feature of panel data is that these data contain both a cross-
sectional component (i ¼ 1,. . ., n) and a time component (t ¼ 1,. . ., T). The time

xtset storeid week
panel variable: storeid (unbalanced)
time variable: week, 37 to 123

delta: 1 unit

xtdescribe

storeid: 1, 2, ..., 19 n = 19
week: 37, 38, ..., 123 T = 87

Delta(week) = 1 unit
Span(week) = 87 periods
(storeid*week uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
82 82 82 82 82 87 87

Freq. Percent Cum. Pattern

18 94.74 94.74 1111111111111111111111111111111111111111111111111111111111111111111111111111111111.....
1 5.26 100.00 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

19 100.00 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.

.

Fig. 6 Declaring and describing panel datasets
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frame can be regular (e.g., data is collected every week, month, or year) or irregular
(e.g., data is collected on specific occasions). Picking up on panel data’s dual nature,
it is common to classify panel datasets based on the relation between the number of
clusters and the number of time periods observed. Panels in which a relatively large
number of cross-sectional clusters is tracked over a rather short period of time are
referred to as short or micropanels. For instance, retailers may track customer
satisfaction scores for many consumers (cross-sectional component) but only for a
few years (time component).

In contrast, panels with frequent measurements for a relatively small section of
units vis-à-vis a larger number of time periods are referred to as long or macro-
units. For instance, we might track the monthly consumer confidence index back
to the 1960s (time component) for only a few EU countries (cross-sectional
component). It is worth noting that most datasets in marketing are micropanels
and that the more common types of panel estimators are derived under the
assumption of relatively fewer time periods and a larger number of cross-
sectional units (Wooldridge 2016). Please note that in our example, for illustra-
tive purposes, we work with a reduced dataset that includes only a limited number
of stores (cross-sectional units).

Focal Challenge of Panel Data Analysis: Nonindependent Observations
Irrespective of the type of panel dataset, we face one focal challenge in analyzing
panel data: repeated measurements of a given cluster over time are nonindependent.
This has severe implications for estimating our model, which we discuss next. To
illustrate this point, we can think of panel data as a nested data structure. Using an
extract from our example, we visualize this idea in Fig. 7. Here, we observe
headphone sales for three of the stores at different points in time. The figure
illustrates that each sales measurement (lower-level unit) is nested in a particular
store measurement (higher-level unit).

The hierarchical nature highlights that individual measurements are likely not
independent from each other; rather, sales measurements from one store have more
in common (i.e., are more strongly correlated) than they have with sales from
different stores. Intuitively, if sales in week 40 were independent of a store’s prior
sales, a good prediction would be the mean sales levels for week 39 and week
38 across all stores’ observations. However, it seems that a much better prediction is
to rely on the store’s prior measurements. This point can be visualized by plotting the

Store 1

$ Sales 
Week 

37

$ Sales 
Week 

38

$ Sales 
Week 

39

Store 2

$ Sales 
Week 

37

$ Sales 
Week 

38

$ Sales 
Week 

39

Store 3

$ Sales 
Week 

37

$ Sales 
Week 

38

$ Sales 
Week 

39

Fig. 7 Illustration of panel structure
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overall mean of sales, also called grand mean, across all measurements and the store-
specific means of sales, as shown in Fig. 8. As can be seen in Fig. 8, there is
substantial within dependence in the sales data (i.e., measurements within stores are
similar).

As a more formal treatment of within dependence, we can use Stata’s time-
series lag operators (L.) and the correlate command (corr sales L1.
sales) and inspect the serial correlation in sales (see also section “Pooled OLS
Estimator: Ignoring the Panel Structure” for formal tests of serial correlation).
Results suggest that headphone sales correlate substantially (ρ ¼ 0.67) over time
within a store; hence, there is a high serial correlation present in the sales data, and
observations are nonindependent from each other. This dependency, in turn,
violates a key assumption of traditional OLS estimation and foreshadows why
standard OLS estimation is not feasible for panel data analysis (as detailed in
section “Pooled OLS Estimator: Ignoring the Panel Structure”). A thought exper-
iment based on Fig. 7 further underpins this point: if sales measurements within a
store are very similar, we do not observe nine observations (three measurements
for three stores) but effectively only three. Put differently, it reduces the effective
size of the sample we can use in estimating the model, which in turn has implica-
tions for calculating the standard errors we use for making inferences. We will
revisit the challenge of nonindependent observations in the remainder of the
chapter. In doing so, we will shift to the more common terminology of within
and between variance instead of within and between dependency. Within variance
describes the variation within a cluster across time. Between variance describes the
variation between clusters.

Fig. 8 Within and between dependence across stores
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Dependent Variable: Between and Within Variance
Given nonindependent observations being the focal challenge in panel data, it is
crucial to understand the degree of such dependency. The xtsum command pro-
vides valuable information on the relative importance of within and between vari-
ance in the dependent variable. Figure 9 demonstrates the result for sales (Salesit) in
our data example.

Besides providing some general descriptive statistics (including mean and range of
the variable, as well as the number of observations,N, number of clusters, n, and number
of time periods, t, in the sample), the output distinguishes between an overall, a between,
and a within variance in the sales data. The within component focuses on particular
clusters (i.e., stores) and describes the data within these clusters (i.e., sales levels from
across all periods for an individual store). The between component takes the average per
cluster (i.e., average sales level for a particular store) and describes the data based on
these averages. The overall component treats the observations as entirely independent
and calculates the respective measures without considering their panel nesting.

To support the discussion that follows, we detail how the overall, between, and
within variance is calculated. Let

Sales ¼
Pn
i¼1

PT
t¼1

Salesit

n� T
ð1Þ

be the overall mean of the dependent variable across all observations, also called the
grand mean, and

Salesi ¼
PT
t¼1

Salesit

T
ð2Þ

be the corresponding within mean for each cluster i (i.e., store); we can easily
compute the respective variances.

The overall variance is calculated in the same way as in cross-sectional data
without considering any panel structure nesting:

bσ2Sales; Overall ¼
Pn
i¼1

PT
t¼1

Salesit � Sales
� �2

n� T � 1
: ð3Þ

. xtsum sales

Variable Mean Std. Dev. Min Max Observations

sales overall 280.1906 131.1669 0 750 N = 1558
between 110.3184 118.9024 549.5976 n = 19
within 75.28426 92.88575 695.0443 T = 82

Fig. 9 Decomposing the dependent variable sales volume
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To calculate the within variance, we employ the following formula:

bσ2Sales;Within ¼
Pn
i¼1

PT
t¼1

Salesit � Salesi
� �2
n� T � 1ð Þ : ð4Þ

When calculating the within variance, some statistical programs, Stata included,
add the grand mean back to the within mean in the numerator

Salesit � Salesi þ Sales
� �

to make results comparable across overall, within, and

between variance.
The between variance is given as:

bσ2Sales; Between ¼
Pn
i¼1

Salesi � Sales
� �2

n� 1
ð5Þ

For our sample of 1,558 observations, we estimate a between variance of 110.31
and a within variance of 75.28, indicating that in our sample, the variance between
clusters is larger than the variance over time within clusters.

Independent Variables: Time-Constant and Time-Varying Variables
While the dependent variable is, by definition, time -varying in the context of panel
data, the independent variables can be time -constant or time -varying. In the
following, we will refer to time-constant variables as Z. Those variables constitute
cluster characteristics that are stable over the observation period. For instance, in
modeling firm sales, McAlister et al. (2016) include the firm’s type of business
strategy to achieve a competitive advantage as a time-constant independent variable
that does not change over the observation period. In our data example, a store’s
location (Locationi) and a store’s floor design (Floori) are both time-constant vari-
ables that we include as independent variables in explaining sales.

Other variables, however, may change over time and are therefore called time-
varying variables. We will refer to these variables as X in the course of this chapter.
Ataman et al. (2010), for example, study brand sales levels and include brand
distribution breadth as a time-varying independent variable. Our data example
includes retail price (Priceit) and promotional activities (Promoit) as independent
variables, which vary over time. We can use Stata’s xtsum command to confirm the
type of variation in the independent variables. Figure 10 shows that Locationi and
Floori are time-constant as they exhibit zero within variation. Priceit and Promoit,
however, are time-varying and display variation within and between stores.

Since three of the four explanatory variables are binary, a further helpful com-
mand is xttab, which decomposes categorical variables into within and between
variation. Figure 11 shows that, overall, roughly 11% of the store-week sales
observations result from stores with a multiple floor store design. The between
column repeats the breakdown but does so in terms of stores rather than store-
weeks. Given we have a balanced sample with the same number of stores and weeks,
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and Floori varies only between stores, we report the same proportions of observa-
tions as in the overall column. Finally, the within percent tells us the fraction of times
a store reported a given value of the Floori variable. For instance, conditional on a
store ever having a Floori value of 0 (first line), 100% of its observations have a
Floori value of 0. These numbers indicate the stability of the variable within a
cluster. By definition, a time-constant variable will have a tabulation within-percent
of 100, while time-varying variables will have a tabulation within-percent below
100 (Fig. 12).

The between-percent informs us about the percentage of stores that have ever
reported a given value of the variable, in this case, initiate promotional activities
during the observation period. Since all sampled stores had periods in which they
engaged in promotional activities (Promoit value of 1) and periods in which they did
not engage in promotional activities (Promoit value of 0), the between percentage
adds up to 200.

Additional information on within and between variation for categorical variables
can also be retrieved through the xttrans command, which provides transition
probabilities within a cluster from one period to the next. Transition probabilities

. xtsum location floor price promo

Variable Mean Std. Dev. Min Max Observations

location overall .6842105 .4649788 0 1 N = 1558
between .4775669 0 1 n = 19
within 0 .6842105 .6842105 T = 82

floor overall .1052632 .3069907 0 1 N = 1558
between .3153018 0 1 n = 19
within 0 .1052632 .1052632 T = 82

price overall 55.38318 12.596 29 85 N = 1558
between 12.40116 38.42683 78.84146 n = 19
within 3.587608 17.31001 64.3466 T = 82

promo overall .2727856 .4455345 0 1 N = 1558
between .1266187 .097561 .5487805 n = 19
within .4281387 -.2759949 1.175225 T = 82

Fig. 10 Decomposing the independent variables

. xttab floor

Overall Between Within
floor Freq. Percent Freq. Percent Percent

0 1394 89.47 17 89.47 100.00
1 164 10.53 2 10.53 100.00

Total 1558 100.00 19 100.00 100.00
(n = 19)

Fig. 11 Decomposing a time-constant categorical variable
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describe the probabilities of changing the state from one value of a variable to
another value.

Figure 13 reports the results for the Promoit variable. As visible from the output,
about 40% of the store-week observations that featured promotional activities in one
period continue to feature promotional activities in the next period. For those store-
week observations that did not feature promotional activities in one period, 22% start
doing so in the next period. For time-constant variables, such as Floori, the diagonal
entries will always be 100%, and the off-diagonal entries will always be 0%
(Fig. 14).

Finally, it is worth noting that whether the independent variable is time -varying
or time -constant has implications for the type of variance we can explain in the
dependent variable. Specifically, time-constant variables can only account for
between variation in the dependent variable. In contrast, time-varying independent
variables can explain both between and within variation in the dependent variable,
depending to which extent they vary within and between clusters. For instance,
Vomberg et al. (2015) observe that market share tends to be relatively stable over
time, while it differs substantially between companies. Hence, this time-varying
variable will mainly explain between variation in the dependent variable.

. xttrans promo

Promotion
Promotion 0 1 Total

0 77.72 22.28 100.00
1 59.95 40.05 100.00

Total 72.90 27.10 100.00

Fig. 13 Transition
probabilities for time-varying
categorical variable

. xttrans floor

Multiple
floor Multiple floor store
store 0 1 Total

0 100.00 0.00 100.00
1 0.00 100.00 100.00

Total 89.47 10.53 100.00

Fig. 14 Transition
probabilities for a time-
constant categorical variable

. xttab promo

Overall Between Within
promo Freq. Percent Freq. Percent Percent

0 1133 72.72 19 100.00 72.72
1 425 27.28 19 100.00 27.28

Total 1558 100.00 38 200.00 50.00
(n = 19)

Fig. 12 Decomposing a time-varying categorical variable

Panel Data Analysis: A Non-technical Introduction for Marketing Researchers 425



The type of time dependence in the independent variables also helps identify the
serial correlation sources in the dependent variable. First, variables that do not
change over time (Z) will cause the dependent variable to have similar values across
periods. For instance, assume we would like to explain a firm’s brand equity levels
by its branding strategy (multibrands vs. mono-brand). Since the type of branding
strategy a firm pursues is likely to be constant over time (Rao et al. 2004), brand
equity levels will be close to each other across periods. In statistical language, this
cause of serial correlation is referred to as spurious state dependence. Two measure-
ments (of the dependent variable) may be correlated because they are associated with
a further variable (that characterizes the cluster).

Second, time-varying variables (X) might also be a source of serial correlation if
they change only slowly over time. For instance, customer satisfaction is likely to
drive brand equity. Yet, while customer satisfaction levels can change over time, they
might only change to a small amount or just every other year. If customer satisfaction
levels influence brand equity levels, the serial correlation among the time-varying
customer satisfaction levels leads to statistical dependencies in the brand equity
levels. This is another representation of spurious state dependence.

Third, the dependent variable’s current value might directly influence the depen-
dent variable’s level in the next period. For instance, brand familiarity levels in the
current year are likely to impact brand familiarity levels in the next year directly,
given multiplier and spillover effects through word-of-mouth, like Lovett et al.
(2013) show. This argument provides a substantive and direct cause of serial
correlation, referred to as true state dependence.

From this discussion, it follows that if we were able to control for all relevant
time-constant (Z) and time-varying (X) independent variables and included a lagged
dependent variable (yt-1), measurements of the dependent variable should be inde-
pendent over time and serial correlation would be zero.

Analyze Panel Data Models

After collecting, preparing, and exploring the panel data structure, we are now ready
to turn to the actual analysis of panel data. In this section, we will discuss three
estimators that investigators can use to estimate the price-response-function: the
(1) pooled OLS (section “Pooled OLS Estimator: Ignoring the Panel Structure”),
(2) fixed effects (section “Fixed Effects Estimator”), and (3) random effects estima-
tor (section “Random Effects Estimator”). We will discuss the latter two estimators
in greater detail since those estimators explicitly account for the panel structure
(in contrast to the pooled OLS estimator ignoring the panel structure). Besides,
“most panel data models are estimated under either the fixed or random effects
assumption” (Verbeek 2017, p. 384). We, therefore, call the fixed effects and random
estimators proper panel estimators. To recall, here and in the remainder of the
chapter, “panel structure” refers to nonindependent observations grouped by clusters
over time. We will also outline the relationships between the estimators
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(section “Relationship Between Pooled OLS, Fixed Effects, and Random Effects
Estimators”), discuss why they may deliver divergent results (section “What Do
Differences Between Pooled OLS, Fixed Effects, and Random Effects Estimators
Imply?”), and provide guidance on which estimator should be selected
(section “Hausman Test: Selecting Between the Fixed Effects and the Random
Effects Estimator”). In section “Additional Methods in Panel Data Analysis,” we
will highlight additional methods useful in analyzing panel data. We will point to
more advanced panel data analysis strategies in section “Advanced Topics in Panel
Data Analysis.”

Pooled OLS Estimator: Ignoring the Panel Structure
We will start our discussion by applying the cross-sectional OLS approach to panel
data (chapter ▶ “Regression Analysis” by Skiera et al. provide a detailed discussion
of OLS regression analysis in this Handbook). This technique is referred to as pooled
OLS (POLS). The name reflects that POLS pools all observations across the
individual cross-sections and time periods without accounting for the panel
structure.

As a first step, we need to decide which variables to include in our regression
model. Naturally, we include the impact of the price (Priceit), as this is our focal
variable of interest. Since we rely on observational market-level data (instead of
randomized experimental data), we also want to account for relevant control
variables that explain variation in the dependent variable and reduce the threat
of omitted variables that could bias our results. That is, by including these control
variables, we can account for factors that might affect both sales volume and
price.

We include an indicator for promotion periods (Promoit) which by definition
influences price and is also likely to boost sales. We include a variable that distin-
guishes premium locations (Locationi) because location advantages might allow
managers to realize higher sales volume and to set higher prices. Finally, we account
for multiple floor store design (Floori). Stores with several floors likely contain a
larger sales area and a broader assortment. Consequently, customers face a more
appealing shopping experience, leading to higher sales volume (e.g., customers may
stay longer in the store and purchase more products) but possibly also higher
willingness to pay. Moreover, we account for seasonal differences across weeks by
including dummy variables for all but one week; we select the first week in our
sample as the reference category. Controlling for the effect of weeks (also called
week-fixed effects) picks up market-wide developments that equally impact all
stores, for instance, stimulated by online buzz about the company or increased
media attention in a focal week.

As a second step, we need to decide on the functional form of the price-response-
function. For the sake of simplicity, we will focus on a linear model. However, in
general, investigators could also estimate price-response-functions in different
forms, such as a multiplicative price-response-function. We formulate the following
regression equation, which also contains an error term (ξ, pronounced xi):
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Salesit ¼ β0 þ β1Priceit þ β2Promoit þ β3Locationi þ β4Floori þ δWEEK
þ ξit ð6Þ

The variable subscript notation confirms that Priceit and Promoit are time-varying
variables, varying by store i and week t, and that Locationi and Floori are time-
constant variables that only differ by store i. The bolded expression for weeks
indicates that we include a vector of week dummy variables.

POLS relies on the typical cross-sectional OLS assumptions. Thereby, one of the
focal assumptions is that the error term does not display serial correlation. As
outlined in section “Independent Variables: Time-Constant and Time-Varying Vari-
ables,” unless we account for all time-varying and time-constant variables that
impact the dependent variable, the error term is likely correlated between two
measurements of the same cluster.

We will demonstrate that serial correlation persists in our model, even after
controlling for price, promotion activities, premium location, multiple floor design,
and seasonal week effects. We first predict the regression residuals from Eq. 6 (see
Eq. 7):

bξit ¼ Salesit
� β0 þ β1Priceit þ β2Promoit þ β3Locationi þ β4Floori þ δWEEKð Þ ð7Þ

As a measure of serial correlation, we next derive pairwise correlations between
different time periods. In Table 1, we compare the serial correlation in the residuals
(predict xi_hat, resid) of the POLS model (Panel a) and in the raw sales
data (Panel b) for 5 selected weeks from our dataset (weeks 37–41) to provide a
general intuition. Besides eyeballing across the selected correlations, we can under-
take more formal tests of serial correlation, either through the correlate com-
mand (e.g., corr xi_hat L1.xi_hat), as we did in section “Focal Challenge of
Panel Data Analysis: Nonindependent Observations,” or through the regress com-
mand (e.g., reg xi_hat L1.xi_hat, beta), as Wooldridge (2010) recom-
mends. Also, Stata offers the user-written xtserial command as an alternative
way to estimate serial correlation (available from SSC findit xtserial). From
Table 1, it is easy to see that the serial correlation in the POLS residuals is smaller
than the serial correlation in the raw sales data. The inclusion of the independent
variables explains the reduction in serial correlation. However, it is also apparent that
substantial serial correlation persists even after including the independent variables
(corr(ξt, ξt + 1) ¼ 0.61; p < 0.01). Variables not included in the model explain the
remaining serial correlation.

Serial correlation represents a common problem in POLS estimation, render-
ing standard errors calculated under the typical OLS assumptions misleading for
panel data applications (Verbeek 2017). To partly account for serial correlation,
investigators can rely on cluster-robust standard errors. Cluster-robust standard
errors are computed differently than common OLS standard errors and account
for the fact that the error structure differs across clusters (section “Robust Infer-
ence” details this point). The Stata suffix cluster(clustvar) following the
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regression command indicates the use of cluster-robust standard errors. Thereby,
clustvar represents the cross-sectional unit around which we cluster the
standard errors. Since we want to cluster at the store-level, we use “storeid” as
our clustering variable. We estimate the regression model with the following
Stata syntax:

reg sales price promo location floor i.week, cluster(storeid)

In Table 2, we report the POLS estimates. The only difference between the two
models is how the standard errors are calculated. Model 1 presents the POLS results
with standard errors that follow from the common OLS assumptions. Model 2 relies
on cluster-robust standard errors. As in the case of cross-sectional OLS, investigators
can evaluate the overall model fit via R2 values, the overall significance of the model
with an F-statistic, and the statistical significance of individual regression coeffi-
cients with t-tests.

In our case, the regression results reveal that, in line with economic theory, the
price has a negative relationship with sales volume (β1 ¼ �1.48). However, the
effect of price on sales is only statistically significant in Model 1 (p < 0.01).
Accounting for serial correlation with cluster-robust standard errors increases the
estimated standard errors (Model 2), and in our example, the effect of price on sales
turns insignificant. Note that clustering the standard errors does not affect the
estimated regression coefficients.

To conclude, applying POLS with cluster-robust standard errors to panel data
considers the panel structure to some extent but treats “it a nuisance, not as a
phenomenon we are interested in” (Rabe-Hesketh and Skrondal 2012, p. 105). As
a result, the challenge of serial correlation remains, and the usefulness of the
estimation results is limited. In the following, we will focus on two estimators that
more explicitly leverage the panel structure: the fixed effects estimator
(section “Fixed Effects Estimator”) and the random effects estimator
(section “Random Effects Estimator”).

Table 2 POLS estimates of the price-response-function

POLS (OLS standard errors) POLS (cluster-robust standard errors)

Model 1 Model 2

B SE B SE

Constant (β0) 283.75*** (28.64) 283.75*** (89.09)

Price (β1) �1.48*** (0.23) �1.48n.s. (1.57)

Promo (β2) 47.37*** (7.07) 47.37*** (12.74)

Location (β3) 132.36*** (6.89) 132.36*** (41.28)

Floor (β4) �3.41n.s. (10.50) �3.41n.s. (31.64)

Week-fixed effects Included Included

R2 0.35 0.35

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant
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Modeling the Panel Structure
To introduce the idea of explicitly modeling the panel structure, we depict the
development of headphone sales volume over time for five selected stores in
Fig. 15. To derive Fig. 15, we fit a set of auxiliary regressions. Specifically, for
each store, we run a regression of sales volume on a time period variable, for now
excluding the independent variables we included in the POLS model. We see that
some stores have systematically higher or lower sales volume than other stores.
These systematic differences result from unobserved factors, captured in the error
term ξit. We can classify these unobserved factors into two categories: time-
varying and time-constant unobserved factors. In contrast to the POLS estimator,
panel data estimators use this notion and split the error term into two parts:
ξit ¼ ui + eit. Thereby, ui refers to unobserved predictors of the dependent vari-
ables that pertain to the cluster (i.e. store-level). Consequently, they are time-
constant. The term eit refers to unobserved predictors of the dependent variable
that are time varying. We call ξit the composite error term, ui the cluster-specific
component, and eit the idiosyncratic error term. Eq. 8 displays the rewritten price-
response function:

Salesit ¼ β0 þ β1Priceit þ β2Promoit þ β3Locationi þ β4Floori þ δWEEK
þ ui þ eit ð8Þ

Figure 16 further illustrates the idea of two error components. In a nutshell, the
inclusion of the cluster-specific term ui extends POLS to handling panel data. The

Fig. 15 Differences in sales volume development over time (Illustrated for fitted regressions of
five selected stores)
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cluster-specific component captures that the mean sales volume per store differs
from the overall mean sales volume across all stores. In Fig. 16, Store 1 displays
systematically higher sales volume levels while the sales volume of Store 2 is
systematically lower than the overall level of sales volume. While the store-specific
component is constant over time, the idiosyncratic error term (eit) indicates that
measurements for a focal store (e.g., e1,37) can deviate from this store’s mean sales
volume (e.g., β0 + u1).

The cluster-specific component captures the effects of all unobserved store-level
characteristics (e.g., manager ability). It is referred to as unobserved cluster-level
heterogeneity. If the cluster-specific component is positive (ui > 0), the mean
composite error term (ξit) will be positive, leading to larger sales volume levels
than predicted by the included independent variables. The reverse holds if the
cluster-specific component is negative; in that case, sales levels will be lower than
predicted by the included independent variables.

The idiosyncratic error term eit is assumed to have zero population mean and
exhibits no correlation both across measurement points and with the independent
variables. Depending on the assumptions imposed on ui, two estimators emerge:

• The fixed-effects estimator, which does not assume uncorrelated unobserved
cluster-level heterogeneity: ui can correlate with the independent variables.
Therefore, the fixed effects approach allows consistent estimation even if the
investigator omits focal store variables (e.g., manager ability) from the price-
response-function. The fixed effects approach estimates the respective cluster-
specific effects (ui).

• The random effects estimator, which assumes uncorrelated cluster-level
unobserved heterogeneity: ui is uncorrelated with the independent variables.
Therefore, the random effects approach requires that the investigator includes
all focal store variables in the price-response-function. The random-effects
approach treats ui as an unobserved random variable with a particular distribution
(e.g., normal distribution). Rather than calculating an estimate for every cluster, it
estimates a single variance over the clusters.

Fig. 16 Decomposition of the composite error term (ξit ¼ ui + eit)
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Fixed Effects Estimator
The fixed effects estimator accounts for the panel structure by exploiting the within
variation in the data. It takes each cluster as its control group and only relies on the
cluster’s variation to estimate the model. Before we discuss the fixed effects estima-
tor in more detail, we introduce a variant of it, called the least squares dummy
variables (LSDV) regression, that shares the same logic but is implemented in a more
straightforward way.

Least squares dummy variable regression. The name of the LSDV approach
results from its reliance on a set of dummy variables. Specifically, the LSDV
approach adds store dummies – referred to as store-fixed effects – for all but one
store to our price-response-function (Eq. 9). The left-out store fixed effect serves as
the reference category. The LSDV, thus, is the POLS model (section “Pooled OLS
Estimator: Ignoring the Panel Structure”) with an added vector of store-specific
dummy variables.

Salesit ¼ β0 þ β1Priceit þ β2Promoit þ δWEEK þ γSTOREþ eit ð9Þ
We do no longer incorporate ui in the price-response-function since the store-

fixed effects account for all observed and unobserved store-level effects in the data.
As a consequence, however, we can no longer include the time-constant variables
Locationi and Floori. These variables correlate perfectly linearly with the store-fixed
effects, and thus their effects cannot be estimated. Time-constant variables that
interact with time-varying variables (e.g., Priceit � Locationi), however, could be
included as the interaction does not perfectly correlate with the store-fixed effects.

We can estimate the LSDV model with an OLS regression with store-specific
dummy variables (i.storeid) and, optionally, cluster-robust standard errors
(cluster(storeid)). Stata will automatically only include n-1 store dummy
variables. In section “Robust Inference,” we will elaborate on the rationale of using
cluster-robust standard errors in addition to employing a panel estimator.

reg sales price promo location floor i.week i.storeid, cluster
(storeid)

Model 3 in Table 3 shows the LSDV regression results. Since the LSDV regres-
sion relies on the OLS estimator, investigators interpret results in the same manner as
POLS estimates (section “Pooled OLS Estimator: Ignoring the Panel Structure”). We
want to highlight some important aspects:

1. The effect of price is slightly stronger in the LSDV regression than in the POLS
model (LSDV: β1 ¼ �1.85, p < 0.10; POLS: β1 ¼ �1.48, n.s.) and statistically
different from zero. Unobserved store-level variables in the POLS model may
have suppressed the effect of price. The inclusion of store-specific effects in the
LSDV model picks up these effects and explains this difference.

2. Reported R2 values of the LSDV are typically large since the store-fixed effects
explain all time-constant variation of sales volume between stores. LSDV’s
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R2value (Model 3: R2 ¼ 0.75) exceeds the one of the POLS model (Model
1: R2 ¼ 0.35).

3. In line with our discussion, Stata will automatically drop time-constant variables
from the model due to perfect collinearity. Even if investigators had included
premium location and floor design to the price-response-function, these variables
would not have been estimated.

4. The constant (β0) represents the store-specific intercept of the left-out store
dummy variable (i.e., storeid ¼ 1) at the left-out week (i.e., week ¼ 37).

5. Usually, investigators do not report estimates for the store dummy coefficients.
They are included for statistical reasons but typically do not convey substantive
insights. We can, however, test whether they are jointly significant, using a
conventional F-test on the estimated coefficients (testparm command in
Stata). If the test statistic is sufficiently high, we can reject the null hypothesis
of zero store effects.

Within transformation. The LSDV approach estimates one regression parameter
per store. In panel data applications with many clusters, the number of dummy
variables will become large, reducing the degrees-of-freedom in the model and,
therefore, the estimates’ precision. An alternative way to estimate the model is to rely
on time-demeaned data, which produces the same (or, at least, very close) estimates.
The idea is first to calculate cluster-means per store for each variable. In the next
step, investigators center each variable on their cluster-means by subtracting the
cluster-mean of each variable from its observed values (for a more technical discus-
sion, please refer to Cameron and Trivedi 2005, pp. 726–729; Greene 2003, pp. 194–
196; Verbeek 2017, pp. 387–388). In the case of time-constant variables, the cluster-
mean equals the observed variable.

Salesit � Salesi
� � ¼ β0 � β0ð Þ þ β1 Priceit � Pricei

� �þ β2 Promoit � Promoi
� �

þβ3 Locationi � Locationið Þ þ β4 Floori � Floorið Þ þ ui � uið Þ þ eit � eið Þ
¼ β1 Priceit � Pricei

� �þ β2 Promoit � Promoi
� �þ eit � eið Þ

ð10Þ

Table 3 LSDV and fixed effects estimates of the price-response-function

LSDV Fixed effects

Model 3 Model 4

B SE B SE

Constant (β0) 357.86*** (45.91) 394.66*** (56.13)

Price (β1) �1.85* (1.00) �1.85* (1.00)

Promo (β2) 45.21*** (8.63) 45.21*** (8.57)

Week-fixed effects Included Included

Store-fixed effects Included Controlled

R2 0.75 0.24

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses
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Like in the LSDV approach, time-demeaning removes the model’s cluster-
specific component (ui), as visible in Eq. 10. For the same reason, all remaining
time-constant variables also disappear (i.e., Locationi and Floori). Since time-
demeaning is referred to as within transformation, the fixed effects estimator is
also called the within estimator.

To estimate the model, we could manually transform the data and run an OLS
regression on the transformed data. However, such manual transformation would
lead to calculating the wrong degrees-of-freedoms. Importantly, the investigator
would need to subtract the number of estimated cluster-means calculated as an
intermediate step. Statistical software packages directly correct for this adjustment
in the degrees-of-freedom, and hence we recommend relying on these pre-
programmed commands. We use Stata’s xtreg command with the fe option, and
additionally clustering the standard errors.

xtreg sales price promo i.week, fe cluster(storeid)

Model 4 in Table 3 displays the results of the fixed effects estimation. The
coefficient estimates of Priceit and Promoit are identical between the two models.
However, the reported R2 values differ. The reason is that Stata uses a different
denominator to compute the R2 statistic between Model 3 and Model 4. Specifically,
while Model 3 is based on the overall variation of sales volume, Model 4 relies only
on the within variation of sales volume that enters the R2 formula (Wooldridge 2016,
pp. 437–438).

At this point, it is also worthwhile to review the three different types of R2 values
that are calculated after a fixed effects model. Statistical programs, such as Stata,
conventionally report a within-R2, a between-R2, and an overall-R2. All three values
provide insights into the model, but the within-value is typically of main interest after a
fixed effects estimation. It indicates how much of the variation in the dependent
variable within a store is captured by the model. The between-R2, correspondingly,
describes how much of the variation in the dependent variable between stores is
explained by the model. The overall-R2 is the weighted average of the two.

Finally, the reported constant terms differ between Model 3 and Model
4. Eq. 10 suggests that time-demeaning removes the constant term. However,
most statistical software packages do report a constant term by relying on a
slightly different within-transformation. Specifically, Stata additionally subtracts
each variable’s overall mean, the grand mean, from the observed values (Eq. 11).

The estimated constant becomes the average of all store-specific effects: bβ0 ¼Pn
i¼1

bui
n ¼ u . Thus, the interpretation of the constant in Model 4 differs from

Model 3.

Salesit � Salesi � Sales
� �� �

¼ β0 þ β1 Priceit � Pricei � Price
� �� �

þβ2 Promoit � Promoi � Promo
� �� �

þ eit � ei � e
� �� � ð11Þ
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Random Effects Estimator
The random effects estimator represents another estimator that explicitly considers
the panel structure. While the fixed effects estimator controls for the panel structure
by removing the model’s cluster-specific effects, the random effects estimator
directly models the serial correlation stemming from the cluster-specific effects ui
(corr(ξit, ξit-1)). Under the random effects assumptions, Eq. 12 expresses the serial
correlation (Andreß et al. 2013, pp. 77–78 formally derive this equation) as:

Corr ξit, ξit�1ð Þ ¼ σ2ui
σ2ui þ σ2eit

ð12Þ

Equation 12 is referred to as the intraclass correlation coefficient (see Misangyi
et al. 2006 for an application of the intraclass correlation-coefficient analysis on
business segments and firm performance). It relates the cluster-specific variance to
the overall variance (sum of variance between clusters and across time). If there were
no serial correlation present in the data, Eq. 12 would produce a quantity of zero, and
POLS would be an adequate estimator to use. However, while POLS is valid only in
the particular case in which serial correlation is zero, the random-effects model is
more general and explicitly models the degree of serial correlation.

Researchers can estimate the random effects model with the (feasible) generalized
least squares estimator (FGLS). The FGLS estimator is a weighted least square
estimator, which attributes more or less weight to a given observation depending on
its variance structure (reflecting the relationship between σ2ui and σ

2
eit
). Like the fixed

effects estimator, the FGLS estimator applies a quasi-demeaning procedure and
subtracts the variable’s cluster-mean from the variable’s observed values. However,
in contrast to the fixed effects estimator, the FGLS estimator only subtracts a fraction
(θ, pronounced theta) between 0 and 1 of the cluster-mean from the respective value.
Based on the quasi-demeaned data, the OLS estimator can then be applied. Since the
FGLS estimator only subtracts a fraction, time-constant variables do not drop out of
the model (see Eq. 13). For a more formal discussion of the underlying algebra, we
refer to Cameron and Trivedi (2005, pp. 734–736), Greene (2003, pp. 200–205),
Verbeek (2017, pp. 391–392), and Wooldridge (2010, Chap. 10).

Salesit � θ � Salesi
� � ¼ β0 þ β1 Priceit � θ � Pricei

� �þ β2 Promoit � θ � Promoi
� �

þβ3 Locationi � θ � Locationi
� �þ β4 Floori � θ � Floori

� �
þ ui � θ � uið Þ þ eit � θ � eið Þ

ð13Þ
Equation 14 shows how to calculate θ. Essentially, θ comprises the relationship

between the residual variance σ2eit

� �
and cluster-specific variance σ2ui

� �
, which

researchers can estimate with the FGLS estimator (Verbeek 2017, p. 392;
Wooldridge 2016, p. 442).
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θ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2eit
σ2eit þ T � σ2ui

s
ð14Þ

We can obtain the random effects estimator using the Stata xtreg, re com-
mand, and, if we wish to, cluster the standard errors. To report the fraction of θ that
Stata subtracts, we include (theta) as an additional option.

xtreg sales price promo location floor i.week, re cluster
(storeid) theta

Table 4 summarizes the results. Investigators can evaluate the overall model fit
with the R2 statistic and the overall model’s statistical significance with a Wald test
(instead of an F-test that cannot account for serial correlation in the error term). As
with the fixed effects estimator, Stata reports three types of R2. We inspect the
overall-R2 for the random effects model. Researchers can test the significance of
individual regression coefficients with a z-statistic that draws on a normal distribu-
tion. Model 5 demonstrates that the effect of price on sales is negative and statisti-
cally significant (β1 ¼ �1.82, p < 0.05). In addition, promotional activities
(β3 ¼ 45.21, p < 0.01) and stores in more attractive locations realize higher sales
volumes (β3 ¼ 132.79, p < 0.01). However, stores with a multiple floor design
(β4 ¼ �1.48, n.s.) do not associate with higher sales volumes.

The reported θ value (theta), which is used for the quasi-demeaning (Eq. 13), is
0.92 for our data. Stata will report only one value for θ if the panel is balanced. If the
panel is unbalanced, Stata will report multiple θ values, depending on the number of
weeks for which the store is observed.

We conclude with two additional comments:

1. The random effects approach treats the store-specific effects as unobservable
random variables and not as model parameters (as the fixed effects model
does). Still, investigators can obtain estimates for the store-specific intercepts

Table 4 Random effects
estimates of the Price-
response-function

Random effects

Model 5

B SE

Constant (β0) 302.46*** (43.78)

Price (β1) �1.82** (0.89)

Promo (β2) 45.21*** (8.59)

Location (β3) 132.79*** (41.76)

Floor (β4) �1.48n.s. (34.74)

Week-fixed effects Included

R2 0.35

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-
robust standard errors (SE) in parentheses; store effects controlled
for through random intercepts
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(predict ui, u; Rabe-Hesketh and Skrondal 2012, p. 107, p. 161, discuss
further options to get store-specific error terms).

2. As an alternative to the FGLS estimator, investigators can also rely on a
maximum likelihood estimator (mle option instead of re) to estimate the
random effects model. In general, the two estimators will deliver equivalent
results in large samples. We will rely on the maximum likelihood estimator
when discussing panel data analysis from a multilevel modeling perspective in
the section “Random Slope Models: A Multilevel Model Approach to Panel
Data.”

Relationship between Pooled OLS, Fixed Effects, and Random Effects
Estimators
Thus far, we relied on three different estimators (POLS, fixed effects, and random
effects estimator) to estimate our price-response-function. Table 5 summarizes the
results, introducing the two proper panel data estimators first (Models 6 and 7) and
keeping the POLS estimator (Model 8) as a benchmark. We note that the three
estimators lead to different results. The relationship among the estimators becomes
apparent when we study the quasi-demeaning procedure (e.g., Salesit � θ � Salesi)
underlying the random effects estimator in more detail.

Specifically:

• For θ ¼ 1, the random effects estimator becomes the fixed effects estimator.
• For θ ¼ 0, the random effects estimator becomes the POLS estimator.

Table 5 Comparison of fixed effects, random effects, and POLS estimates of the price-response-
function

Fixed effects Random effects POLS

Model 6 Model 7 Model 8

B (SE) B (SE) B (SE)

Constant (β0) 394.66*** 302.46*** 283.75***

(56.13) (43.78) (89.09)

Price (β1) �1.85* �1.82** �1.48n.s.

(1.00) (0.89) (1.57)

Promo (β2) 45.21*** 45.21*** 47.37***

(8.57) (8.59) (12.74)

Location (β3) Omitted 132.79*** 132.36***

(41.76) (41.28)

Floor (β4) Omitted �1.48 �3.41n.s.

(34.74) (31.64)

Week-fixed effects Included Included Included

Store-fixed effects Controlled

R2 0.24 0.35 0.35

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses; in random effects model store effects controlled for through random intercepts
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While in applied research, θ is unlikely to be exactly 0 or 1, the rearrangement of
θ in Eq. 15 helps to understand which determinants affect θ.

θ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ T � σ2ui
σ2eit

� �
vuut ð15Þ

First, with an increasing amount of measurement occasions T, the random effects
estimator converges to the fixed effects estimator. In our example, we track sales
volume over T ¼ 82 weeks. The long observation period explains why the random
effects estimator produces results close to those of the fixed effects estimator (Stata
used θ ¼0.92, close to 1). The more measurement points we collect per cluster, the
more the time effect dominates the store effect. Notably, the random effect estimator
converges to the fixed effects estimator even if omitted time-constant variables
correlate with the independent variables.

Second, the more the idiosyncratic error component dominates the store-specific

component (i.e.,
σ2ui
σ2eit

becomes small), the less important the store-specific effect (ui)

becomes. As a consequence, the more negligible difference it makes to explicitly
model the panel structure, the more results from the random effects estimator
resemble those of the POLS estimator. In the extreme case in which the store-specific
variance is zero (σ2u ¼ 0), the POLS, random effects, and fixed effects estimators
produce identical results. However, Wooldridge (2016, p. 443) notes that it is more

common that σ
2
u

σ2e
is large and that θ will be closer to 1.

Investigators can rely on the Lagrange multiplier test to formally test the null
hypothesis of the store-specific effect’s variance being zero (H0: σ2u ¼ 0), equivalent
to testing whether ui is zero (Rabe-Hesketh and Skrondal 2012). The xttest0
command in Stata implements the Lagrange multiplier test after the regression
command.

xtreg sales, re cluster(storeid)
xttest0

In our example, the test statistic clearly rejects the null hypothesis (χ2(d.f. ¼ 1)
¼ 28,030.42; p < 0.01), and we conclude that the store-specific component is
different from zero.

What Do Differences Between Pooled OLS, Fixed Effects, and Random
Effects Estimators Imply?
A natural follow-up question is as follows: Which estimator should be selected? To
answer this question, we have to recall why the three estimators produce divergent
estimates. Although all estimators rely on the same dataset, they exploit variation in
the data in different ways. The fixed effects estimator purely uses within variation,
whereas the POLS and the random effects estimators rely on both sources of
variation.
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Using both sources of variation, POLS and random effects estimators can thus
exploit more variation (i.e., more information) than the fixed effects estimator. As
such, POLS and the random effects estimators are more efficient (i.e., producing
smaller standard errors) than the fixed effects estimator, with the random effects
estimator being the most efficient (Verbeek 2017). Efficiency is a desirable property.
The estimated coefficients from each sample draw deviate from the “true” parame-
ters in the population due to sampling error (also referred to as standard error). As we
typically only have one sample to use in our analysis, we are interested in the
estimator that produces the smallest standard errors, i.e., the most efficient estimator.

However, as a downside, benefitting from those efficiency gains requires us to
impose one additional assumption on the POLS and the random effects estimators:
All relevant time-constant variables are included in the model. In other words, we
assume that the model fully explains the more information that we use in the
estimation. This assumption would be met in our example if we could safely assume
that Locationi and Floori are the only relevant time-constant variables.

However, we might have overlooked other critical time-constant variables. For
instance, managers across stores may differ in their levels of experience and capa-
bilities. More experienced and more capable managers might better anticipate future
market developments and set more reasonable prices. Since our observation period
covers less than 2 years (weeks 37–118), we can assume that those experiences and
capabilities are constant over time. Since we did not measure manager ability, it
becomes part of the store-specific error term (ui). This is problematic if manager
ability also impacts realized sales volumes, in which case our price-response-func-
tion would suffer from endogeneity in the form of an omitted variables bias.

Figure 17 demonstrates two ways in which omitted manager ability could affect
our estimated price-response-functions. In this figure, hallow (Store 1) and black-
shaded (Store 2) circles represent observed price and sales volume combinations for
two stores. Gray-shaded squares are the corresponding store-specific mean values.

Fig. 17 Comparison of between and within effects
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Based on these squares, we show the corresponding regression coefficients (β)
predicted based on exploiting within (βWithin) versus between variation (βBetween).
If using within versus between variation leads to the same results, then POLS and
random effects estimators should be selected as these are the more efficient estima-
tors. If leveraging within versus between variation leads to different results, then the
fixed effect estimator should be chosen as estimators based on between variation
(i.e., POLS and random effects) are likely to be biased and inconsistent.

Panel a visualizes a situation in which managers in Store 2 have set higher prices
than managers in Store 1. However, the resulting sales volume in Store 2 is at the
same level as it would be if Store 1 had set the same price (all observed price-sales-
volume combinations lie on the same straight line). Consequently, we retrieve the
same information when exploiting either the within or between variation. Thus, in
Panel a, we obtain the same regression coefficient, irrespective of the type of
variation we exploit (βBetween ¼ βWithin). Such a situation is referred to as
uncorrelated unobserved cluster-level heterogeneity, unobserved because we do
not observe (or measure) manager ability, and uncorrelated because unobserved
ability does not impact price (and realized sales volume). In such a situation,
POLS and the random effects estimators are consistent and are more efficient than
the fixed effects estimator.

Panel b in Fig. 17 demonstrates a situation in which managers in Store 2 have set
higher prices than managers in Store 1, yet this time, the observed level of sales
volume dropped below the level that Store 1 would have realized. The reason could
be that the managers of Store 2 are less capable of inferring demand and hence price
setting. These managers might also create less attractive store environments and
make less appealing assortment decisions which lower sales volume. Such a situa-
tion is referred to as correlated unobserved cluster-level heterogeneity since, in this
situation, the omitted capabilities correlate with the price (and the realized sales
volume).

The fixed effects estimator is still consistent in such a situation because it only
picks up the within variation. However, the between variation suffers from an
omitted variable bias. In picking up the between variation, the random effects
estimator assumes that the sales differences between the stores are driven by price
only. However, sales are correlated with manager ability, which also impacts price
setting (i.e., a situation of correlated unobserved cluster-level heterogeneity). In this
case, the estimator is based on an invalid assumption. In other words, it uses more
information (i.e., between variation in sales) but uses it under a wrong assumption
(i.e., pretending that sales volume is only explained by price while sales volume is
also explained by other factors that also correlate with price). As a consequence, the
POLS and random effects estimators are not consistent anymore. In Panel b), the
POLS and random effects estimators would overestimate the impact of price on sales
volume (|βBetween| > |βWithin|).

In the following, we introduce a formal test that assists in choosing between the
fixed effects and the random effects estimators. Note that we focus on the compar-
ison between the fixed effects and the random effects estimators. If the random
effects estimator is consistent, POLS is consistent, yet when choosing between
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POLS and random effects, we recommend the more efficient random effects esti-
mator. However, as we will see later (section “Summary of the Discussed Estimators
and Their Underlying Assumptions”), the random effects estimator requires addi-
tional assumptions compared to POLS. For this reason, we also acknowledge that
some econometricians suggest performing POLS despite potential efficiency gains
from the random effects estimator (Angrist and Pischke 2008, p. 223).

Hausman Test: Selecting Between the Fixed Effects and the Random
Effects Estimator
The trade-off we discussed in the last section raises the natural follow-up question:
How do we know when we can rely on the more efficient random effects estimator?
Stated differently, how do we know whether the random effects estimator is incon-
sistent due to omitted time-constant variables (e.g., managerial ability)?

This question requires a formal statistical test. To evaluate whether the random
effects estimator is appropriate, we can rely on a Hausman test (Hausman 1978). The
basic idea of the Hausman test is that the fixed effects and random effects estimators
are consistent under the assumption that the investigator omitted no relevant time-
constant variables from the price-response-function. Thus, their estimates should not
differ significantly from each other. However, under the assumption that the inves-
tigator omitted relevant time-constant variables, only the fixed effects estimator is
consistent and the random and fixed effects model estimates should differ signifi-
cantly (Cameron and Trivedi 2005, p. 717). The Hausman test formally evaluates the

null hypothesis of equal fixed effects and random effect estimates (H0: bβFE – bβRE
¼ 0). Investigators can rely on the random effects estimator unless the Hausman test

returns a significant test statistic.
For an individual coefficient, the Hausman test can be calculated with the

following test statistic (Eq. 16) that follows a χ2 distribution with 1 degree-of-
freedom.

χ2 ¼
bβFE � bβRE� �

� 0

SE bβFE�bβRE� �
0
BB@

1
CCA

2

¼
bβFE � bβRE� �

� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2bβFE � SE2bβRE

r
0
BB@

1
CCA

2

ð16Þ

If we included Priceit as the only independent variable (e.g., xtreg sales
price, re) in our price-response-function, we would obtain the random effects

(bβRE ¼ �1.82; SEbβRE ¼ 0.53) and fixed effects (bβFE ¼ �1.84; SEbβFE ¼ 0.52)

estimates that result in a nonsignificant test statistic (χ2(d.f. ¼ 1) ¼ 0.01; n.s.),
favoring the random effects estimator. This result suggests that we have no reason to
be concerned about correlated unobserved cluster-specific factors, such as manager
ability.

For more common models that include more than one independent variable, we
use a generalization of Eq. 16. Based on matrix algebra, we derive the general test
statistic of the Hausman test (Eq. 17; Greene 2003, pp. 208–209) as:
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χ2 ¼ bβFE � bβRE� �0
� bψFE � bψRE� ��1 � bβFE � bβRE� �

ð17Þ

Thereby, bβFE and bβRE include all coefficient estimates of the fixed effects and the
random effects model. The matrices bψFE and bψRE include the corresponding
estimated variances and covariances of the estimates. The test-statistic follows an
asymptotic χ2 distribution with p degrees-of-freedom, with p being the number of
coefficients tested.

The respective Stata syntax easily allows estimating the Hausman test statistic
(hausman) after running the respective regressions. Note that we choose
the sigmamore option to prevent Stata from considering the vector of week-
fixed effects as tested coefficients and thereby inflate the reported degrees-of-
freedom (degrees-of-freedom should be 2, for two tested coefficients, and
not 83).

xtreg sales price promo i.week, fe
estimates store FE
xtreg sales price promo location floor i.week, re
estimates store RE
hausman FE RE, sigmamore

For our data, we obtain an insignificant test statistic (χ2(d.f. ¼ 2) ¼ 0.09; n.s.) and
conclude that we can trust the random effects results. This result is not surprising
since fixed and random effects estimates hardly differ in our example.

Finally, we end our discussion highlighting three important aspects:

1. The standard Hausman test is not valid when the investigator uses cluster-robust
standard errors. In section “Alternative Hausman Test,” we will introduce a fully
robust Hausman test.

2. Equation 16 serves to demonstrate when the Hausman test is not likely to yield
a significant result. First, the test statistic tends to be insignificant when the
numerator is small. In this case, the estimates for the Priceit coefficients do not
differ significantly between the fixed effects and random effects estimators;
that is, it does not matter which estimator we use. Second, the Hausman test
also becomes insignificant when the denominator is large. If the fixed effects
estimator displays a large standard error (e.g., the variation of prices over time
is low), the Hausman test likely yields an insignificant result. Third, measure-
ment error can provoke an attenuation bias in the fixed effects estimator, which
describes an estimate’s bias converging to zero and underestimating the true
value. As a result, fixed effects estimates could be smaller than the estimates
from the random effects model, even if no relevant time-constant variables
were omitted (sections “Summary of the Discussed Estimators and Their
Underlying Assumptions” and “Addressing Measurement Error with Struc-
tural Equation Modeling Based on Panel Data”). Verbeek (2017, p. 395) notes
in this regard:
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Although the Hausman test is commonly used as a tool to decide between the random
effects and the fixed effects estimators, it should be used with caution. Rejection should
not automatically be interpreted as evidence that the fixed effects model is appropriate.
Conversely, if the Hausman test does not reject it is not necessarily the case that the
random-effects model should be preferred.

3. Even though the random effects estimator is biased and inconsistent if important
time-constant variables are omitted, this bias is attenuated by the factor (1-θ) (see
the quasi-demeaning in section “Random Effects Estimator”). As a consequence,
the bias becomes increasingly less severe the closer θ approaches to 1.

Interpret and Present Results

As the last step, we economically interpret our findings. First, marketing managers
are typically interested in the price-elasticity concept: the percentage change in
sales volume when there is a 1% increase in price. Formally, the price-elasticity is
defined as e ¼ @Sales

@Price � Price
Sales, where Price is price and Sales is sales volume. Thereby,

the first part is simply the derivative of our price-response-function @Sales
@Price ¼ βPrice
� �

. For Price and Sales,we use their respective sample means. Thus, for our example,

the price elasticity is �0.36 e ¼ �1:82� 55:38
280:19

� �
, a relatively low value when

compared to results from a meta-analysis reporting an average price elasticity of
�2.62 (Bijmolt et al. 2005). Economically, this finding suggests that marketing
managers can expect that a 1% price increase only lowers sales volume by 0.36%.
Thus, consumers hardly react to price changes of the newly introduced headphone.
Marketing managers, therefore, are likely tempted to increase the price of the
headphone.

Based on our price-response-function, managers can also determine the revenue-

optimal price. In our case, this price would be 79.95€ p� ¼ βConstant
2βPrice

¼ 291
2�1:82

� �
, which

would imply a price increase of 24.57€ compared to the current average price. Note
that for this analysis, we used the intercept (βConstant ¼ 291) of a random effects
model without week-fixed effects (xtreg sales price promo location
floor, re); otherwise, the constant term would only be correct for the left-out
week (Table 4: βConstant ¼ 302.46).

Additional Methods in Panel Data Analysis

Robust Inference

Obtaining correct standard errors of estimators is complicated for panel data since
these data are likely to suffer from serial correlation, as mentioned earlier, as well as
heteroskedasticity (Cameron and Trivedi 2005). Petersen (2009) compares the
performance of different standard errors in panel datasets and, in general,
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recommends the use of cluster-robust standard errors for micropanel datasets (large n
and small T). In the spirit of Petersen’s finding, Cameron and Trivedi (2005, p. 725)
also recommend to “base inference on [cluster-] robust standard errors that do not
require specifying a model for the error correlation.” Marketing researchers com-
monly follow this recommendation (e.g., Bayer et al. 2020, Borah and Tellis 2014;
Warren and Sorescu 2017).

Cluster-robust standard errors are calculated based on the observed distribution of
residuals from the model. They are robust in the sense that they consider the
clustered (or nested) data structure of panel data and assume that observations are
independent between clusters but not necessarily within clusters. In other words,
cluster-robust standard errors consider each store as a cluster with observations over
time, “and arbitrary correlation—serial correlation—and changing variances are
allowed within each cluster” (Wooldridge 2016, p. 433). Cluster-robust standard
errors are beneficial because they also control for potential heteroskedasticity, a
second challenge in estimating standard errors in panel data. Wooldridge (2010,
Chap. 10), Greene (2003, pp. 211–213), and Cameron and Trivedi (2005,
Chap. 21.2.3) formally derive cluster-robust standard errors in the context of
panel data.

We have already discussed the importance of cluster-robust standard errors for
POLS (section “Pooled OLS Estimator: Ignoring the Panel Structure”) since
serial correlation likely leads to an underestimation of common OLS standard
errors. We have also requested cluster-robust standard errors for the fixed effects
and random effects models when estimating the price-response-functions. This
choice seems reasonable as, in general, accounting for fixed effects or random
effects only lowers serial correlation but does not eliminate it. Thus, our general
recommendation is to rely on cluster-robust standard errors for panel data
analysis.

Combining the Fixed Effects and Random Effects Estimators

Our prior discussion suggested that investigators need to choose between the fixed
effects and random effects estimators. However, the literature also offers a com-
bined approach that seeks to leverage the advantages and alleviates the disadvan-
tages of the two estimators. Specifically, it allows including time-constant
variables and provides an alternative Hausman test valid for cluster-robust stan-
dard errors. First, before we discuss the combined approach, we will introduce an
additional estimator – the between effects estimator – which is necessary to
understand the combined approach (section “Between Effects Estimator”). Sec-
ond, we will outline the combined approach (section “Combined Approach”).
Third, we will outline the alternative (fully robust) Hausman test that researchers
can perform (section “Alternative Hausman Test”). Fourth, we will outline why the
combined approach allows the consistent estimation of time-varying variables
(section “Understanding How the Combined Approach Allows Consistent Esti-
mation of Time-Varying Variables”).
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Between Effects Estimator
Since marketing research rarely applies the between effects estimator (cf. Nath and
Mahajan 2008 for an exception, Table 2, Model 3), we will only shortly overview the
estimator. The between effects estimator relies exclusively on the between variation
in the data and discards all time-series information. As such, the estimator computes

the variables’ average values per cluster (e.g., mean price: 1
T

PT
t¼1

Priceit ¼ Pricei ;

effective sample size¼ n¼ 19 stores) and runs an OLS regression on these averages
(Eq. 18). Thus, the between effects estimator exploits the information that the fixed
effects estimator does not use. In contrast, the fixed effects estimator only exploits
variance over time (within store variation; section “What Do Differences Between
Pooled OLS, Fixed Effects, and Random Effects Estimators Imply?”), for instance,
in terms of price and sales volume as in our data example (e.g., Priceit � Pricei ;
effective sample size ¼ n � T ¼ 19 � 82 ¼ 1,558 observations).

Salesi ¼ β0 þ β1Pricei þ β2Promoi þ β3Locationi þ β4Floori þ ui þ ei ð18Þ
Equation 18 displays the price-response-function that we will estimate with the

between effects estimator. In Stata, investigators can request the between effects
estimator with the be option after xtreg. Since we rely on balanced data, week-
fixed effects are the same for all companies and are automatically omitted.

xtreg sales price promo location floor, be

Model 12 in Table 6 displays the results of the between effects estimator and
compares those results to the fixed effects (Model 9), the random effects (Model 10),
and the POLS estimators (Model 11). The results of the between effects estimator are
not the focus of our discussion. Instead, we use them to extend our discussion from
section “What Do Differences Between Pooled OLS, Fixed Effects, and Random
Effects Estimators Imply?” and provide further insights into the random effects and
POLS estimators.

We see that the random effects (Model 10: β1 ¼ �1.82, p < 0.05) and the POLS
(Model 11: β1 ¼ �1.48, n.s.) estimates of price on sales volume lie in between the
fixed effects (Model 9: β1 ¼ �1.85, p < 0.10) and between effects estimates (Model
12: β1 ¼ �0.87, n.s.). The random effects estimator is closer to the fixed estimator,
and the POLS estimator is closer to the between estimator. This general pattern
directly follows from our discussion in section “What Do Differences Between
Pooled OLS, Fixed Effects, and Random Effects Estimators Imply?”: The POLS
and the random effects estimators represent weighted compromises between the
fixed effects and the between effects estimators. The random effects estimator is the
more efficient one.

In the following, we will demonstrate how we can leverage this idea on the
between effects estimator to derive a combined model that allows consistent
estimates of time-varying variables (as the fixed effects estimator does) and
allows the inclusion of time-constant variables (as the random effects estimator
does).
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Combined Approach
The combined approach relies on the random effects estimator but adds the cluster-
means of the time-varying variables (i.e., store means for Priceit and Promoit) to the
model, just as the between effects estimator does. Eqs. 19 and 20 demonstrate two
options of how investigators can employ a combined approach.

Salesit ¼ β0 þ β1Priceit þ β2Promoit þ β3Locationi þ β4Floori þ β5Pricei

þ β6Promoi þ ui þ eit ð19Þ

Salesit ¼ β0 þ β1 Priceit � Pricei
� �þ β2 Promoit � Promoi

� �
þ β3Locationi þ β4Floori þ β5Pricei þ β6Promoi þ ui þ eit

ð20Þ

Including cluster-means of time-varying variables is equivalent to demeaning the
raw data. However, given that we apply this procedure only to time-varying vari-
ables, we can still retain the time-constant variables Locationi and Floori. If we had
an unbalanced panel dataset, we would also need to include the time average of any
time-varying variable. We provide the corresponding Stata syntax in the do-file and
report results in Table 7.

In Table 7, Model 14 relies on Eq. 19 and Model 15 on Eq. 20. In both models, the
estimated price coefficients (Model 2: β1 ¼ �1.85, p < 0.10; Model 3: β1 ¼ �1.85,
p < 0.10) are identical to the corresponding fixed effects estimate (Model
1: β1 ¼ �1.85, p < 0.10). The interpretation of the cluster-mean variables of Priceit

Table 6 Comparison of fixed effects, random effects, POLS, and between effects estimates of the
price-response-function

Fixed effects Random effects POLS Between effects

Model 9 Model 10 Model 11 Model 12

B (SE) B (SE) B (SE) B (SE)

Constant (β0) 394.66*** 302.46*** 283.75*** 208.34n.s.

(56.13) (43.78) (89.09) (245.05)

Price (β1) �1.85* �1.82** �1.48n.s. -.87n.s.

(1.00) (0.89) (1.57) (3.18)

Promo (β2) 45.21*** 45.21*** 47.37*** 119.00n.s.

(8.57) (8.59) (12.74) (318.37)

Location (β3) Omitted 132.79*** 132.36*** 128.54n.s.

(41.76) (41.28) (57.72)

Floor (β4) Omitted �1.48n.s. �3.41n.s. �3.76n.s.

(34.74) (31.64) (84.30)

Week-fixed effects Included Included Included Omitted

Store-fixed effects Controlled

R2 0.24 0.35 0.35 0.26

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses; in randome effects model store effects controlled for through random intercepts
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and Promoit, however, differs between Model 14 and Model 15. The cluster-means
in Model 15 (e.g., β5 ¼ �0.87, n.s.) directly replicate the between effect estimator
(Model 16: β1 ¼�0.87, n.s.). Model 14 tests the difference between the fixed effects

and the between effects results (e.g., βModel 2
5 ¼ bβModel 4

1 � bβModel 1

1 ¼ -
0.87 + 1.85 ¼ 0.98).

Alternative Hausman Test
The interpretation of Model 14’s cluster-means (Table 7) allows an alternative way
to test the appropriateness of the random effects estimator. Both the between effects
and the fixed effects estimators are consistent when the investigator did not omit any
relevant time-constant independent variables. Significant cluster-means from Model
14 (i.e., significant differences between the fixed and between effect estimates)
imply that relevant time-constant variables are omitted. Jointly testing both cluster-
means from Model 14 via a Wald test (H0: All cluster-mean values are zero; H0:

Pricei ¼ Promoi ¼ 0 ), thus, represents an alternative to the Hausman test from
section “Hausman Test: Selecting Between the Fixed Effects and the Random

Table 7 Combined approach estimates of the price-response-function

Fixed
effects

Combined approach
(Eq. 19)

Combined approach
(Eq. 20)

Between
effects

Model 13 Model 14 Model 15 Model 16

B (SE) B (SE) B (SE) B (SE)

Constant (β0) 394.66*** 232.82n.s. 232.82n.s. 208.34n.s.

(56.13) (197.17) (197.17) (245.05)

Price (β1) �1.85* �1.85* �1.85* -.87n.s.

(1.00) (1.00) (1.00) (3.18)

Promo (β2) 45.21*** 45.21*** 45.21*** 119.00n.s.

(8.57) (8.59) (8.59) (318.37)

Location (β3) Omitted 128.54*** 128.54*** 128.54n.s.

(44.85) (44.85) (57.72)

Floor (β4) Omitted �3.76n.s. �3.76n.s. �3.76n.s.

(34.50) (34.50) (84.30)

Mean price
(β5)

.98n.s. -.87n.s.

(2.76) (2.65)

Mean promo
(β6)

73.79n.s. 119.00n.s.

(280.36) (280.56)

Week-fixed
effects

Included Included Included

Store-fixed
effects

Controlled

R2 0.24 0.35 0.35 0.26

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses
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Effects Estimator.” The test-statistic follows a χ2 distribution with p degrees-of-
freedom, with p being of the number of cluster-means tested. In line with our prior
interpretation of the Hausman test, investigators rely on the random effects estimator
(i.e., we can drop the cluster-means from Eq. 19) unless the Wald test returns a
significant test statistic.

test price_mn promo_mn

Hausman (1978, p. 1263) and Hausman and Taylor (1981, p. 1382) showed that
both tests are asymptotically equivalent (Wooldridge 2010, p. 332). Thus, to test
whether omitted time-constant company variables correlate with the independent
variables, we can either compare the fixed effects and random effects estimates
(which we did in section “Hausman-Taylor Approach: Consistent Estimation of
Time-Constant Effects in the Combined Approach”) or the fixed effects with the
between effects estimates which we do in this section. Wooldridge (2010) recom-
mends the latter (regression-based) version using cluster-robust standard errors. For
our example, we cannot reject the null hypothesis of equal between effects and fixed
effects (χ2(d.f. ¼ 2) ¼ 0.13; p ¼ 0.94), replicating the substantive conclusion of
section “Hausman Test: Selecting Between the Fixed Effects and the Random
Effects Estimator.” Thus, we can rely on the random effects estimator.

Understanding How the Combined Approach Allows Consistent
Estimation of Time-Varying Variables
The random effects estimator’s core challenge is the assumption that the independent
variables are uncorrelated with the unobservable time-constant cluster effects. In the
following, we build on Wooldridge (2016, pp. 445–446) to explain why including
cluster-means leads to consistent estimates of time-varying independent variables.
Let us assume that manager ability was indeed a driver of sales volume, yielding the
specification in Eq. 21. For the sake of simplicity, we will assume that we do not
need to account for promotion, premium location, and floor design.

Salesit ¼ β0 þ β1Priceit þ β2 Manager Abilityi þ ui þ eit ð21Þ
Since we have not collected data on manager ability, we would falsely specify the

price-response-function, as in Eq. 22:

Salesit ¼ β00 þ β01Priceit þ u0i þ e0it ð22Þ
The omitted manager ability becomes part of the store-specific error term

u0i ¼ β2 �Manager Abilityþ ui
� �

. Since manager ability is time-constant in our
example, it can only correlate with any time-constant effect in Priceit
(i.e., Manager Ability ¼ δ0 þ δ1 � Pricei þ ϕi ). If the cluster-mean of price dis-
plays a nonzero relationship with manager ability (δ1 6¼ 0), Priceit becomes endo-
geneous, i.e., price correlates with the store-specific error term (corr(ui; Priceit) 6¼ 0).
However, by including the cluster-mean of Priceit, the correlation of Priceit and the
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store-specific error term ui disappears (β000 ¼ β00 þ β2 � δ0
� �

, β002 ¼ β2 � δ1ð Þ , and
u00i ¼ β2 � ϕ1 þ uið Þ).

Salesit ¼ β00 þ β01Priceit þ β2 δ0 þ δ1Pricei þ ϕi

� �þ ui
� �þ e0it

¼ β000 þ β01Priceit þ β002Pricei þ u00i þ e0it
ð23Þ

The Priceit coefficient estimate (Eq. 23) will be the same as in the fixed effects
model. The intuition behind this result is that while the final regression model
(Eq. 23) still omits manager ability, it accounts for unobserved correlated ability
effects by including the cluster-mean of price. The included cluster-mean of the price
typically has no substantive interpretation but serves to control for an omitted
variable bias.

Hausman-Taylor Approach: Consistent Estimation of Time-Constant
Effects in the Combined Approach

The combined approach (section “Combining the Fixed Effects and Random Effects
Estimators”) allows including time-constant variables and allows that the Priceit and
Promoit variables correlate with the store-specific error component ui (like the fixed
effects estimator). However, the combined model still requires that time-constant
variables (e.g., Locationi and Floori) and the cluster-specific error component ui are
uncorrelated. If this assumption does not hold, the estimates of time-constant vari-
ables are not consistent.

Hausman and Taylor (1981) propose a method for obtaining consistent estimates
of time-constant variables. Essentially, the Hausman-Taylor approach treats vari-
ables differently, depending on whether they are time- constant, time- varying, and
correlated or uncorrelated with the cluster-specific component ui. Specifically, the
approach discriminates between time-varying endogenous, time-varying exogenous
variables, as well as time-constant endogenous and time-constant exogenous
variables.

For instance, we may have reason to believe that omitted time-constant variables
could affect Priceit and Floori (i.e., these are endogenous variables). Knowing that
higher-level company executives and not the individual store managers are involved
in promotion timing and location decisions, we are not worried that omitted time-
constant store variables could impact Promoit and Locationi (i.e., these are exoge-
nous variables). Please note that these rationales are only exemplary and require
more careful theoretical and empirical justification.

The Hausman-Taylor approach’s idea is now to derive so-called panel-internal
instrumental variables for the endogenous variables Priceit and Floori. Panel-internal
instruments imply that we can use simple transformations of variables that are
already included in the price-response-function as instruments. Thus, panel data
offer the advantage that investigators do not have to collect external instrumental
variables, which are often not readily available.
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Specifically, in the Hausman-Taylor approach, demeaned variables (known from
the fixed effects estimation) serve as instruments for time-varying endogenous vari-
ables (e.g., Priceit � Pricei

� �
serves as an instrument for Priceit). Cluster means of

time-varying variables serve as instruments for time-constant endogenous variables
(e.g., Pomoi serves as an instrument for Floori). We want to confirm that both
instrumental variables are exogenous (corr(Priceit � Pricei , ui) ¼ 0 and corr(Pomoi ,
ui) ¼ 0). Importantly, the Hausman-Taylor approach requires at least as many time-
varying exogenous variables as time-constant endogenous variables for identification.
If we had additional time-varying exogenous variables, we could evaluate the strength
of the selected instrumental variables using the xtoverid command.

We can obtain estimates for the Hausman-Taylor approach with the xthtaylor
command in which we specify the endogenous variables (both time-varying and
time-constant) with the endog option; the other variables are considered exoge-
nous. Model 19 in Table 8 displays the results. We see that the Hausman-Taylor
approach results in different estimates for some of the variables, including Floori and
Locationi, compared to the combined approach.

xthtaylor sales price promo location floor w2-w82, endog(price
floor) vce(cluster storeid)

The Hausman-Taylor approach finds initial application in marketing research. For
instance, Boulding and Christen (2003, 2008) employ this approach in the context of

Table 8 Hausman-Taylor approach estimates of the price-response-function

Fixed effects Combined approach (Eq. 19) Hausman-Taylor

Model 17 Model 18 Model 19

B (SE) B (SE) B (SE)

Constant (β0) 394.66*** 232.82 n.s. 295.32n.s.

(56.13) (197.17) (306.82)

Price (β1) �1.85* �1.85* �1.85*

(1.00) (1.00) (1.00)

Promo (β2) 45.21*** 45.21*** 45.21***

(8.57) (8.59) (8.58)

Location (β3) Omitted 128.54*** 141.43n.s.

(44.85) (338.88)

Floor (β4) Omitted �3.76 n.s. 24.49n.s.

(34.50) (1008.37)

Mean price (β5) 0.98 n.s.

(2.76)

Mean promo (β6) 73.79 n.s.

(280.36)

Week-fixed effects Included Included Included

Store-fixed effects Controlled

R2 0.24 0.35 0.34

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses
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new product introduction strategies. For further applications and their implied panel-
internal instruments, please consult Butt et al. (2018), Germann et al. (2015),
Ho-Dac et al. (2013), Rao et al. (2004), and Steenkamp and Geyskens (2014).

Summary of the Discussed Estimators and Their Underlying
Assumptions

We have discussed a range of estimators to estimate the price-response-function.
The estimators produce different results since they exploit the panel structure in
different ways: The between effects estimator uses the between variation in the
data while the fixed effects estimator exploits the within variation in the data.
Finally, the POLS and the random effects estimators exploit both types of varia-
tion, with the latter being more efficient. Notably, if the random effects model’s key
assumption is met, all potential estimators are consistent, and the random effects
estimator is the most efficient estimator. However, if the cluster-specific effects ui
are correlated with the independent variables, the random effects model’s key
assumption is not met. In this case, only the fixed effects estimator is consistent;
the Hausman test (sections “Hausman Test: Selecting Between the Fixed Effects
and the Random Effects Estimator” and “Alternative Hausman Test”) formally
tests this assumption.

Given the divergent results, investigators should understand the different assump-
tions underlying the estimators (called model-identifying assumptions) and justify
their choices in applied research. We review those assumptions in Table 9, which we
classify into A, B, and C assumptions according to Von Auer (2013). The
A-assumptions address the functional specification of the regression model.
B-assumptions focus on the error term structure, and C-assumptions relate to
individual variables of the model. The following sources provide a more in-depth
discussion of these assumptions: Kennedy (2008), Greene (2003), Skiera et al.
(chapter ▶ “Regression Analysis”), Verbeek (2017), Wooldridge (2010, 2016).

Regarding the A-assumptions, all estimators require that the investigator includes
all relevant variables in the model (assumption A1). We call such an approach a rich
data model. For the POLS and the random effects estimator, this implies including all
relevant time-constant and time-varying control variables. The fixed effects estima-
tor only requires that the investigator includes all relevant time-varying control
variables in the model.

Assumption A2 relates to the relationship between independent and dependent
variables, which we assume is linear. Skiera et al. (chapter▶ “Regression Analysis”)
discuss different data-transformations appropriate for linearizing curvilinear rela-
tionships, and those transformations equally apply to the panel data context.

Assumption A3 involves the effect of independent variables on the dependent
variables to be constant. If this is not the case, investigators could include interaction
terms to perform a moderated regression analysis (e.g., Vomberg et al. 2015). By
including interaction terms, investigators effectively model slope heterogeneity.
While the inclusion of interaction terms requires that researchers measure the
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respective moderating variables, in section “Random Slope Models: A Multilevel
Model Approach to Panel Data,” we will show that panel data methods also model
slope heterogeneity without measured moderating variables.

Regarding the B-assumptions, panel data is especially prone to violate assump-
tions about the error term distribution given the clusters’ dependency. In this
regard, we emphasized the need to rely on cluster-robust standard errors if the
investigator decides to employ POLS (section “Pooled OLS Estimator: Ignoring
the Panel Structure”). We also recommended their usage for the fixed effects and
random effects estimators (section “Robust Inference”), as they help account for

Table 9 Assumptions of the different estimators

POLS estimator Fixed effects estimator Random effects estimator

A1 No relevant time-varying
and time-constant
variables are missing

No relevant time-varying
variables are missing

No relevant time-varying and
time-constant variables are
missing

A2 True relationship between independent and dependent variable is linear

A3 Estimated parameters are constant over all observations

B1 The expected value of the
idiosyncratic error term is
zero: E(ξit| X, Z) ¼ 0

The expected value of
the idiosyncratic error
term is zero: E(eit|X)¼ 0

The expected value of the
idiosyncratic error term is zero:
E(eit| X, Z, ui) ¼ 0
The intercept captures the
expected value of the unit-
specific error term: E(ui| X,
Z) ¼ β0

B2 Homoskedasticity:
Var(ξit| X, Z) ¼ σ2

Homoskedasticity:
Var(eit| X) ¼ σ2e

Homoskedasticity:
Var(eit| X, Z, ui) ¼ σ2e
Var(ui| X, Z) ¼ σ2u

B3 No serial correlation:
Cov(ξit, ξis | X, Z) ¼ 0

No serial correlation:
Cov(eit, eis | X) ¼ 0

No serial correlation:
Cov(eit, eis | X, Z, ui) ¼ 0

B4 Error terms are normally
distributed:
ξit ~ N(0,σ2)

Idiosyncratic error terms
are normally distributed:
eit ~ N(0, σ2e)

Idiosyncratic and cluster-
specific error terms are
normally distributed:
eit ~ N(0, σ2e)
ui ~ N(constant, σ2u)

C1 Error terms are
uncorrelated with
independent variables:
Cov(ξit, X) ¼ 0; Cov(ξit,
Z) ¼ 0

Idiosyncratic error terms
are uncorrelated with
independent variables:
Cov eit ,X� X

� � ¼ 0

Idiosyncratic and cluster-
specific error terms are
uncorrelated with independent
variables:
Cov(eit, X)¼ 0; Cov(eit, Z)¼ 0
Cov(ui, X) ¼ 0; Cov(ui, Z) ¼ 0

C2 No multicollinearity

C3 Measurement error-free

Notes: Based on a stylized regression of yit ¼ β0 + β1x1it + . . . + βkxkit + βjzji + ξit with cluster i in
time period t. ξit is the composite error term, ui is the cluster-specific error component, and eit is the
idiosyncratic error term. xit denotes time-varying variables, and zi indicates time-constant variables.
X represents the vector of time-varying variables xit, and Z denotes the vector of time-constant
variables zi
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serial correlation (violation of assumption B3) and heteroskedasticity (violation of
assumption B2).

Regarding assumption C1, the POLS estimator assumes that the composite error
term does not correlate with the independent variables (exogeneity). The fixed effects
estimator requires that the idiosyncratic error term is uncorrelated with the independent
variables. Note that because the cluster-specific effects omit all time-constant inde-
pendent variables from the model, the exogeneity assumption applies to time-varying
independent variables only. The exogeneity assumption is also made for the idiosyn-
cratic error term for the random effects estimator, which is assumed to be uncorrelated
with the independent variables. Assumption C2 requires that all variables display
unique variation and, hence, are not perfectly correlated (no perfect multicollinearity).
For the POLS and the random effects estimators, this is fulfilled if variables have
unique variance over time, between clusters, or both. For the fixed effects estimator,
this assumption requires that variables display unique variation over time. Standard
errors of variables with little variation over time will become large and reduce
statistical power. This assumption also explains why investigators cannot add time-
constant variables in the fixed effects approach because they perfectly correlate with
the cluster-specific effect.

In this regard, we emphasize three further comments:

1. Investigators should not decide between the fixed effects and the random effects
approach based on whether they are interested in the effect of time-constant
variables. If the effect of time-constant variables is of interest to investigators,
they may employ the combined approach (section “Combining the Fixed Effects
and Random Effects Estimators”) or the Hausman-Taylor approach
(section “Hausman-Taylor Approach: Consistent Estimation of Time-Constant
Effects in the Combined Approach”).

2. The fixed effects estimator’s inefficiency, which results from little within varia-
tion, might favor random effects estimation. For instance, Wolters et al. (2020)
justify a random effects over a fixed effects specification by noting a lack of
sufficient variation in their focal variable over time. Warren and Sorescu (2017)
suggest a random effects approach since their unbalanced panel dataset contains
several clusters with only one observation.

3. Moreover, we want to acknowledge recent calls for a more balanced view
between bias and efficiency when deciding between the fixed effects and random
effects estimator. For instance, Kummer and Schulte (2019) mention little within
variation as a limitation to their fixed effects approach. Additionally, Andreß et al.
(2013, p. 173) state the following:

Inefficiency of the [fixed effects] estimator is a particular problem if the within-unit
variance is low and variables hardly change over time. Since you are never in the lucky
situation of statistical theory, which assumes repeated sampling, your single sample
may provide you with estimates quite different from the true population parameters. In
that case, the fact that fixed effects are unbiased (i.e., correct on average) is no comfort
for you. Hence, more research is needed that provides a more balanced view of both
estimators that takes into account both unbiasedness and efficiency.
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Finally, all estimators require that the variables are measured without error
(assumption C3) as measurement error represents another form of endogeneity
that can lead to violation of assumption C1 (chapter ▶ “Crafting Survey
Research: A Systematic Process for Conducting Survey Research” by Vomberg
and Klarmann). In section “Addressing Measurement Error with Structural
Equation Modeling Based on Panel Data,” we will demonstrate how investigators
can leverage panel data to reduce measurement error concerns. Notably, due to
the within-transformation, the fixed effects estimator is particularly susceptible to
attenuation bias from measurement error (Angrist and Pischke 2008; Griliches
and Hausman 1986; Wooldridge 2016, p. 440).

Modeling a Price-Response-Function in Differences

The discussion so far has focused on modeling the price-response-function in levels.
For the sake of completeness, we briefly discuss an additional estimator for the
analysis of panel data: the first difference estimator. The first difference estimator
takes the first difference of all variables (see Eq. 24) and then performs an OLS
regression on the transformed variables (for a more technical discussion, please refer
to Cameron and Trivedi 2005, pp. 729–731).

Equation 24 reveals that unobserved time-constant variables disappear after
taking the first differences since they do not change over time. Like the fixed
effects estimator, the first difference estimator thereby controls for an omitted
variable bias stemming from unobserved time-constant variables. As a conse-
quence, the first difference estimator does not allow to include time-constant
variables.

Investigators can manually create the first differences of the variables. Alterna-
tively, Stata automatically creates first differences when placing a difference operator
(D.) in front of the respective variable. In line with our prior discussion, we also
recommend that researchers should rely on cluster-robust standard errors for first
difference models.

Salesit�Salesit�1ð Þ¼ β0�β0ð Þþβ1 Priceit�Priceit�1ð Þþβ2 Promoit�Promoit�1ð Þ
þβ3 Locationi�Locationið Þþβ4 Floori�Floorið Þþ ui�uið Þ
þ eit� eit�1ð Þ¼ β1ΔPriceitþβ2ΔPromoitþΔeit

ð24Þ
reg D.sales D.price D.promo i.week, cluster(storeid)

Table 10 demonstrates the results of the analysis. Since the first difference
estimator is obtained via OLS, investigators can evaluate model fit with standard
measures such as the R2 statistic and use t-tests to determine the significance of
individual regression coefficients. We find a negative, though not significant,
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impact of price on sales volume (Model 20: β1 ¼�1.66, n.s.). Comparing the first
difference estimates with the fixed effects estimates reveals that, despite their
similarity in removing time-constant cluster-specific effects, coefficient estimates
differ. Only for the two time periods case (e.g., 2 weeks), first-differencing and
the within transformation will result in identical results.

Since both estimators are unbiased and consistent, investigators can choose
freely between the two estimators. Wooldridge (2016, p. 439) and Cameron
and Trivedi (2005, p. 705) though note that under certain conditions (i.e., no
serial correlation and a homoskedastic error term structure), the fixed effects
estimator is more efficient than the first difference estimator. Relatedly, a
drawback of the first difference estimator becomes apparent the more unbalanced
the panel data is. In the case of balanced panels, only the first measurement
occasion is dropped since investigators cannot calculate the first difference.
However, in the case of unbalanced panel data – which represents the typical
case in applied research – first differences can tremendously reduce the sample
size. Picking up Verbeek’s (2017) critique, the investigator might want to care-
fully inspect the model specification when the fixed effects and first difference
estimator yield substantially different results. Such differences likely point to
misspecification issues that might violate the fixed effects estimator’s strict
exogeneity assumption.

Finally, we want to point to a particular application area of the first difference
estimator, common in the marketing literature (e.g., Gill et al. 2017; Manchanda
et al. 2015): the difference-in-differences estimator. The difference-in-differ-
ences approach mimics an experimental design while using observational data.
Its typical set up includes a binary independent variable that discriminates
between a treatment and control group (Cameron and Trivedi 2005, Chap. 22;
Verbeek 2017, p. 390; Wooldridge 2016, p. 410). Artz and Doering (chapter
▶ “Exploiting Data from Field Experiments”) discuss its application in more
detail in this Handbook.

Table 10 First difference estimates of the price-response-function

First difference Fixed effects

Model 20 Model 21

B SE B SE

Constant (β0) 14.79 n.s. (20.66) 394.66*** (56.13)

Price (β1) �1.66 n.s. (1.05) �1.85* (1.00)

Promo (β2) 57.76*** (10.67) 45.21*** (8.57)

Location (β3) Omitted Omitted

Floor (β4) Omitted Omitted

Week-fixed effects Included Included

Store-fixed effects Controlled Controlled

R2 0.23 0.24

***p < 0.01; **p < 0.05; *p < 0.10; n.s. ¼ not significant; cluster-robust standard errors (SE) in
parentheses
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Advanced Topics in Panel Data Analysis

Dynamic Panel Data Estimation

Dynamic Panel Models Without Cluster-Specific Effects
We now consider dynamic panel models in which investigators include the lagged
dependent variable as a time-varying variable. These models are also called lagged-
response models, autoregressive models, or Markov models, and Eq. 25 shows their
more general form.

yit ¼ β0 þ λ1yi,t�1 þ . . .þ λlyi,t�l þ β1x1it þ . . .þ βkxkit þ ξit ð25Þ
The most popular dynamic model is the autoregressive lag-1 (AR1) model, where

the current value of the dependent variable (yit) is regressed on its one-period lagged
value (yi,t-1). Analogously, in an autoregressive lag-2 AR(2) model, the dependent
variable is lagged by two periods (yi,t-2). Srinivasan (chapter ▶ “Modeling Market-
ing Dynamics Using Vector Autoregressive (VAR) Models”) and Wang and Yildrim
(chapter ▶ “Applied Time-Series Analysis in Marketing”) offer an in-depth discus-
sion of AR processes in this Handbook, also covering related topics, including
vector autoregressive (VAR) models. Note that we assume the independent variables
in all AR model variants to be uncorrelated with the error term and the error term to
be serially uncorrelated (see Table 9).

Dynamic panel models can be helpful in various situations. First, by including the
lagged dependent variable as an independent variable, dynamic panel models help
reduce an omitted variable bias. This notion extends our earlier discussion which has
focused on accounting for time-constant cluster-specific effects. Including the lagged
dependent variable as a time-varying control relaxes the assumption of omitted
variables being only time constant and accounts for time-varying effects. In a
classical study of explaining market share, Jacobson and Aaker (1985), for instance,
use such an approach to model omitted factors such as customer loyalty and
distribution systems, which might have influenced market share in the prior periods
as well as in the current period. Since no fixed or random effects are included in such
a model, it can be conveniently estimated by OLS.

Second, dynamic models are employed when the effect of the lagged dependent
variable is itself of scientific interest. For instance, in a study of synergy effects in
multimedia communications, Naik and Raman (2003) examine the degree of carry-
over in sales levels.

Dynamic panel models have received quite some attention in the marketing
literature. Germann et al. (2015), for instance, offer an extensive study on the
presence of a CMO on firm performance using a lagged dependent variable in
their model. Homburg et al. (2020) show that a dynamic approach is even feasible
when only the dependent variable is constructed as a panel variable. In their study,
the authors investigate the impact of multichannel sales system design (obtained
from a cross-sectional survey) on firm performance (derived from secondary panel
performance data). The authors include a lagged measurement of firm performance
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as an independent variable to control for variables that equally impacted perfor-
mance in different time periods.

Despite its advantages, adopting a dynamic panel structure comes with certain
limitations that we now briefly review (see Rabe-Hesketh and Skrondal 2012 for a
detailed discussion). First, estimating a dynamic panel model is only feasible when
occasions are equally spaced in time. For instance, modeling a dynamic panel
structure for data collected over several survey waves with different time intervals
would not be a sensible task. It is quite a stretch to assume that the lagged dependent
variable has the same effect on the current level of the dependent variable regardless
of the time interval between them.

Second, the sample size is considerably reduced when a lagged dependent
variable is included because lags are missing for each cluster’s first observation
(section “Modeling a Price-Response-Function in Differences”). In cases of gaps in
the data, the problem of missingness becomes exacerbated because the missing
measurement itself is discarded as well as the subsequent observation with its
missing lagged measurement.

Third, while not necessarily a limitation, it is worth highlighting that the inter-
pretation of the model’s coefficients changes when including the lagged dependent
variable. The coefficients now describe the independent variable’s effect on the
difference between the current and lagged dependent variable. Rearranging the AR
(1) dynamic panel model, Eq. 26 shows this point clearly. If λ was equal to 1, the
equation would model the change in the dependent variable instead of its level.

yit � λyi,t�1 ¼ β0 þ β1x1it þ . . .þ βkxkit þ β jzji þ ξit ð26Þ

Finally, when including the time-varying lagged dependent variable as a control
to account for omitted variables, such a model makes the strong assumption that all
within dependence is due to the lagged dependent variable. In other words, the
investigator assumes that the omitted variables are fully accounted for by the lagged
dependent variable, there are no cluster-specific effects remaining, and there is no
serial correlation present in the error term. This is an admittedly strong assumption,
which we can test for, and which we relax in the following section in discussing
dynamic panel models that also include cluster-specific effects.

Dynamic Panel Models With Cluster-Specific Effects
We now provide a model that accounts for unobserved cluster-level heterogeneity
and adds the lagged dependent variable as an independent variable. A useful feature
of such a model is that it can distinguish between two competing explanations of
within dependence: unobserved cluster-level heterogeneity (represented by the time-
constant cluster effects) and state dependence (represented by the lagged dependent
variable). For instance, referring to our data example, the within-store dependence of
headphone sales might result from some stores employing very capable managers.
Capabilities are likely to be constant over the observation period, in which case this
type of dependence represents unobserved cluster heterogeneity. Within-store
dependence might also result from high current sales attracting high future sales

458 A. Vomberg and S. Wies



through improved financial resources to attract new sales, a case of true state
dependence. The corresponding model takes the following form:

Salesit ¼ β0 þ λSalesi,t�1 þ β1Priceit þ β2Promoit þ β3Locationi þ β4Floori
þ δWEEK þ ui þ eit ð27Þ

It would be tempting to fit the model using the estimation techniques we intro-
duced in the earlier sections. Unfortunately, the conditions for consistent estimation
of Eq. 27 are much more demanding than those required for estimations relying on
cluster-specific effects or lagged dependent variables alone (Angrist and Pischke
2008).

First, estimating Eq. 27 with the random effects estimator would lead to incon-
sistent estimates of the coefficients because the lagged dependent variable is per
definition correlated with the cluster-specific effect ui in the error term. As a result,
we would run into a problem of correlated unobserved cluster-level heterogeneity
and conclude that the random effects estimator is not feasible when estimating
dynamic panel models.

Second, estimating Eq. 27 using the fixed effects estimator does not solve this
problem either. The within transformation mechanically correlates the within-
transformed lagged dependent variable (Salesi,t�1 � Salesi ) with the within-
transformed error term (ei,t�1 � ei) since Salesi, t � 1 is correlated with εi, t � 1 and
hence with ei . Thus, a fixed effects approach is also not feasible when estimating
dynamic panel models.

Finally, estimating Eq. 27 using a first difference approach will also produce
inconsistent results, as Eq. 28 shows.

Salesit � Salesi;t�1

� � ¼ λ Salesi,t�1 � Salesi,t�2ð Þ þ β1 Price1it � Price1i;t�1

� �
þβ2 Promoit � Promoi;t�1

� �þ ui � uið Þ þ eit � ei;t�1

� �
ð28Þ

The lagged difference of the dependent variable correlates with the difference of
the error term (εi, t� εi, t � 1) because Salesi, t � 1 is related to its error term εi, t � 1. As
such, the first difference approach also violates the assumption of exogeneity
(section “Summary of the Discussed Estimators and Their Underlying
Assumptions”).

At the same time, note that εi, t � εi, t � 1 is not correlated with lagged differences
of the dependent variable beyond the first lag (Salesi, t � 1), opening up the
possibility of instrumenting the lagged difference of the dependent variable with
higher lags. Under the assumption that the error term is serially uncorrelated,
Anderson and Hsiao (1981, 1982) introduced such a panel-internal instrumental-
variable approach. They suggest that investigators can either use the second lag of
the dependent variable (yi,t-2) or the lag of the first difference (yi,t-2 – yi,t-3) as
instrumental variables for the differenced dependent variable (yi,t-1 – yi,t-2). As
with all instrumental variable estimation, such an approach assumes that the
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instrumental variables fulfill the relevance and validity assumptions (see chapter
▶ “Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers”
by Ebbes et al. in this Handbook).

As an application in marketing, Mizik and Jacobson (2008) rely on the Anderson-
Hsiao estimator to model changes in firm profitability. Investigators can obtain a
version of this estimator via the xtivreg command in Stata.

More efficient IV estimators use additional lags of the dependent variable as
instruments, an idea Arellano and Bond (1991) and Blundell and Bond (1998)
developed in their generalized method of moments estimator. The Arellano-Bond
approach identifies how many lags of the dependent variable are valid instruments
and includes all of these lags as instruments (together with the first differences of the
model’s exogenous variables). Wies et al. (2019), for instance, employ the Arellano-
Bond approach when modeling the time series of advertising expenses in studying
how firms manipulate their advertising efforts in response to receiving shareholder
complaints. The Arellano-Bond approach can be implemented in Stata using the
xtabond, twostep command.

The Blundell-Bond approach considers Eqs. 27 and 28 as a system of equations.
It then uses the lagged differences of the dependent variable as instruments for the
levels equation (Eq. 27) and the lagged levels of the dependent variable as instru-
ments for the differences equation (Eq. 28). The Blundell-Bond estimator has
improved precision properties, as reflected in lower standard errors. It is
implemented in Stata using the xtdpdsys approach or the user-written xtabond2
command (available from SSC findit xtabond2; Roodman 2009), and the syntax
structure follows xtabond.

Stata’s xtabond command family provides a set of practical postestimation
specification tests to validate the two critical assumptions underlying a panel-internal
instrumental variable approach. Specifically, the estat sargan command offers a
test of overidentifying restrictions, which is useful in confirming the assumption of
instrument validity. The estat abond command tests whether the error is serially
uncorrelated, another desired property we need to confirm when using either the
Arellano-Bond or Blundell-Bond estimator. If the test rejects the latter assumption,
we can resort to Stata’s xtdpd command. This command fits a dynamic panel
model based on the Arellano-Bond or Blundell-Bond estimator at the cost of a more
complicated syntax but, importantly, allows for low-order autocorrelation in the
error term. For a more detailed exposition of handling dynamic panel models in
Stata, we recommend Cameron and Trivedi (2005, 2009).

We close with a final recommendation on assessing the usefulness of our selected
dynamic panel model when including cluster-specific effects. Instead of estimating
variants of the instrumental-variable model (this section), it might be an insightful
task to estimate a separate fixed effects (section “Fixed Effects Estimator”) and
random effects model (section “Random Effects Estimator”) plus a separate lagged
dependent variable model (section “Dynamic Panel Models Without Cluster-
Specific Effects”). If the lagged dependent variable model is correct, but one
estimates a fixed effects model, the estimated effect will be too large. If a fixed
effects model is correct, but one estimates a lagged dependent variable model, the
estimated effect will be too small. Therefore, one can think of the fixed effects and
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the lagged dependent variable models as bounding the true causal effect of interest
(Angrist and Pischke 2008, p. 246).

Random Slope Models: A Multilevel Model Approach to Panel Data

In section “Dependent Variable: Between and Within Variance,” we introduced the
focal challenge of nonindependent sales observations in panel data and illustrated
this point along with a nested structure figure (Fig. 7). As visible in this figure, panel
data can be considered a multilevel model (please refer to chapter ▶ “Multilevel
Modeling” by Haumann et al. in this Handbook for a general introduction to
multilevel modeling).

In multilevel terminology, the panel dataset represents a two-level data structure,
i.e., sales volume measured over time (Level 1) nested in stores (Level 2). In contrast
to typical multilevel data, such as sales reps (Level 1) nested in sales managers
(Level 2), panel data have an inherent order at the lowest level.

Knowledge of multilevel models allows expanding the discussion on the random
effects estimator. Specifically, multilevel models can consider random cluster-
specific intercepts as well as random cluster-specific slope coefficients. While prior
models (sections “Analyze Panel Data Models” and “Additional Methods in Panel
Data Analysis”) assumed that all regression coefficients (besides the cluster-specific
intercepts ui) are the same across stores, in the following, we will allow divergent
slope coefficients across clusters (Hox 2010; Raudenbush and Bryk 2002).

For instance, we can extend the random effects model and allow Priceit to vary
between stores. We indicate this additional variability by including the subscript i to
the focal regression coefficient (Eq. 29). Eqs. 30 and 31 formally describe the
random intercept and random slope, respectively. Eq. 32 shows that we chose not
to include a random slope for Promoit.

Salesit ¼ β0i þ β1iPriceit þ β2iPromoit þ δWEEK þ eit ð29Þ
β0i ¼ γ00 þ γ01Locationi þ γ02Floori þ u0i ð30Þ

β1i ¼ γ10 þ u1i ð31Þ
β2i ¼ γ20 ð32Þ

Substituting Eqs. 30, 31, and 32 into Eq. 29 leads to the complete multilevel
regression model (Eq. 33). Equation 33 resembles the random effects model
(section “Random Effects Estimator”) and includes the random slope coefficient of
the price (u1i � Priceit).

Salesit ¼ γ00 þ γ1Locationi þ γ2Floori þ u0ið Þ þ γ10 þ u1ið ÞPriceit þ γ20Promoit

þδWEEK þ eit ¼ γ00 þ γ10Priceit þ γ20Promoit þ γ01Locationi

þγ02Floori þ δWEEK þ u0i þ u1i � Priceit þ eit

ð33Þ
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Including random slopes represents an extension of the random effects model and
requires a different estimator. While FGLS (xtreg, re) is typically used to
estimate random effects models, multilevel models require a maximum likelihood
estimator.

Stata users need to employ the xtmixed command, whose syntax slightly differs
from the xtreg command, to estimate random slope models. Rabe-Hesketh and
Skrondal (2012) offer an in-depth discussion on how to build multilevel models in
Stata. As before, we recommend that investigators rely on robust standard errors
(vce(robust) option).

xtmixed sales price promo location floor i.week || storeid:
price, vce(robust)

Marketing researchers commonly perform random slope applications of multi-
level modeling on panel data. For instance, Anderson et al. (2004) rely on panel
data in their multilevel model on customer satisfaction’s impact on firm perfor-
mance. Overall, the authors observe a positive effect of customer satisfaction.
However, they also find that the effect of customer satisfaction on firm perfor-
mance significantly varies between companies and industries. Gruca and Rego
(2005), Sorescu and Spanjol (2008), Vomberg et al. (2015), and Wlömert and
Papies (2019) similarly employ multilevel modeling to panel data to obtain deeper
insights on how effects vary across clusters.

Addressing Measurement Error with Structural Equation Modeling
Based on Panel Data

Our discussion so far has focused on the benefits of panel data to address endo-
geneity concerns that may arise from an omitted variable bias. In this section, we
discuss the implications of another essential source of endogeneity: measurement
error, that is, “situations where one or more regressors cannot be measured exactly
and are observed with an error” (chapter ▶ “Dealing with Endogeneity: A Non-
technical Guide for Marketing Researchers” by Ebbes et al.).

All estimators discussed in the previous sections rely on the assumption that the
variables are measured without error (section “Summary of the Discussed Estimators
and Their Underlying Assumptions”). However, this assumption might be violated
already in the context of rather objectively verifiable information such as reported
price or sales volume. Measurement error may arise due to transmission errors into
databases. The measurement error problem becomes even more concerning for more
abstract constructs frequently investigated in marketing research (e.g., consumers’
brand perceptions or customer satisfaction). In this regard, measurement theory
suggests that observed variables (e.g., observed customer satisfaction scores) represent
the net result of a true score and some random error (chapter ▶ “Crafting Survey
Research: A Systematic Process for Conducting Survey Research” by Vomberg and
Klarmann).
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Figure 18 illustrates the measurement error problem (Andreß et al. 2013). Please
assume that we measured customer satisfaction scores for two consecutive years
(t and t + 1). Following standard conventions in the literature (e.g., chapter▶ “Struc-
tural Equation Modeling”), we present the observed values of customer satisfaction
in rectangular boxes. As predicted by measurement theory, those values are
influenced by the true level of customer satisfaction (“Customer Satisfaction*”),
which is specified as circled in Fig. 18 and by a measurement error (εt).

The amount of measurement error will impact the estimated relationship between
customer satisfaction over time, which we could model with dynamic panel data
models (section “Dynamic Panel Data Estimation”). For instance, true state depen-
dence (serial correlation of customer satisfaction over time) might be r ¼ 0.82 (corr
(CustomerSatisfaction*t; CustomerSatisfaction*t + 1)). However, we measured cus-
tomer satisfaction with error so that the true customer satisfaction level is not
translated one-to-one into an observable customer satisfaction level. Statistically
speaking, customer satisfaction has a factor loading of λ ¼ 0.70 (if customer
satisfaction was measured without error, the factor loading would be λ ¼ 1.00). As
a consequence, the observed correlation between customer satisfaction becomes
smaller (corr(CSt; CSt + 1) ¼ 0.70 � 0.82 � 0.70 ¼ 0.40) and true state dependence
is underestimated.

In the context of cross-sectional data, problems of measurement error only
concern the independent variables. The error term captures the measurement error
of the dependent variable. However, in the context of panel data, measurement error
concerns the dependent variable, too. For instance, as illustrated previously, mea-
surement error will bias state dependence estimates toward zero in dynamic panel
data models (section “Dynamic Panel Data Estimation”). Additionally, measurement
error does not only impact models in which lagged dependent variables are of
substantive interest. Demeaning (fixed effects estimator), quasi-demeaning (random
effects estimator), or first-difference transformations are equally affected by mea-
surement error. The fixed effects estimator is particularly susceptible to an

Fig. 18 Measurement error in dynamic panel models illustrated
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attenuation bias from measurement error (Angrist and Pischke 2008; Griliches and
Hausman 1986; Wooldridge 2016, p. 440).

Structural equation modeling represents a way to directly model measurement
error (Baumgartner and Weijters present an introduction to ▶ “Structural Equation
Modeling” chapter in this Handbook). In cross-sectional analyses, researchers use
different indicators for the same construct to estimate a construct’s reliability and to
directly model measurement error. In the panel data context, researchers can use the
same indicators from different time periods to capture the underlying construct. For
instance, the investigator may use customer satisfaction scores of 3 years (e.g.,
customer satisfaction measured in t ¼ 2019, 2020, and 2021) to estimate a latent
customer satisfaction construct. This approach is identical to an evaluation of test-
retest reliability and offers the advantage of directly accounting for measurement
error. However, the downside of this approach is that fewer possibilities exist to
estimate the model (e.g., employing fixed effects estimation is not feasible). Inves-
tigators can implement a structural equation model via Stata’s sem and gsem
commands.

Luo and Bhattacharya (2006) offer an application example in the marketing
context. The authors rely on panel data obtained from Fortune’s Most Admired
Companies and use repeated corporate social responsibility measurements to capture
the underlying latent corporate social responsibility construct. Cho and Pucik (2005)
apply a similar approach when modeling how firm innovativeness and product
quality relate to market value.

Conclusion

This chapter sought to provide a gentle nontechnical introduction to panel data
analysis for marketing researchers. At the core of panel data analysis is the challenge
of how best to account for the dependency of observations within and across clusters.
We discussed the POLS estimator’s limitations and reviewed the two most popular
panel estimators that explicitly model the panel structure: the fixed effects and
random effects estimators. For completeness, we also discussed the between effects
estimator and first difference estimator, as well as the combined approach and the
Hausman-Taylor approach. Using a real-life example, we applied these estimators in
the context of a price-response-function for headphone sales. We conducted the
empirical analysis in Stata, a very user-friendly statistical software package for
analyzing panel data. Despite using the same dataset to estimate the price-
response-functions, we find results differ considerably depending on the selected
estimator. These divergent results demonstrate the need to thoroughly understand the
different model-identifying assumptions, benefits, and limitations of each estimator.
As such, we hope our chapter contributes to turning readers into cognizant “regres-
sion engineers” (Germann et al. 2015) and offers researchers the necessary skill set
to conduct meaningful analyses. Panel data provide exciting opportunities to inves-
tigate new research questions, and we hope that readers find this introduction helpful
in developing their models.
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Abstract

Time-series models constitute a core component of marketing research and are
applied to solve a wide spectrum of marketing problems. This chapter covers
traditional and modern time-series models with applications in extant marketing
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research. We first introduce basic concepts and diagnostics including stati-
onarity test (the augmented Dicky-Fuller test of unit roots), and autocorrelation
plots via autocorrelation function (ACF) and partial autocorrelation function
(PACF). We then discuss single-equation time-series models such as auto-
regressive (AR), moving average (MA), and autoregressive moving average
(ARMA) models with and without exogenous variables. Multiple-equation
dynamic systems including vector autoregressive (VAR) models together with
generalized impulse response functions (GIRFs) and generalized forecast error
variance decomposition (GFEVD) are then discussed in detail. Other relevant
models such as generalized autoregressive conditional heteroskedasticity
(GARCH) models are covered. Finally, a case study accompanied by data and
R codes is provided to demonstrate detailed estimation steps of key models
covered in this chapter.

Keywords

Time-series models · Marketing · ARIMA · VAR · GIRF · GFEVD · GARCH

Introduction

I have seen the future and it is very much like the present, only longer. – Kehlog Albran, The
Profit

Firms collect data on the past to understand the present and to forecast the future.
Performance measures such as sales, market share, and revenues are often path
dependent, meaning that their past values can inform the present. This is great
news for marketing analysts because they are able to forecast the future using
historical time-stamped data series. The key challenge is how they can accurately
capture the dynamics and variation patterns of data using proper statistical tech-
niques. Further, firms take various marketing actions (e.g., TVand radio advertising,
online display and search engine advertising, and social media campaigning, etc.) to
help boost performance. More importantly, these marketing actions are usually
designated to exert influence not only instantaneously in the current period, but
persistently into the future. For example, when assessing advertising effectiveness,
analysts typically add up past advertising efforts (while considering a certain level of
decay) and evaluate their cumulative impact on sales. Given an omnichannel mar-
keting scheme, firms also need to examine cross-effects, or interactions, between
different marketing instruments to see whether there are any synergies or cannibal-
izations. Further, the relationship between marketing efforts and performance is
often bilateral; feedback loops exist so that performance from previous periods
helps decide marketing strategies in the current period.

Analytical tools that capture dynamics of performance measures and that between
marketing and performance are time-series models. Over the decades, time-series
models have been evolving from univariate to multivariate, and then to dynamic
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systems consisting of multiple time series. Univariate models (e.g., autoregressive
moving average or ARMA) assume that the contemporaneous value of a series is
only influenced by its past values. Multivariate models extend and usually
outperform univariate models by including current and lagged values of other factors
(e.g., price, marketing, distributions, and regulatory change) that should also exert
influence on performance. Dynamic systems like vector autoregressive (VAR)
models are widely adopted to tackle more complex relationships between series.
These models can be used to capture dual causality between performance and other
predicting variables (e.g., do past sales affect current marketing decisions?) and
between predicting variables (e.g., does online marketing complements or substi-
tutes offline marketing?).

Time-series analyses can also inform researchers of more specific patterns of the
dataset that they are working with. For example, when forecasting sales of a firm,
previous marketing research can inform analysts what variables should be incorpo-
rated into the model. However, previous findings are not able to tell the exact order
of lags (e.g., how many weeks of past sales, price, and marketing investments should
we consider?) or the direction of causality (e.g., does consumer social media
sentiment directly or indirectly impact sales?). We need to rely on a set of time-
series diagnostic tests to find answers to these questions.

More impressively, time-series models, especially the modern ones (e.g.,
dynamic systems) can enable researchers to uncover some powerful linkage between
factors that are previously overlooked (Srinivasan et al. 2016). For example,
researchers have bridged firm offline marketing with consumer online activities
and sales through VAR modeling (Srinivasan et al. 2016); others have found that
growth or decrease in the volume of consumer social media posts can affect the stock
market valuation of firms (van Dieijen et al. 2019).

This chapter proceeds as follows. We will start from the basics, including
treatment and diagnostics of univariate time-series models. Then we will talk
about traditional time-series models, for instance, autoregressive integrated mov-
ing average (ARIMA) models. We will then discuss modern time-series models
like vector autoregressive (VAR) models. Additionally, we also cover generalized
autoregressive conditional heteroscedasticity (GARCH) models that deal with
time-series volatility. Finally, in the Appendix, we present a case study where we
apply methods introduced in this chapter using R to solve marketing challenges for
a firm.

Univariate Time-Series Treatments and Diagnostics

Autoregressive (AR) and Moving Average (MA) Process

Let us start with the simplest model where we describe certain performance metric of
a brand in each time period t with its first lag. Specifically, let st denote the sales of a
brand in week t, and st is determined by sales in the previous week st � 1. We call this
a first-order autoregressive, or AR(1) process:

Applied Time-Series Analysis in Marketing 471



st ¼ cþ φst�1 þ et ð1Þ
where c is a constant term and φ is the parameter that captures the effect of sales in
the previous week. εt is white noise with mean zero and variance σ2e .

Another form of time series, i.e., moving average (MA) process, assumes that
sales at the current period is affected by a past shock (e.g., a natural disaster) other
than its own past values. A first-order moving average or aMA(1) process of sales at
time t is written as:

st ¼ cþ et þ θet�1 ð2Þ
where εt � 1 is the error term or the shock from the last period. θ captures the impact
of such past shock (e.g., an earthquake that happened one week ago) on current sales.

A MA(1) process differs from an AR(1) process in that instead of assuming the
past shock as coming from past sales st � 1, it assumes that such shock comes from
the random component of st � 1, namely εt � 1.

AR(1) and MA(1) process can be generalized to AR( p) and MA(q) process,
respectively, where p and q refer to the highest order of lagged value and error
term, respectively.

What if we want to model weekly sales while taking the impact of both past sales
and past random shocks into consideration? We can combine an AR( p) and anMA(q)
processes to have an autoregressive moving average, or ARMA( p, q) process. For
instance, an ARMA(1, 1) process is written as:

st ¼ cþ φst�1 þ θet�1 þ et ð3Þ
Figure 1 shows an example of an ARMA (1,1) process, with φ ¼ � 0.70 and

θ ¼ 0.99. ARMA models have been quite commonly adopted in marketing research
during 1970–1990s and proved suitable to capture dynamics in various contexts
(e.g., Dekimpe and Hanssens 1995).

Testing for Evolution Versus Stationarity

Marketing models only make sense when the time series being analyzed is mean
stationary or trend stationary, meaning that it always converges back to a fixed mean
or a fixed mean plus any trend detected. Otherwise, the series is said to be non-
stationary or evolving. Why do we need to emphasize on series stationarity?
Consider an evolving series whose value is constantly increasing. In such case,
sample statistics such as mean and variance are not really descriptive of the data
pattern, since they are not stable and keep getting larger as we include more data
points. Therefore, reporting the mean and variance of an evolving series is not
informative or helpful for decision-making. Further, we will not be able to generate
reliable results if we use evolving variables to predict sales. This is why evolving
series need to be transformed to stationarity.
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Given an ARMA(1, 1) process in Eq. (3), how can we determine if it is stationary
or not? The answer lies in the φ term:

• If |φ| < 1, we call this series stationary, with a time-independent mean and
variance, meaning that the mean E(st) and variance σ2(st) are the same for all t.

• If |φ| ¼ 1, then the effect of past sales st � 1 is said to have a permanent effect on
current sales st. In this case, sales will not be reverting to a certain level, but
instead evolving.

• If |φ| > 1, then the effect of past sales through φ will exert an even stronger
influence as time goes. Such a data pattern should be rarely observed in the
context of marketing.

Note that we only need to evaluate the AR part (through φ) of an ARMA
process for stationarity. This is because εt is independently and normally distrib-
uted with a zero mean, indicating that an MA process is stationary regardless of the
value of θ.

More formally, we can test for stationarity of an ARMA process through unit root
test (For the stationarity test for time series data with a permanent step-change,
please refer to unit root test with structural breaks (e.g., Deleersnyder et al. 2002)). A
time series is evolving if it has a unit root, and stationary otherwise. The most widely
adopted method is the augmented Dickey-Fuller (ADF) test (Kwiatkowski et al.
1992). Let us use an AR(2) version of the weekly sales time series introduced in Eq.
(1). Note that we only focus on the AR part of ARMA process since the MA part is
always stationary.

Fig. 1 An Example of an ARMA (1,1) process

Applied Time-Series Analysis in Marketing 473



Recall that brand sales in week t can be written as an AR(2) process:

st ¼ cþ φ1st�1 þ φ2st�2 þ et ð4Þ
If we define Δst ¼ st � st � 1, we can reformulate the process in Eq. (4) into:

st ¼ cþ φ1 þ φ2ð Þst�1 � φ2 st�1 � st�2ð Þ þ et ð5Þ
And further:

Δst ¼ cþ ηst�1 þ λΔst�1 þ et ð6Þ
where η¼ φ1 + φ2� 1, and λ¼ � φ2. The AR(2) process in Eq. (5) has a unit root if
φ1 + φ2 ¼ 1. This is equivalent to testing whether η ¼ 0 in Eq. (6).

In practice, researchers can first-difference the sales series, and then estimate a
linear regression model where the first-differenced sales at time t (i.e., Δst) is the
dependent variable, and lagged values of Δst’s and st � 1 are independent variables.
The null hypothesis that η ¼ 0 will be rejected if the regression coefficient of st � 1

(i.e., η) is statistically significant, indicating series stationarity. Alternatively, we can
use statistical software such as R, Stata, and EViews to quickly generate test results.
Readers may refer to “Appendix” of this chapter for detailed guidance on how to use
R to perform ADF test.

ARIMA Models

What if the time series that we work on is found nonstationary with ADF test
indicating a unit root? A proper technique to deal with this situation is to transform
the series to stationarity by differencing. For example, if we find the weekly sales
series in Eq. (3) is evolving,we canfirst-difference it to a series zt, where zt¼ st� st� 1.
By subtracting the first lag from the current value, the series may become difference
stationary. The ARMA process with a differencing operation is called an ARIMA
(integrated ARMA) process. ARIMA model is often adopted by practitioners and
researchers for prediction purpose, e.g., demand forecasting. For example, given the
sales, price, and marketing activities in the past 24 months, what is the predicted
sales for the next 12 months?

An ARIMA (1, 1, 1) model, which is a combination of AR(1), MA(1), and a first-
order differencing operation, can be written as:

zt ¼ cþ φ1zt�1 þ θ1et�1 þ et ð7Þ
where zt ¼ st � st � 1. This model can be easily extended to a generalized case
where we have an ARIMA ( p, d, q) process, with p and q representing the highest
order of lags in AR and MA component, respectively, and d the order of
differencing.
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ACF and PACF Analysis
Given a stationary time series (e.g., an ARIMA process), how can we determine the
exact order of lags to include (i.e., the value of p and q)? Researchers typically rely
on the autocorrelation function (ACF) and partial autocorrelation function (PACF) to
determine the MA and AR part of the process, respectively.

Again, let st be the value of sales at week t. The ACF series is derived from
calculating the correlations between st and st � k (i.e., sales k weeks ago) for every k.
To calculate these correlations, we first derive the unconditional mean and variance
of st for an AR(1) process:

E stð Þ ¼ E cþ φst�1 þ etð Þ ¼ cþ E φst�1ð Þ þ E etð Þ ¼ cþ φE st�1ð Þ ð8Þ
Hence

E stð Þ ¼ c
1� φ

ð9Þ

σ2 stð Þ ¼ var cþ φst�1 þ etð Þ ¼ 0þ var φst�1ð Þ þ var etð Þ
¼ φ2var st�1ð Þ þ σ2e ð10Þ

σ2 stð Þ ¼ σ2e
1� φ2

ð11Þ

where σ2e is the constant variance of disturbance term εt.
Hence the correlation between two data points that are k periods apart is:

ρk ¼ φk ð12Þ
From Eq. (12), when jφ j < 1, ρk will converge or oscillate towards zero as k gets

larger.
Partial autocorrelation function (PACF) of kth order refers to the correlation

between two data points in a time series that are k lags apart, holding all other
(k � 1) intermediate observations constant. For example, let us denote correlation
between sales in period m and n as ωm, n. Given that a stationary time series has
constant autocorrelation, we have ωt, t + 1¼ ωt + 1, t + 2¼ ρ1. Then the PACF between
st and st + 2 while holding st + 1 constant can be written as:

ωt,tþ1,tþ2 ¼ ωt,tþ2 � ωt,tþ1ωtþ1,tþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

t,tþ1

� �
1� ω2

tþ1,tþ2

� �r ¼ ρ2 � ρ21
� �

1� ρ21
� � ð13Þ

Graphically, if we plot PACF against k, we will see a spike of PACF equal to ACF
at k ¼ 1, and zeros afterwards. For example, Fig. 2 below shows weekly sales of a
mature consumer good brand (brand A) for one year. The time series of sales can be
described as an AR(1) process with φ¼ 0.5. Panel (a) and (b) in Fig. 3 show the ACF
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and PACF of the sales series, respectively. In panel (b), the PACF plot has a
significant drop (or cutoff) from lag 1 to lag 2, indicating that the series is an AR
(1) process.

In terms of the order of AR and MA process, we can refer to the rules as follows:

• The lag at which the PACF cuts off is the indicated maximum order of AR lags.
• The lag at which the ACF cuts off is the indicated maximum order of MA lags.

Single Equation Time-Series Models with Exogenous Variables

In the previous sections, we have been studying univariate time series. More
specifically, we have considered sales to be only affected by its past values and
past random shocks as described in ARIMA processes. While these models are
able to capture sales dynamics, the reality is that firms spend a lot of effort on many
other activities to improve their sales performance. Univariate models are hence
limited since they fail to incorporate other factors that also make a substantial
difference such as various marketing activities. Meanwhile, marketing managers
are keen to justify their marketing expenditure by evaluating the effect of market-
ing on sales. For example, what will be the change in sales if we spend 10% more
on marketing?

This section links the role of marketing with firm performance explicitly by
introducing multivariate time-series models, or single equation time-series

Fig. 2 Weekly sales (in thousands) of brand A
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models with exogenous variables. We emphasize “single equation” here to
distinguish this type of model from dynamic systems consisting of multiple
time series. These models are sometimes known as ARIMA-X, where X stands
for “exogenous.”

Fig. 3 ACF and PACF plot of weekly sales of brand A
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Assume that besides sales itself, only one more variable, price, has impact on
sales and that price itself is also subject to time-series patterns. We can incorpo-
rate the current and lag price into our model to predict sales through a transfer
function vk(B), where vk(B) ¼ v0 + v1B + v2B

2 + . . . + vkB
k. B is the backshift

operator, where Bkyt ¼ yt � k, and k is the highest order of lags. A dynamic
regression model of sales st on price variable is:

st ¼ cþ vk Bð Þpt þ et ð14Þ
where vk(B)pt ¼ v0pt + v1pt � 1 + . . . + vkpt � k.

The transfer function vk(B) is also called the impulse response function (IRF) with
the coefficients v0s called impulse response weights. Further, referring to Eq. (14), if
we find that v0 ¼ 0 and that all other v-coefficients are nonzero, then price in the
current period t does not have an impact on sales in the same period, while prices in
the past periods do. The model is said to have a “wear-in time” (or “dead time”) of
one, i.e., a change made to the price will start to exert influence only from the next
period onwards. Wear-in time reflects the speed at which changes in a firm’s
marketing mix impact sales performance. More formally, “wear-in time” of a
model is measured by the number of consecutive v-coefficients with zero value,
starting from v0.

Finally, similar to the idea of structural break in time-series data, we could also
accommodate certain discrete events that shock the series significantly into our sales
models. For example, exogenous shocks such as regulatory change or introduction
of a new product introduced by a rival brand may lead to significant rise or drop in
sales data. Here we distinguish two types of effects that a shock can have: a pulse
effect or a step effect (Pauwels 2017).

A pulse effect is a temporary effect that decays or disappears gradually. In
contrast, a step effect is supposed to have permanent effect once it occurs. To analyze
the impact of shocks requires intervention analysis, which extends the transfer
function approach described above.

Figure 4 shows example of pulse effect at time t’ on a stationary process (panel a)
and nonstationary process (panel b), respectively. In the case depicted in panel (a),
the intervention could be a price promotion at time t’ of a mature consumer good
product with stationary demand from consumers. The promotion results in a tem-
porary spike at sales of time t’, after which sales revert to its stationary mean. The
corresponding transfer function is v0xt at t¼ t0 and zero elsewhere. Panel (b) shows a
situation of pulse intervention, where the intervention function is the same, but sales
is nonstationary (e.g., a new brand with high market potential). Here the pulse
intervention results in a temporary drop in sales at t ¼ t0. Sales return to the level
that is determined by its nonstationary character afterwards.

Figure 5 shows two examples of step interventions. Here the change to sales after
time t0 is long lasting, meaning that it could be permanent (panel a) or semi-permanent
(panel b). For example, we can think of the series in panel (a) as sales of a brand that
successfully introduced a major market innovation at time t0. Sales jumped to a higher
level immediately at t¼ t0 and stay at the new level for all t> t0. The transfer function,
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in this case, would be one where v0xt, and xt¼ 0 for t< t0 and xt¼ 1 for t� t0. Panel (b)
shows the case where a step intervention lasts for several periods (three periods in this
case) but not “forever,” i.e., semi-permanent. The transfer function would be one
where xt ¼ 0 for t < t0, and xt ¼ 1 for t ¼ t0, t0 + 1, t0 + 2.

Multiple Time-Series Models: Dynamic Systems

Multivariate models are often preferred over univariate models because they can
capture not only the effect of past performance, but also that of other model
covariates (e.g., price, marketing efforts, and competitors’ offerings). However,

Fig. 4 Examples of pulse interventions
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these models are still subject to certain limitations in dealing with joint endogeneity
between variables (e.g., dual causality and feedback loops, etc.).

For example, we can quantify the effect of a firm’s marketing activities on
sales by fitting a linear regression model. The assumption here is that marketing
impacts sales, not the other way around. However, in practice, to maximize
overall return on marketing investment, firms also adjust their marketing strate-
gies based on sales performance in the previous periods (please refer to
more detailed discussions and applications in chapters ▶ “Measuring Sales
Promotion Effectiveness” and ▶ “Return on Media Models” in this book). Addi-
tionally, firms need to be aware of potential synergies or cannibalizations
between different marketing actions and refine their marketing portfolios from
time to time. For instance, one can expect a certain level of complementarity

Fig. 5 Examples of step interventions
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(positive “spill-over”) between online display advertising and offline in-store
promotion. On the other hand, firms may consider alternating TV and radio ads
instead of having them simultaneously to avoid consumer fatigue (i.e., negative
“spillover”).

These problems described above can be taken care of via estimating a dynamic
system of multiple time series, or a vector autoregressive (VAR) model. Models as
such are more accurate in both model fitting and forecasting, compared with
traditional time-series models (Lütkepohl 2005).

Our structure for this section is adapted from the “persistence modeling frame-
work” that was first developed by Dekimpe and Hanssens (1995). You can find most
of the recent marketing research papers following the procedure described in this
framework (e.g., De Haan et al. 2016; Srinivasan et al. 2016).

This section will cover topics listed below:

1. Granger causality tests, which focus on understanding the direction of causality
between model variables

2. Unit root and cointegration tests, which focus on understanding whether model
variables are stationary over time or evolving and on whether the evolving
variables (if any) are tied in certain long-term equilibrium, respectively.

3. Dynamic system modeling, which is typically done via vector autoregressive
(VAR) model or vector error correction (VEC) model, depending on results
obtained from 2.

4. Policy simulation analysis, which focuses on evaluating short-term and long-term
impact of marketing on performance via impulse response function (IRF) analysis.

5. Drivers of performance, which answers the question of “what is the relative
importance of each performance driver’s past in explaining performance vari-
ance?” via generalized FEVD (GFEVD)

Granger Causality Tests

Marketing decisions of firms can be informed by sales performance from previous
periods and activities of rival brands. Different types of marketing actions can affect
each other (e.g., complementary versus substitutive) as well. These issues are called
marketing endogeneity, which, if not tested and treated, can lead to misinterpretation
of situation and wrong understanding of the effectiveness of marketing (for further
detailed discussions, we refer our readers to the ▶ “Dealing with Endogeneity: A
Nontechnical Guide for Marketing Researchers” chapter in this book). Granger
causality tests (Granger 1969; Hanssens and Pauwels 2016) are needed to examine
the existence and direction of causality between model variables. Results from
Granger causality tests determine the appropriate functional form of time-series
models: for example, a multiple-equation system should be adopted if feedback
loops between variables are detected.

The idea of Granger causality tests is that a variable x is considered Granger
causing another variable y if the lag values of variable x improve performance of a
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model where y is predicted based only on its own past. The most common method to
conduct Granger causality tests is by estimating the following regression model of
variable y on its own past and lags of variable x:

yt ¼ αþ
Xm

i¼1

βiyt�i þ
Xn

j¼1

γ jxt�j þ et ð15Þ

where m and n refer to the maximum lag order for y and x, respectively. βi and γj are
the regression coefficients of lag value of y and x, respectively. Once we obtain the
regression results, variable x is said to Granger-cause y if any of the γj coefficients are
statistically significant.

Note that what we described above is pairwise Granger causality test, where only
two variables are tested. However, the causality from x to y might be an indirect one
that is mediated by another variable z that lies in between. Figure 6 provides a
graphical illustration of what we mean here: by conducting only pairwise Granger
causality tests repeatedly between variable X and Y, Y and Z, and X and Z, we are not
able to distinguish the situation in panel (a) and (b).

We can extend pairwise Granger causality test to the case of n (n > 2) variables
(“conditional Granger causality test”). To do this, estimate an autoregressive model
with n variables. A variable x is said to Granger-cause y if incorporating lagged
values of x improves prediction accuracy of y on its own past values and all other
(n � 2) variables.

There are some applications of Granger causality in the marketing literature that
generated some interesting insights (Ilhan et al. 2018). For example, in under-
standing the relationships between the firm offline marketing mix (distribution,
price, and TV advertising), consumer online activities (paid search clicks, website
visitations, and Facebook likes), and sales over time, Srinivasan et al. (2016) tested
for causalities between variables prior to formal model estimation. The authors
found that sales are Granger-caused by all offline and online metrics with varying
sensitivities (e.g., the elasticity of paid search clicks on sales is about 5.2 times
higher than that of Facebook likes). In particular, TV advertising is not Granger-
caused by any of the other marketing mix elements and consumer activities, and
hence should play a relatively less influential role in the dynamic system and in
impacting sales.

Fig. 6 Pairwise and
conditional Granger causality
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Cointegration Test

Once we acquire insights about causalities between model variables, we can proceed
unit root test and cointegration test to determine the exact form (e.g., level versus
first-differenced) in which our variables are included. We have introduced unit root
test in section “ARIMA Models,” hence we will focus on cointegration test in this
section.

Cointegration test aims to find if two variables of interest are tied in certain long-
run equilibrium. For example, one might find that the variations of marketing and
sales in the current week seem to be uncorrelated, yet they actually co-move with
each other closely in the long run, since it usually takes time for the effect of
marketing investments to accumulate and to be reflected on changes in sales. Put it
in simple language, two time series, yt and xt, are cointegrated if both are non-
stationary (with unit root) and if there exists a certain linear combination of the two
series that is stationary. It is important to test for cointegration to inform our model
choice, since, for example, if marketing expense and sales are evolving and
cointegrated, knowing the value of one would enable us to predict that of the
other. In this case, a VAR-in-difference model, which essentially deals with change
or growth rate instead of the specific values of variables, is not ideal since we will
lose valuable information and prediction power.

The cointegrating equation quantifies equilibrium between variables y and x as:

yt ¼ αþ β � xt þ et ð16Þ
where εt is the equilibrium error that is supposed to be stationary.

There are several ways to test for cointegration; for example, the procedure
developed by Engle and Granger (1987) first estimates Eq. (16) via ordinary least
squares method, and next test stationarity versus evolution of the error term εt.
Johansen’s full information maximum likelihood (FIML) is a more popular way
for cointegration test (Johansen 1995; Srinivasan et al. 2010). It is a multivariate
generalization of the Dicky-Fully unit root test and allows for structural breaks in the
relationship among variables.

Vector Autoregressive and Vector Error–Correction Model

The vector autoregressive (VAR) model is an extension of the univariate auto-
regressive model. It is typically used when we are not only interested in the effect
of marketing on performance, but also the feedback of performance on marketing
and the effects of marketing activities on each other.

When our data is stationary and without cointegration, we can estimate a VAR
model. We focus on reduced-form VAR (obtained from structural VAR) where all
explanatory variables are lag values that are predetermined at current time t. This is
the form of VAR model that we usually take in analyzing time-series data. For more
details on other forms of VAR models and their applications, see the chapter
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▶ “Modeling Marketing Dynamics Using Vector Autoregressive (VAR) Models” in
this book.

Specifically, a reduced VAR model can be written as follows:

yt ¼ αþ B1yt�1 þ B2yt�2 þ . . .þ Bpyt�p þ et ð17Þ

where yt is an n � 1 vector of n endogenous variables, α is the vector of constant
terms including a deterministic time trend and seasonality terms, and Bi, i¼ 1, 2, . . .,
p is an n � n coefficient matrix of a given lag of order i. et is the error term that is
contemporaneously correlated. p is the maximum order of lag that is determined via
certain statistical criteria that we will explain later.

AVAR system can be efficiently estimated through ordinary least squares (OLS)
equation by equation without imposing causal ordering. This is especially important
in the context of marketing research where a relatively large number of parameters
are modeled together. For example, Pauwels et al. (2016) studied interactions among
marketing, eWOM topic, and online and offline store traffic of a retailer by estimat-
ing a VAR model with ten endogenous variables. Colicev et al. (2018) estimated 11
endogenous variables in their study that tries to link consumer mindset metrics with
firm social media impact and shareholder values.

One can reduce the number of coefficients that need estimation by including some
variables as exogenous (instead of endogenous). Such treatment needs to be
supported by relevant marketing theories and by appropriate tests. For example, a
decision rule developed by De Haan et al. (2016) is to treat variables that do not have
a Granger-causal relationship to any other variables as exogenous.

In terms of actual estimation practice, when model variables are stationary, we
estimate a VAR in levels (e.g., the volume of sales and level of prices). When some
variables are found evolving but not cointegrated, we can estimate a VAR in
differences. For example, if we find both sales and online advertising investments
are evolving and not cointegrated, our VAR-in-difference model explains the effect
of change (growth) in advertising spending on the change (growth) of sales, or the
elasticity of ad spending on sales.

When variables are evolving and cointegrated, the vector error correction (VEC)
model is an extension of VAR to make sure that both the levels and differences of
those cointegrated variables are taken into consideration (see Kireyev et al. 2016).
Other extensions of VAR model include panel-VAR (PVAR) model, where cross-
sectional heterogeneities are added to the standard VAR. This is as if we incorporate
a dependent-variable-specific fixed effect into each equation of VAR. An application
of PVAR in marketing can be found in Colicev et al. (2019), where the authors
included industry-specific heterogeneity.

Order of Lags in VAR Models

To determine the order of lags in VAR model, we need to trade-off between having a
better model fitting and suffering from model complexity. There are several ways to

484 W. Wang and G. Yildirim



determine the “best” lag order p of a VAR model. Information criteria (There are
several softwares such as EViews, STATA, and R that can help us automatically pick
the best order of lags based on information criteria.) are commonly adopted in the
vast literature. For example, Akaike Information Criteria (AIC) evaluates model
predictive accuracy while imposing a punishment for adding more lags (Akaike
1973). For a VAR model with lag order p, the AIC is formulated as:

AIC ¼ �2LLþ 2K ð18Þ
where LL refers to the log likelihood function of the model and K refers the number
of predictors in the model. K increases with the number of lags incorporated in the
VAR system, i.e., the higher the order of lags, the larger the punishment. For
example, a VAR system with 3 endogenous variables and lag order of 1 has 9
parameters to be estimated and 18 parameters to be estimated if lag order is 2. We
should select the value of p that gives the lowest AIC.

Another criterion is Bayesian Information Criterion (BIC) (Schwarz 1978):

BIC pð Þ ¼ �2LLþ Kln Tð Þ ð19Þ
where T is the sample size. Compared with the AIC, the BIC has a stronger
punishment for increasing lag order p, because ln(T ) is greater than two (meaning
that T > 7.39) in most of the time-series datasets.

Finally, the Hannan-Quinn (HQ) criterion (Hannan and Quinn 1979) also has a
stronger punishment on adding lags than the AIC does:

HQ pð Þ ¼ �2LLþ 2K ln ln Tð Þð Þ ð20Þ
Specifically, the BIC and the HQ tend to give consistent results as sample size T

approaches infinity.

Generalized Impulse Response Functions

Result interpretation is relatively straightforward for some models like multiple
linear regressions, where the effect of an explanatory variable on the outcome
variable is simply quantified by the corresponding coefficient (if statistically
significant). However, interpreting VAR model results directly from model out-
puts is not easy due to multicollinearity issues and feedback loops between
variables, to name a few. In a word, given an intertwined dynamic system
where variables are interrelated in various ways, we need a technique that can
get us the “net” effect of each variable. Further, we are not only interested in the
short-term effect, but also the long-term impact of model variables that can help
us plan for the future.

Impulse–response functions (IRFs) can help us by simulating the overtime impact
of a change to a variable on the whole dynamic system (Bronnenberg et al. 2000;
Pauwels et al. 2016).
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To derive an IRF, we start by substituting each lag of each endogenous variable in
the reduced-form VARmodel in Eq. (14) using the same equation (yt¼ α + B1yt � 1 +
B2yt � 2 + . . . + Bpyt � p + et ¼ α + B1(α + B1yt � 2 + B2yt � 3 + . . . + Bpyt � p � 1 +
et � 1) + B2(. . .) + Bp(. . .) + et, and so on). We can then express the right-hand side of
Eq. (17) as a function of only contemporaneous and lagged values of the error terms.
We call such expression the vector moving average (VMA) representation:

yt ¼ ρþ et þ Aet�1 þ A2et�2 þ . . .þ Ate0 ð21Þ
Interpreting Eq. (21), each endogenous variable is explained by a weighted

average of current and past errors, or “shocks” both to itself and to the other
endogenous variables.

An IRF tracks the impact of a shock to each variable in the system during the
shock (period 0) and each period afterwards (period 1, 2, etc.). Most of the times the
effects of shocks will die out (i.e., converge back to its steady-state, or pre-shock
level), and this usually happens to established and mature brands (e.g., effect of
advertising investment on sales). However, in some rare cases we may observe that a
shock has a permanent impact. Such pattern is more likely to be observed among
young and innovative brands. We usually name the effect of a shock in period zero
the contemporaneous or immediate effect, and the cumulative effect of a shock from
period one onwards as the long-term effect.

A critical limitation of IRF is that it requires a causal ordering for the immediate
effects. For example, when trying to model a dynamic system consisting of weekly
brand sales, price, online and offline marketing expenditure, and consumer traffic, we
are expected to clearly understand the causal sequence between these variables. How-
ever, it is typically unclear, for example, whether online marketing expenditure should
precede or follow offline marketing expenditure in leading to sales. Generalized IRFs
(GIRFs) are useful when theories or knowledge do not inform us with such ordering.

Figure 7 shows an example of impulse response of a shock in firm’s advertising effort
in week 0 on sales performance. The horizontal axis in Fig. 7 represents weeks 0 to 15,
and the vertical axis is the coefficient of IRF analysis. An immediate incremental effect
of around 5 in week 0 is the highest across all weeks. The cumulative or long-run effect
is measured by the shaded area under the curve in Fig. 7, which is approximately 8.4.
Finally, brand sales seem to revert to its steady state, with incremental impact staying at
zero from week 11 onwards. The permanent effect of the shock to advertising is hence
zero. It is very important for researchers to interpret the incremental effect of a shock in
IRF or GIRF analysis results. The incremental effect turning zero does not mean zero
sales, but instead no additional sales.

In the recent marketing literature, Pauwels et al. (2016) applied GIRF to examine
the short- and long-term elasticities of different electronic word-of-mouth (eWOM)
on online and offline store traffic. They found that the long-term elasticity of brand-
related eWOM is twice as high as that of advertising-related eWOM in driving up
offline store traffic. While offline and online traffic is approximately equally affected
by purchase-related eWOM in the short run, yet its impact on the former in the long
run is 16 times higher than that on the latter.
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Firms can also rely on (G)IRF to improve their marketing resource allocation and
improve ROI. For example, Pauwels (2004) investigate how firms should allocate
efforts between new product introduction (NPI) and sales promotion to maximize
firm value. IRF result shows that sales promotion has a higher short-run elasticity of
firm value, whereas its long-term impact turns negative (from 0.12 to �0.78). In
contrast, NPI turns out to have persistent and positive impact on firm value (0.02 in
the short run and 1.14 in the long run). Inspired by such result, firms should allocate
more resource on new product introduction, even though sales promotion can bring
them immediate sales boost.

Generalized Forecast Error Variance Decomposition

Analogous to a “dynamic R2, ” generalized forecast error variation decomposition
(GFEVD) shows the relative importance of each VAR variable in contributing to the
variation in the performance variable. For example, we can use GFEVD to determine
what is the contribution of online display ad, among in-store promotion, social media
marketing, and search engine optimization, to the variation in brand weekly sales.
Compared with FEVD, GFEVD is more widely adopted by marketing literature in
that it does not impose causal ordering between variables.

The GFEVD is given by:

θij ¼
Pn

l¼0

ψ ij lð Þ
� �2

Pm

j¼1

Pn

l¼0

ψ ij lð Þ
� �2 , j ¼ 1, 2, . . . ,m ð22Þ

Fig. 7 Example of an impulse response of advertising on sales

Applied Time-Series Analysis in Marketing 487



where ψ ij(l ) is the value of a GIRF following a one standard error shock to variable j
on variable i at period l. GFEVD allows an initial shock to affect all other endog-
enous variables instantaneously (i.e., the coefficient for period zero of other variables
can be nonzero).

Judging from Eq. (22), θij is a percentage term, and that all the θij
0s always sum

up to 100%. It is typical to find that most of the variance of a variable is explained
by its own past, which is referred to as “inertia” (e.g., price inertia, see Nijs et al.
2007). Panel(a) in Fig. 8 shows an example of analysis on contribution to variation
in sales of firm’s past sales, online advertising, and offline advertising effort. The
contribution of past sales (i.e., inertia) contributes the most (70%), while online
advertising ranks the second (20%) and offline advertising the last (10%). In
contexts where inertia is of little interest, researchers can take it out and have
a better visualization of the relative importance of other variables. Panel (b) in
Fig. 8 shows GFEVD results without inertia. The relative contribution of two
advertising channels remains the same (2:1).

Continuing the example of resource allocation in firm value maximization that
we raised in 3.5, the authors contrasted contribution of sales promotion and NPI
to firm value FEVD (see Fig. 2 in Pauwels et al. 2004, pp. 151). The gap between
contribution of NPI and sales promotion gets wider as time goes, with the former
turning eight times greater than the latter in two quarters’ time.

Other applications of FEVD and GFEVD include the work of Srinivasan et al.
(2016), where the authors examined the contribution to sales growth of tradi-
tional marketing mix variables and online customer activity metrics. Without
considering sales inertia, the authors found that distribution is subject to 60% of
the volume variance, while only 2% for online paid search.

Fig. 8 Example of GFEVD of sales with and without inertia
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Volatility Models

Time-series data can be described from many angles, among which the mean and the
volatility (or variance) are the two most typical metrics. While the mean (or expected
value) of a time series captures the average level of the data, variance captures the
level of turbulence, namely the level of fluctuation of the series around its mean
(Franses and van Dijk 1996, 2000). In this section, we introduce a model that deals
with the assumption of constant conditional variance.

Let us again use weekly sales as an example. The models that we have discussed
so far (e.g., ARIMA) estimate the expected weekly sales conditional on different
marketing variables (hence “conditional mean”). These models assume that the
volatility of weekly sales stays constant over time. However, in the real world,
there are plenty of examples where such an assumption does not hold; instead, the
level of volatilities across periods could be related. For example, if sales have been
volatile during the past two weeks, then it is very reasonable to expect that sales in
the coming week are going to be more volatile than usual as well. Additionally, an
exogenous event could also shock sales by significantly increasing volatility for a
certain period of time.

Figure 9 shows an example of a brand’s weekly sales (in thousands) over a time
span of 160 weeks. The vertical dashed line refers to the time (week 73) when the
brand launched a new product. One might first notice that the average sales increased
greatly after the new product introduction (NPI) as expected (i.e., from 50,163 to
148,255). Moreover, the volatility of brand sales (measured by standard deviation)
also rose greatly from the pre- to post-NPI period (i.e., from 179,209.1 to 47,904.47).
When trying to model weekly sales, it is important to at least incorporate a step
change in both mean and volatility after week 73.

Fig. 9 Weekly sales with time-varying volatilities

Applied Time-Series Analysis in Marketing 489



From the practical point of view, firms care about performance volatility, since a
highly uncertain future is hard to plan for. With high sales volatility, refining the
marketing mix based on historical ROMI is not meaningful. Further at the retailer
level, a high level of sales volatility of a brand or a product category leads to
difficulties in inventory management (Esteban-Bravo et al. 2017). Finally, firms
with volatile performance are usually deemed to have higher idiosyncratic risk,
which can be harmful for firm valuation and stock market performance (Fischer
et al. 2016). Hence, models that describe, explain, and predict volatilities are of great
value and importance.

The focus of this section, generalized autoregressive conditional hetero-
scedasticity (GARCH) model (Other variations of GARCH volatility models
that are extensively used in the literature include VEC-GARCH models
(Bollerslev et al. 1988), constant conditional correlation (CCC)-GARCH model
(Yildirim et al. 2020), and BEKK model (Esteban-Bravo et al. 2017)), incorpo-
rates dynamics in data volatility by recognizing a time-varying conditional
variance (Engle et al. 1987; Fischer et al. 2016). A GARCH model first deter-
mines the conditional mean of a series and then the volatility. It estimates
conditional variances of data series in an explicit way, similar with how condi-
tional mean is estimated by ARIMA model.

Let us start by introducing the ARCH specification and then generalizing it to
GARCH. Consider again sales data of a brand that is described by an AR(p) process:

st ¼ φ0 þ φ1st�1 þ . . .þ φpst�p þ et ð23Þ

with
Pp

i¼1

φi < 1.

Let us assume that the squares of the error term in Eq. (23) can be captured by an
AR(q) process:

e2t ¼ η0 þ η1e
2
t�1 þ . . .þ ηke

2
t�q þ νt ð24Þ

where νt is white-noise variables with E(νt) ¼ 0 and E(νt, νt + m)¼ 0 for nonzero m’s
and E(νt, νt + m)¼ σ2 for m¼ 0. The representation of the white-noise process in Eq.
(24) is called an ARCH(q) process. Note that the conditional variance of e2t varies by
time, whereas the unconditional variance is constant and is given by σ2 ¼ E e2t

� � ¼
η0

1�η0�...�ηq
.

When fitting a model, a linear representation of ARCH process in Eq. (24) is not
always efficient; a more common representation of εt is written as:

et ¼
ffiffiffiffi
ht

p
∙zt ð25Þ

where zt is an i.i.d process with zero mean and unity variance, and

ht ¼ η0 þ η1e
2
t�1 þ . . .þ ηke

2
t�q ð26Þ
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The generalized ARCH, or GARCH, model represents ht as a function of its own
past values and past values of e2t :

ht ¼ aþ b1ht�1 þ . . .þ bmht�m þ η1e
2
t�1 þ . . .þ ηke

2
t�q ð27Þ

If a process εt is generated by a process described in Eq. (27), then εt is a GARCH
(m, q) process.

Beyond the univariate specifications that we discussed above, we can use
GARCH model, combined with VAR model, to estimate multiple endogenous vari-
ables. For example, the work of Esteban-Bravo et al. (2017) recognizes that not only
sales volatility but also covolatilities (i.e., conditional covariance) between sales and
marketing actions are time varying. Using a VAR-BEKK model, the authors gener-
ated fresh insights for managers to deal with performance volatility that is often
overlooked by prior research. van Dieijen et al. (2019) examined the interaction
between volatility in volume of firm-related user-generated content (UGC) and
volatility in firm stock return. The authors estimated a multivariate GARCH model
and found significant cross-effect between UGC growth and stock returns. Further,
the authors discovered new product launch events as a driver of UGC growth
volatility, though the exact direction of impact (i.e., an increase or a decrease in
volatility) is determined by the specific UGC content.

Conclusion

Time-series models are great tools for researchers and practitioners to tackle mar-
keting problems. These models, especially modern dynamic systems, are also quite
powerful in generating new insights by bridging dynamics between factors that are
previously overlooked. This chapter introduces traditional and modern time-series
analytics such as ARIMA and VAR models. We also discuss model applications in
marketing such as evaluating return on marketing investments, measuring elasticities
of marketing activities, and refining allocation of marketing resources, to name a
few. As the field evolves, researchers are adopting a broader range of models to
explore marketing challenges. For instance, recent research has emerged using
Markov chain models to solve sales attribution problems. We hence expect further
methodological advancements in time-series modeling in marketing and highlight
the importance of reviewing this domain of research from time to time.

Cross-References

▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶Measuring Sales Promotion Effectiveness
▶Modeling Marketing Dynamics Using Vector Autoregressive (VAR) Models
▶Return on Media Models
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Appendix

Software Application

The purpose of this software application section is to show our readers how analysts
and modelers tackle real-world marketing problems using time-series models like
ARIMA and VAR that are covered in this chapter. We hereby introduce R (You
might want to know more about this powerful analytical tool via https://www.r-
project.org/), an open-source and free software for statistical computing and data
analysis. It is widely adopted by academics and industry practitioners as a powerful
analytical tool to facilitate them when dealing with data-rich challenges.

Let’s start by walking into the following scenario:

ABC company operates in the kitchen appliance industry in an emerging market.
The company so far has focused all its marketing efforts on offline flyer adver-
tising and online Google AdWords. However, recent performance reports showed
that ABC’s sales have not been reaching the management’s expectations.

The CMO, in preparation for a meeting with the CEO and CFO, is keen to know if
and to what ABC’s sales will look like in the next quarter. Further, he/she
wonders to what extent marketing expenditures are effective in driving up
sales. The CMO is also curious if there’s any potential for ABC to optimize its
current marketing budget allocation.

As the director of the marketing analytics department, you are presented with
ABC’s historical weekly sales and marketing expenditure on flyer advertising and
Google AdWords advertising over a time span of 122 weeks (i.e., 122 observations).
Having met with the CMO, you make a summary of the questions to be answered
and your action plans as follows:

(a) What would be the forecast of demand for the next 12 weeks?
We are going to predict future sales using two approaches: ARIMA and multiple

linear regression (MLR) and compare their estimation and prediction results.
(b) What drives sales in the long run? What is the contribution of each marketing

action to sales (i.e., return on marketing investment)?
We are going to estimate a VAR model and perform FEVD to evaluate the

relative importance of AdWords, flyers, and sales inertia played in determining
long-run sales.

(c) To what extent do AdWords and flyers impact sales in the short versus long
run?

We are going to perform IRF analysis to evaluate the short- and long-run
elasticities of each marketing action.

(d) How should ABC allocate marketing budget between AdWords and flyers to
get the best result?

We are going to use long-run elasticities of AdWords and flyer marketing to
determine the optimal resource allocation scheme for ABC.
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Data Visualizations

Here is a brief preview of the first 10 rows of our dataset:

As you can observe, the firm so far has been having a relatively stable
expenditure on AdWords (around 900 each week), while that on flyers it has
been much more fluctuating. For example, during the first 10 weeks, the firm
spent 17134.21 in week 2 and 12079.39 in week 7, and nothing for the rest
8 weeks. To get a feel of the data patterns, it is a good practice to visually inspect
them by plotting sales, flyer expenditure, and Google AdWords expenditure,
respectively using ts.plot.
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ARIMA Modeling

As elaborated in this chapter, we are going to estimate and predict sales using
ARIMA following the procedure summarized below:

• Perform unit root tests to check for nonstationary variables and take differences
of the variables that are evolving.
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• Plot ACF and PACF to determine the order of lags and hence the specification of
ARIMA.

• Split the data into training and testing set and estimate an ARIMA model using
the training set and predict sales using the testing set.

Additionally, we will also estimate a multiple linear regression (MLR) model
using the training set and predict sales using the testing set. This is to compare model
performance using ARIMA and MLR method.

Log Transformation
First, through the time-series plots, we observe a high level of data turbulence (or
volatility), which, if not treated properly, will lead to false model results and
interpretations. It is a typical practice to take the logarithm of each variable to
smooth out the series as a preliminary step:

Note that we add 1 to each variable during log transformation to avoid having log
(0), which equals to negative infinity.

Stationary Tests
It is critical for analysts to make sure that data series being modeled are all
stationary (instead of evolving) in order to have reliable model results. As intro-
duced in the chapter, there are multiple tests for series stationarity, including the
ADF, KPSS, and Phillips-Perron test that can be executed using R function adf.
test, kpss.test, and pp.test, respectively. Here in this section, we demonstrate the
procedure of using the ADF test. Under the ADF test, the null and alternative
hypotheses are:

• H0: The data is not stationary
• H1: The data is stationary

Note that for adf.test and pp.test, we can reject the null hypothesis that the
variable is not stationary (i.e., with a unit root) if the p-value is smaller than a certain
significance level; yet kpss.test works in the opposite way, i.e., the null hypothesis is
that the series is stationary without a unit root.

To check for stationarity, we need to first let R know that weekly sales and
AdWords and flyer expenditures are time series using ts function, and then perform
ADF test using adf.test function:
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Test results inform us that LAd series (i.e., log-transformed AdWords spend-
ing) is evolving with p-value greater than 0.05. We need to take the first-
difference of this series to make it stationary. Note that once we first-difference
a log-transformed series, the interpretation will be different: now the series
refers to growth of weekly AdWords spending, rather than AdWords spending
itself.

To take the first-difference of a series, we use R function diff:
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Now we can perform ADF test again to make sure that all variables are
stationary:

Stationary test results suggest that now the three variables (with AdWords
spending first-differenced) are all stationary. Note that to construct ARIMA
model, we only need sales series, while all series are needed for MLR and later
VAR model.

ACF and PACF for Order of Lags
Once a time series has been stationarized, a systematic way to determine
the order of lags of the autoregressive (AR) and moving average (MA)
components of ARIMA model is to plot and inspect ACF and PACF. Here we
use R function ggtsdisplay, which can generate (i) the plot of the series
over time, (ii) the ACF plot, and (iii) the PACF plot simultaneously and
automatically:
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Here on the ACF and PACF plots, the dashed horizontal lines represent the
critical region (95% confidence level) for the lags. The lag order of the AR and
MA component is identified by the number of lags where the PACF and ACF plot
displays a clear cutoff, respectively. Here we find both ACF and PACF have a
cutoff at lag 1, indicating that we should probably take a lag order of 1 for both
MA and AR components. Further, given that we did not take the difference of the
sales series, the final specification of our model is ARIMA (1,0,1), or ARMA
(1,1).

Construct and Estimate an ARIMA Model

Splitting the Data
To estimate sales and examine model predicting power, we cannot exploit the entire
data to construct our model. Instead, we need to split the series into training (in-
sample) and testing (out-of-sample) sets. To do this, we apply the most commonly
adopted 80–20 scheme, namely we use the first 80% of the observations as the
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training set and the rest 20% as the testing set. Given that we have 122 observations
in total, we should use the first 96 observations for our training set, and the rest 25
observations as the testing set.

Train the Model
ACF and PACF suggest that we estimate an ARIMA (1,0,1) model. To estimate the
model using the training set, we use R function Arima:

Furthermore, you may estimate ARIMA models with different specifications
and compare model performances (e.g., AIC and BIC) to pick the best specifica-
tion. There are also R functions that can automatically pick the specifications with
the lowest AIC and BIC, for example, auto.arima. However, analysts should keep
in mind that you are the constructor of your model and that it is you that should be
the final decision-maker on what model to estimate by considering managerial and
strategic factors that model diagnostics cannot inform you. For example, some
firms might operate within a certain cycle and would want to evaluate sales using a
specific order of lags.
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Estimate a Multiple Regression Model
In addition to ARIMA, given a dataset as such, it is also very common for
modelers to adopt multiple linear regression method and estimate a linear
model to fit and predict sales. This is because MLR allows us to incorporate
other exogenous factors, while ARIMA typically only involves the endogenous
variable itself.

Again, we need to use the training set for model estimation. To do this, we use the
lm function in R, referring to “linear model.”

Interpreting the results briefly, a 1% increase in lag sales will lead to 0.39% of
increase in current sales; a 1% increase in flyer spending will lead to 0.01% increase
in sales. The coefficient of “DLAd” is statistically insignificant.

Validation Set Assessment: ARIMA Versus MLR
Now it is time for us to contrast model performance using ARIMA and MLR
method and predict sales using the testing set. We further plot the actual sales and
predicted sales using ARIMA and MLR method, respectively, on the same graph
for contrast.
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From the graph, both models can mimic (to a certain extent) the pattern of actual sales
in the testing set. To determine which method does a relatively more accurate job, we
can calculate and compare the root-mean-square deviation (RMSE) of both predictions.
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Comparing prediction accuracy using both methods, we find that ARIMA man-
aged to capture the dynamics of ABC’s sales better, since its RMSE (0.33) is slightly
lower than that of MLR (0.40).

To improve the model prediction accuracy of MLR, several other factors should
be considered, for example, the weekly price of ABC, and weekly sales of ABC’s
core competitors. Modelers can incorporate additional variables into the model
depending on data availability. Furthermore, answering the first question raised by
the CMO, we can predict sales of ABC for the next 3 months (12 weeks) based on
our ARIMA model. Here we plot both predicted sales and 95% confidence intervals
in the graph below:

Reverting the log-transformed predicted values back, we get the predicted sales
for the next quarter (i.e., 12 weeks) as below:

VAR Model Steps

Estimating a VAR Model
We are able to set up our VAR model relatively easily since we have already
performed model diagnostics on series stationarity through unit root tests in section
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“Testing for Evolution Versus Stationarity.” Taking all three variables as endogenous
variables, we estimate a VAR model consisting of (log-transformed) weekly sales,
lagged Google AdWords expenditure, and flyer expenditure using VAR function. We
then summarize the results in the table below.

From the VAR output, we find that:

• Direct effects: AdWords (0.402) and flyer (0.003) both have positive direct
impact on sales.

• Carryover effects: past AdWords (�0.154), flyer advertising (�0.276), and sales
(0.310) all exert impact on their current values, respectively.
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• Feedback effects: sales have positive feedback effect on flyer (0.298) and ad
spending (0.310), while negative feedback effect on online AdWords spending
(�0.062).

Note that due to the limited sample size and data variation in our sample, some
of the coefficients seem statistically insignificant. However, to see the effect of
AdWords and Flyer advertising on Revenues over time (e.g., immediate and long-
term effects), it is more rigorous to refer to results from impulse response function
(IRF) analysis.

After the estimation it is always good practice to check the residuals’ normality
and the autocorrelation. If there is any misspecification, you may need to search if
any anomaly such as outlier and structural break occurs. Here we plot the residuals
and inspect their mean.

We observe that the residuals seem to vary randomly around zero, with a mean of
zero.

Forecast Error Variance Decomposition
Referring to the second question raised by the CMO, we perform FEVD analysis to
evaluate and visualize the relative importance or contribution of flyers, AdWords,
and sales inertia using R function fevd:
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The table above indicates that ABC’s sales are quite “sticky” in the sense
that lagged sales (LSales) contribute to more than 90% to changes in current
sales. Offline marketing seems to play a more important role than online
AdWords for ABC. The table above corresponds to the bottom panel of the
graph below.

IRF Analysis
Responding to the third question raised by the CMO, we perform IRF (In this session we
are using orthogonalized impulse reaction function for estimation. In R environment, to
implement GIRF estimations, we need to estimate a Bayesian VAR model (you may
check package “bvartools”) instead, which is beyond the scope of this chapter.) analysis
to evaluate the short- and long-run elasticities of flyers and AdWords marketing of ABC
using irf function in R.
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IRF plots help us visualize when the peak effects occur. On the plots, the solid line
refers to IRF coefficients, while the dashed lines refer to lower and upper bound of
the IRF coefficient’s confidence interval. It seems that increase flyer spending can
cause an immediate boost of sales; in contrast, it takes longer time for spending on
AdWords to have positive impact on sales. Moreover, we can observe that these
impacts all decay fast and gets close to zero over time, mostly within 6 periods
(weeks).
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Immediate and Long-Term Effects
In order to compute the immediate and long-term effects, we need to evaluate the
significance of each IRF coefficient. If the t-statistics of the IRF coefficient is
greater than 1 (Here we follow previous research (e.g., Slotegraaf and Pauwels
2008) to set the criteria as t>1. You may apply the t>2 rule if you would like to
evaluate coefficient significance at a 95% significance level) (t>1), we treat it as
significant and keep the value of that coefficient; otherwise, we treat the coeffi-
cient as zero. To calculate the t-statistics, we need to derive the standard error (se)
of each coefficient from its confidence interval, since lower boundci ¼ β � 1.96 �
se, and upper boundci ¼ β + 1.96 � se. We then calculate the t-statistics using t-
stat¼ β/se.

Based on the above computations, the first period impact is called the imme-
diate effect while the cumulative effect over 8 periods is called the long-run
effect.

Now we make a table in R to summarize IRF coefficients and their confidence
intervals. You will see in the output that response means the response value
at a particular period (there are 8 periods in total), lower and upper refer to
the lower and upper bound of the corresponding confidence intervals,
respectively.

Now we apply the t>1 rule to determine coefficient significance and calculate
long-term elasticities of AdWords and flyer advertising spending.
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After applying the t>1 rule, we figure out that the AdWords advertising has a
significant and positive impact on revenues in second period, while flyer advertising
has significant and positive impact on revenues in the first and second period. Put it
more specifically, after adding up significant coefficients overtime to get the long-
term elasticities for both advertisings, we can say that:

• An 1% increase in AdWords advertising spending growth (note that we first-
differenced the series) will increase the firm’s revenues by 0.04% in the long run.

• An 1% increase in flyer advertising spending will increase the firm’s revenues by
0.12% in the long run.

Optimal Allocation Between AdWords and Flyer Spending
Finally, we can respond to the final question from the CMO regarding ABC’s
budget allocation. To do this, we may first take a look at the current budget
allocation of ABC. We just need to review the dataset and calculate the
total amount of money that the firm has spent on AdWords and flyers, respec-
tively. Then we create a pie chart to visualize the current budget allocation of the
firm.
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We can see that the firm is currently putting far more resources on flyers, since it
spends 85% of its budget on it and only 15% on online AdWords.

For the optimal marketing budget allocation, we need to retrieve the impact of
AdWords and flyer spending from IRF analysis. More specifically, we will calculate
the optimal allocation for each marketing channel using the following formula:

Optimal Allocationi ¼ ηiPI
i¼1ηi

where η is the elasticity of marketing tool i.
As an example, for AdWords spending, we will calculate it as follows:

Optimal AllocationAdwords ¼ ηAdWords

ηAdWords þ ηFlyers

Let’s do this in R now:

Having figured out the optimal budget allocation between AdWords and flyer, we
can now create another pie chart so that we can compare:
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The optimal budget allocation is that the firm should actually spend less of its
marketing budget on flyer advertising (77%, instead of 85%), and more on Google
AdWords advertising (23% instead of 15%). Contrasting the optimal and actual
budget allocation of the firm, it is quite obvious that currently, the firm is
underestimating the power of online marketing through AdWords and over-
emphasizing the importance of offline flyers.

We can see that without analyzing resource allocation, a firm can be quite far
away from what it “should” do. Looking at the optimal budget allocation is quite
critical in managers’ decision-making, since utilizing the constrained resource
more wisely can potentially make a big difference to firm performance (e.g.,
revenues).

On a final note, this section talks about the allocation when the sales perfor-
mance is taken into consideration. Brand managers may pursue different KPIs as
well, such as market share, profits, and brand liking. With different KPIs pursued
by the brand manager, the allocation would be different. Moreover, instead of
keeping the budget the same and reallocating it, the brand manager may want
to increase the budget. In such a case, the dynamics between marketing input
and financial performance would be altered, leading to different optimal
allocation.

To conclude, we responded to the questions raised by ABC’s CMO regarding
demand forecasting, marketing effectiveness, and budget allocation ARIMA (and
MLR) and VAR (and FEVD and IRF) methods. We hope that our readers can have a
better understanding of the materials covered in this chapter by referring to this
application exercise.
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Time-series data include repeated measures of marketing activities and perfor-
mance that are typically equally spaced in time. In the context of such data, Vector
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of both a criterion variable (e.g., sales performance) and predictor variables (e.g.,
marketing actions, online consumer behavior metrics), as well as how they relate
to each other over time. The objective of this chapter is to provide a foundation in
VARmodels and to enable the readers to apply them in their own research domain
of interest. To this end, the chapter will discuss both the underlying perspectives
and differences among alternative VAR models, and the practical issues with
testing, model choice, estimation, and interpretation that are common in empirical
research in marketing.

From a marketing strategy perspective, both managers and academic researchers
pay attention to whether a performance change is temporary (short-term) or lasting
(long-term). Establishing the distinction between short-term and long-term market-
ing effectiveness is central to the understanding of marketing strategy and its
implications, which this chapter aims to do. The interaction among appropriate
marketing phenomena, modeling philosophy, and contemporary substantive topics
sets this work apart from previous treatments on the broader topic of econometrics
and time-series analysis in marketing (e.g., Dekimpe and Hanssens, Persistence
modeling for assessing marketing strategy performance. In: Lehmann D, Moorman
C (eds) Cool tools in marketing strategy research. Marketing Science Institute,
Cambridge, MA, 2004; Hanssens et al., Market response models: Econometric and
time series analysis. Springer Science and Business Media, 2001; Pauwels, Found
Trends Market 11(4):215–301, 2018).

Keywords

Vector autoregressive models · Vector-error correction models · Impulse response
functions · Forecast error variance decomposition · Long-term marketing
effectiveness

Introduction

In today’s data-intensive world, data on marketing actions, market, and firm perfor-
mance can be gathered in a variety of forms. Managers can examine marketing data
over time, for example, through measures such as digital advertising spend per week,
brand revenues per month, advertising expenditures over the quarters, firm revenues
over the past year, and marketing mindset metrics over several years. Time-series
data include repeated measures of marketing activities and performance that are
typically equally spaced in time. In the context of such data, Vector Autoregressive
models (VAR) are uniquely suited to capture the time dependence of both a criterion
variable (e.g., sales performance) and predictor variables (e.g., marketing actions,
online consumer behavior metrics), as well as how they relate to each other
over time.

The objective of this chapter is to provide a foundation in VAR models and to
enable the readers to apply them in their own research domain of interest. To this
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end, I will discuss both the underlying perspectives and differences among
alternative VAR models, and the practical issues with testing, model choice,
estimation, and interpretation that are common in empirical research in market-
ing. The interaction among appropriate marketing phenomena, modeling philos-
ophy, and contemporary substantive topics sets this work apart from previous
treatments on the broader topic of econometrics and time-series analysis in
marketing (e.g., Dekimpe and Hanssens 2004; Hanssens et al. 2001; Pauwels
2018).

From a marketing strategy perspective, both managers and academic researchers
pay attention to whether a performance change is temporary (short-term) or lasting
(long-term). If revenues have declined dramatically this quarter, will they soon
rebound to their historic mean and upward trend? Or will they not, in which case
firm action may be called for? Likewise, some marketing actions are often consid-
ered tactical tools, such as price promotions to boost sales, but may hurt brand
performance in the long run (Mela et al. 1997; Pauwels et al. 2002; Srinivasan et al.
2000). Other marketing actions, such as investments in product introductions and
advertising may only be justified by promises of future benefits (Srinivasan et al.
2010). Establishing the distinction between short-term and long-term marketing
effectiveness is central to the understanding of marketing strategy and its
implications.

There has been a rapid growth of applications of VAR models in the marketing
literature for a variety of reasons. First, VAR models enable researchers to use a
systems approach to explain the multiple channels of influence of marketing vari-
ables on each other, and enable the incorporation of customer response, competitive
response, and firm actions (e.g., Pauwels et al. 2004; Srinivasan et al. 2004). As
such, VAR models are effective in incorporating the combined influence of multiple
stakeholders, accounting for the real world of firm and marketing strategy. Second,
they allow researchers to make a distinction between short-term, long-term, and
cumulative effects of marketing considering differences between temporary, evolv-
ing, and structural changes in marketing variables (e.g., Srinivasan et al. 2000).
Finally, the availability of online and offline databases (e.g., Srinivasan et al. 2016)
with both longitudinal and cross-sectional data has meant that VAR models have
great applicability and have enabled various empirical generalizations on marketing
phenomena.

The outline of the chapter is as follows. First, I will provide an overview into the
VAR modeling process, followed by a discussion on evolution vs stationarity and
unit root testing. I then discuss the concept of cointegration and long-run equilibrium
among evolving series. Next, I discuss the details of VAR model specification,
including reduced form and structural VARs, followed by Vector-Error Correction
Models (VECM). Following this, I will review the importance of Impulse Response
Analysis, Granger Causality Tests, and Forecast Error Variance Decompositions
(FEVD) in order to generate substantive and policy implications from VAR models.
Finally, I conclude the chapter with three (illustrative) contemporary applications of
VAR to marketing strategy.
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Vector Autoregressive (VAR) Modeling

Vector autoregressive modeling involves a multistep process. Table 1 provides an
illustration of how a researcher/practitioner should approach a VAR model.

Table 1 Illustrative approach to VAR modeling framework

Managerial/research goal Key sources Methodological step

Step 1: Unit Root & Cointegration Tests

Are variables stationary or evolving?
Are evolving variables in long-run equilibrium?

Enders (2003)
Engle and
Granger (1987)
Perron (1989)
Perron (1990)
Zivot and
Andrews
(1992)
Johansen et al.
(2000)
Srinivasan
et al. (2000)

Dickey Fuller Tests
Augmented Dickey-
Fuller Test
Cointegration Test
Structural Break Test

Step 2: Model of Dynamic System

How do performance and marketing interact in the
long run and short run, accounting for the unit root
and cointegration results?

Lütkepohl
(1993)
Dekimpe and
Hanssens
(1999)
Baghestani
(1991)
Srinivasan
et al. (2004)

Vector Autoregressive
model
VAR in Differences
Vector Error Correction
model

Step 3: Policy Simulation Analysis

What is the dynamic impact of marketing on
performance?
Which actors drive the dynamic impact of
marketing?

Pesaran and
Shin (1998)
Pauwels et al.
(2002)
Han et al.
(2019)

Unrestricted impulse
response
Restricted policy
simulation
Dynamic multipliers

Step 4: Granger Causality Tests

Which variables are temporally causing which
other variables?

Granger (1969)
Srinivasan
et al. (2010)

Granger Causality

Step 5: Drivers of Performance

What is the importance of each driver’s past in
explaining performance variance?
Independent of causal ordering?

Hanssens
(1998)
Srinivasan
et al. (2004)
Nijs et al.
(2007)

Forecast Variance Error
Decomposition (FEVD)
Generalized FEVD
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In the first step, unit root tests are used to determine whether the different variables
are stable or evolving. If several of the variables are found to have a unit root – that is, if
they are found to be evolving – one subsequently tests for cointegration. Depending on
the outcome of these two preliminary steps, one estimates a vector autoregressive (VAR)
model, in reduced form or structural form in the levels, in the differences, or a vector
error correction model (VECM). The parameter estimates from this VAR (or VECM)
model are used to derive impulse-response functions and forecast error variance decom-
positions, fromwhich various summary statistics on the short- and long-run dynamics of
the system can be derived. Granger Causality tests help with assessing the temporal
causality patterns among the variables. We now briefly elaborate on each of these steps.

Unit Root and Cointegration Testing

Testing for Evolution Versus Stationarity

In the first step, unit root tests are used to determine whether or not the different
variables are stable or evolving When a series may be appropriately modeled as
depending on a constant plus a coefficient times a lag of the series plus a random
term, testing whether a series is stationary or evolving is accomplished using the
well-known test proposed by Dickey and Fuller (1979). When more than one lag is
involved the appropriate test is the augmented Dickey Fuller test. If several of the
variables are found to have a unit root – that is, if they are found to be evolving – one
subsequently tests for cointegration among the evolving series.

Stationarity is the tendency of a time series to revert back to its deterministic
components, such as a fixed mean (mean-stationary) or a mean and trend (trend-
stationary). Stationary processes have a finite variance and are predictable, while
evolving series do not return to a fixed mean (and trend); shocks to these series
persist in the future. This distinction is essential in empirically testing for unit roots.
Following Dekimpe and Hanssens (1995a), we first consider the simple case where
the time-series behavior of the variable of interest (for example, a brand’s sales Yt) is
described by a first-order autoregressive process:

I � φLð ÞYt ¼ aþ ut ð1Þ
where φ is an autoregressive parameter, L the lag operator (i.e., LpYt ¼ Yt – p), ut is a
residual series of zero mean, constant variance (σ2u), and uncorrelated random
shocks, and a is a constant. Note that Eq. (1) may also be written in the following,
more familiar form after applying successive backward substitutions:

Yt ¼ a= 1� φð Þ½ � þ ut þ φut�1 þ φ2ut�2 þ . . . , ð2Þ
in which the present value of Yt is explained as a weighted sum of random shocks.
Depending on the value of φ, two scenarios are distinguished.
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If |φ| < 1, the effect of past sales (and thus any “shock” that has affected past
sales) diminishes as we move into the future. The impact of past shocks diminishes
and eventually becomes negligible. Hence, each shock has only a temporary impact.
In such a case, the series has a fixed mean c/(1 – φ) and a finite variance σ2u/(1 – φ

2).
We call such time series stationary, i.e., it has a time-independent mean and variance.
This situation is typical for the market performance of established brands in mature
markets (e.g., Nijs et al. 2001; Srinivasan et al. 2000).

If |φ|¼ 1, sales will not revert to a historical level but will evolve. This situation has
been demonstrated for smaller brands and in emerging markets (e.g., Slotegraaf and
Pauwels 2008). If |φ| > 1, the effect of past sales (and thus of past shocks) becomes
increasingly important. Such explosive time-series behavior appears to be unrealistic
in marketing (Dekimpe and Hanssens 1995b). When |φ| ¼ 1, Eq. (2) becomes:

Yt ¼ aþ aþ . . .ð Þ þ ut þ ut�1 þ . . . , ð3Þ
In this case, each random shock has a permanent effect on the subsequent values

of Y. Sales do not revert to a historical level, but instead wander freely in one
direction or another, and are evolving.

Distinguishing between stationarity versus evolution therefore involves checking
if φ in Eq. (1) is smaller than or equal to 1. However, for the t-statistic special tables
need to be used in lieu of the standard distribution. The generalization of the Dickey-
Fuller test to an AR ( p) process yields the Augmented Dickey-Fuller test. This test is
based on a reformulation of the AR ( p) process as:

1� Lð ÞYt ¼ ΔYt ¼ α0 þ βYt�1 þ α1ΔYt�1 þ . . .þ α2pΔYt�p þ ut ð4Þ
The Augmented Dickey-Fuller (ADF) test can be used to test the null hypothesis.

The rationale behind adding lagged first differences is that the error should be
approximately white noise. In addition, depending on the assumptions of the under-
lying process, the test may be performed with or without the model intercept. Enders
(2003) offered an iterative procedure to implement these different test specifications,
as implemented in several marketing papers (e.g., Slotegraaf and Pauwels 2008;
Srinivasan et al. 2004).

While the Augmented Dickey Fuller (ADF) method is the most popular unit root
test in marketing, it has the limitation of the low power of the test under certain
conditions; see Maddala and Kim (2007) for an excellent discussion. Because it has
been argued that conventional unit root tests (e.g., ADF) tend to underreject the null
of unit root, researchers tend to use the alternative such as the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al. 1992), which uses the null
of stationarity. Most applications in marketing, however, show that the ADF and
KPSS tests lead to similar conclusions (e.g., Pauwels and Weiss 2008; Villanueva
et al. 2008). Other papers have built on these topics; for example, Franses et al.
(1999) developed an outlier-robust unit root test and the logical consistency require-
ment when modeling market shares has also been incorporated in unit root tests by
Franses et al. (2001).
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Typically, unit root tests are based on the assumption of no structural breaks in the
series. If a structural break is identified in a series, the stability of the model is crucial
to the task of evaluating the impact of structural changes within the system. It could
be that there are large shocks called “structural breaks.” Failure to account for such
shocks in testing biases the unit root tests toward reporting evolution. In marketing,
such structural breaks could correspond to permanent changes to prices, the intro-
duction of new products and channels of distribution (Deleersnyder et al. 2002;
Kornelis et al. 2008; Pauwels and Srinivasan 2004), and other similar permanent
changes in marketing. Researchers typically define a structural break in terms of a
parameter change in the deterministic part of the model, i.e., in the slope and/or
intercept of the deterministic growth path (Perron 1989).

The timing of the structural break is either known or unknown. In the case of
known structural breaks there are shifts in the data generating process, such as price
increases or decreases (Srinivasan et al. 2000), introducing a new store brand
(Pauwels and Srinivasan 2004), or channel (Kornelis et al. 2008), or changing the
pricing structure from free to fee (Pauwels and Weiss 2008). Perron (1990) devel-
oped the most widely used test for a single break, which has been the focus of most
marketing applications (Deleersnyder et al. 2002; Lim et al. 2005; Nijs et al. 2001;
Pauwels and Srinivasan 2004). Zivot and Andrews (2002) propose testing for
structural breaks that are unknown which may be a common occurence, instead of
eyeballing the time series for where a structural break should be and then testing for
it. For instance, if players anticipate changes, they may even react before the time the
researcher dates the event (e.g., Pauwels and Srinivasan 2004), which will be picked
up by unknown structural break tests.

Cointegration Tests: Does a Long-Run Equilibrium Exist Between
Evolving Series?

Cointegration describes the existence of an equilibrium or stationary relationship
among two or more time series, each of which is individually nonstationary. An
equilibrium relationship would imply that, even if they diverge from each other in
the short run, such deviations are stochastically bounded or diminishing over time.
Figure 1 shows an illustrative example of cointegration between annual advertising
spending and sales revenues for the Lydia Pinkham from 1907 to 1960.

To illustrate cointegration, we consider an example in which a brand’s sales
(SALES), its own marketing (MKTG), and its competitors’ marketing (CMKTG)
are all evolving. The existence of a cointegrating relationship between these three
variables would imply (see Srinivasan et al. (2000) for a more in-depth discussion)
the following:

SALESt ¼ β0 þ β1MKTGt þ β2CMKTGt þ et ð5Þ
A simple testing procedure for cointegration, proposed by Engle and Granger

(1987), is to estimate Eq. (5) using Ordinary Least Squares and test the residuals et
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for a unit root using standard unit root tests, and with the updated critical values
listed in Engle and Yoo (1987). A marketing application of the Engle and Granger
approach to cointegration testing can be found in Baghestani (1991) using the Lydia
Pinkham data. This procedure is simple and consistent, but can be biased in small
samples and is not possible with more than one cointegrating vector. Johansen’s
(1988) Full Information Maximum Likelihood (FIML) test does not suffer from
these limitations, and has been used extensively in marketing applications. Dekimpe
and Hanssens (1999) applied the latter test in their analysis of a prescription drugs
market. They found that even though each of the individual series (prescriptions,
advertising, sales calls, and price differential) was evolving, the four variables were
related together in a long-run cointegrating equilibrium that prevented them from
wandering too far apart from one another.

Such long-run cointegrating equilibria can emerge for a variety of reasons. First,
cointegration can arise from stationary linear combinations of category and brand
sales, for instance. If such regressions exist, then they are consistent with market
shares being stationary or stable. Srinivasan and Bass (2000) propose that if brand
sales and category sales are cointegrated, this also implies that the market is in long-
run equilibrium. From a strategic perspective, this implies that firms are unable to
improve their relative position despite improving their absolute long-run perfor-
mance with respect to sales. Srinivasan and Bass (2000) show that evolution occurs
for a majority of brand sales series, and that a vast majority of the market share time-
series models are stationary. This is consistent with arguments of Bass and Pilon
(1980) that many markets are in a long-run equilibrium. The relative position of the
brands is only temporarily affected by marketing activities. Even for brand sales (and
category sales) series, later studies suggest that stationarity, and not evolution is the
norm for mature brands in mature categories (e.g., Nijs et al. 2001; Pauwels et al.
2002). Emerging markets and brands show a substantially higher potential for
evolution (Osinga et al. 2010; Slotegraaf and Pauwels 2008). More recently, Kireyev
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Fig. 1 Cointegrating relationship between advertising and sales – Lydia Pinkham Data
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et al. (2016) use the Johansen et al. (2000) test allowing for structural breaks in the
relationship between online display and online search clicks.

Second, certain budgeting rules (e.g., advertising as a percentage-of-sales alloca-
tion rules) imply that sales successes eventually translate into higher marketing
spending, which may result in sales and marketing mix variables being cointegrated.
For instance, Srinivasan et al. (2000) note that one rationale for a long-run
cointegrating relationship between own prices, competitive prices, and sales is that
different price levels correspond to different long-run demand or sales levels, and
these, in turn, are associated with different levels of shares. This long-run
cointegrating equilibrium among sales and prices is consistent with the underlying
idea that customers’ limited budgets may cause different price levels to be associated
with different long-run demand levels.

Finally, competitive decision rules can result in firms’ marketing spending levels
never deviating too far from each other (Dekimpe and Hanssens 2004). Table 2
summarizes the findings from an illustrative set of papers that link sales to marketing
mix.

If there is a cointegrating relationship, we estimate a Vector-Error Correction
Model (VECM). If the series are stationary, we estimate a VAR model in levels.
However, if there are unit-roots but there is no cointegrating relationship, we
estimate a VAR in differences since regressions on the levels of evolving variables
may produce spurious results.

Models of Dynamic Systems of Equations

Vector Autoregressive Model with Exogenous Variables (VARX)

The dynamic interactions and feedback effects among marketing variables are
captured in Vector-Autoregressive (VARX) models with exogenous variables (e.g.,
Dekimpe and Hanssens 1999). The endogenous treatment of marketing actions
implies that they are explained by both past marketing actions and past performance
variables. VARX models can capture complex feedback loops that may impact brand
performance over time. For instance, an increase in advertising in each week may
generate a high level of consumer awareness, inducing some consumers to consider
the brand, and try it. Their subsequent purchases may not only increase brand sales,
but also awareness by their family, friends, and colleagues who see them use the
brand and follow suit themselves. Because of such chains of events, the full
performance implications of the marketing actions, such as advertising, may extend
well beyond the immediate effects. By capturing these feedback loops, VARX
models yield a comprehensive picture of how marketing mix actions affect the full
dynamic system including sales performance.

Motivations for using and estimating VARX models stem from an interest in
explaning the dynamics and interrelationships among multiple variables. For
instance, sales may be driven by feedback from past performance (SALES at period
t�1) as well as by own marketing actions and competitive marketing actions.
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Table 2 Illustrative marketing studies using vector auto-regressive models

Study Data Model Research focus

Baghestani
(1991)

54 yearly observations VECM Cointegration of advertising
and sales

Bronnenberg
et al. (2000)

1991–1996; 257 weeks of
ready-to-drink tea.

VAR Relation between
distribution and long-run
share, through early growth
and later stages of product
life cycle

Dekimpe and
Hanssens
(1995a)

Database of 400 prior
analyses

Unit root tests Evolution of sales and
stationarity of market shares

Dekimpe and
Hanssens
(1995b)

Monthly advertising and
sales data

VAR
Persistence
analysis

Long-term effect of
advertising on sales

Dekimpe and
Hanssens
(1999)

(1) Monthly
pharmaceutical data for
5 years
(2) Brandaid data

VECM Long-run impact of sales
calls, advertising, prices and
promotions on sales

Dekimpe
et al. (1999)

113 Weeks scanner data for
four categories

VAR Impulse
response
analysis

Impact of promotions on
sales in stationary and
non-stationary markets

Franses et al.
(1999)

Weekly scanner data for
consumer-packaged goods

Cointegration
analysis

Impact of distribution,
advertising and promotions
on sales

Franses et al.
(2001)

Weekly scanner data for
2 years in three categories

Unit root tests Propose unit-root and
cointegration tests that take
the logical-consistency
properties of market-share
series into account

Srinivasan
and Bass
(2000)

Weekly scanner data for
grocery products

Cointegration
analysis/VECM

Evolution of sales with
stationary market shares:
brand sales and category
sales are cointegrated.

Nijs et al.
(2001)

4 years for 560 categories VAR
Persistence
analysis

Persistent effect of
promotions on category
sales

Pauwels et al.
(2002)

Scanner data for 2 years in
two categories

VAR
Persistence
analysis

Quantifies the long-term
effect on category incidence,
brand choice and purchase
quantity

Srinivasan
et al. (2004)

75 brands in 25 categories
for 7 years

VAR
Persistence
analysis

Quantifies effects of price
promotions on manufacturer
revenues, retailer revenues
and margin

Pauwels and
Srinivasan
(2004)

75 brands in 25 categories
for 7 years

VAR with
structural break

Effect of store brand entry
on (1) the retailer, (2) the
manufacturers, and (3) the
consumers

(continued)

524 S. Srinivasan



Table 2 (continued)

Study Data Model Research focus

Pauwels et al.
(2004)

Weekly automotive data
from 1996 to 2001

VAR analysis,
FEVD and
persistence
analysis

Short- and long-term impact
of promotions and new
product introduction on
revenues, profits and stock
market performance

Steenkamp
et al. (2005)

Weekly data for 4 years in
442 consumer product
categories

VAR analysis
and persistence
analysis

Competitive reaction
elasticities due to price
promotion or advertising
attacks, both in the short and
the long run

Nijs et al.
(2007)

Weekly data for
24 categories for 8 years

VAR and FEVD Drivers of retail prices:
competitive retailer prices,
pricing history, brand
demand, wholesale prices,
and retailer category-
management considerations

Villanueva
et al. (2008)

Internet firm data for a
70-week period

VAR and
Persistence
analysis

Impact of marketing
vs. word of mouth customer
acquisition on customer
equity

Srinivasan
et al. (2008)

Weekly data for
24 categories for 8 years

VAR Retailers choice of demand-
based pricing vs. inertia

Trusov et al.
(2009)

36 weeks of sign-ups,
referrals, media and
marketing events for
internet firm

VAR Effect of word-of-mouth
(WOM) vs. marketing on
member growth

Heerde et al.
(2010)

Data for Lexus RX300
introduction

Time-varying
VEC model

Estimate cannibalization,
brand switching, and
primary demand expansion
for a pioneering innovation

Srinivasan
et al. (2010)

Weekly data for
60 consumer brands in four
categories for 96 weeks

VAR with IRFs,
GFEVD and
Granger
Causality

Analyze the added
explanatory value of
customer mindset metrics
vs. marketing mix in a sales
response model

Wiesel et al.
(2011)

Daily data from office
supply firm: transaction,
marketing, online and
off-line activities

VAR +
experimentation

Marketing communication
effects on offline and online
purchase funnel metrics and
the magnitude and timing of
the profit impact of firm-
initiated and customer-
initiated contacts

Pauwels et al.
(2016)

50 weekly observations of
brand performance, online
and offline media for four
companies

Bayesian VAR
with IRFs

Assess how within-online
synergy and cross-channel
synergy vary across familiar
and unfamiliar brands

Srinivasan
et al. (2016)

CPG data on marketing
mix, online media, and
sales for 40 weeks

VAR with IRFs,
Granger
Causality

Effects of consumer activity
in online media (paid, owned

(continued)
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Competitive marketing actions may be explained by their historical patterns and
their reaction to competitive performance (i.e., performance feedback) and/or to the
focal firm’s actions. For instance, a higher click-through and thus spending on paid
search may be induced by the firm’s offline marketing actions and by higher sales in
previous periods, e.g., due to positive word-of-mouth by previous customers
(Srinivasan et al. 2016; Wiesel et al. 2011). In turn, word-of-mouth referrals may
be driven by the firm’s paid marketing actions (Trusov et al. 2009).

Next we outline the VARX (vector autoregressive model with exogenous vari-
ables) . The common practice in marketing is to allow the most relevant variables to
be endogenous and to control for the effects of other variables by considering them
exogenously (Dekimpe and Hanssens 1999; Horváth et al. 2005; Nijs et al. 2001;
Srinivasan and Bass 2000; Srinivasan et al. 2000). This, i.e., the imposition of
exogeneity, can imply a reduction of the number of parameters and also an improved
precision of forecasting. For expository purposes, we first consider a model in the
levels and focus on a simple three-equation model linking own sales performance
(SALES), own marketing spending (OMKT), and competitive marketing spending
(CMKT). The corresponding VAR model in matrix notation the model given is by:

SALESt

OMKT t

CMKT t

2
664

3
775 ¼

a11

a12

a13

2
64

3
75þ

Xp

i¼1

Φ11,i Φ12,i Φ13,i

Φ21,i Φ22,i Φ23,i

Φ31,i Φ32,i Φ33,i

2
64

3
75�

SALESt�i

OMKT t�i

CMKT t�i

2
664

3
775þ Ψ

�
X1t

X2t

X3t

2
64

3
75þ

uSales,t

uOMKT ,t

uCMKT ,t

2
664

3
775 ð6Þ

which can be written as

Yt ¼ Aþ
Xp

i¼1

ΦiYt�i þ ΨXt þ Σt, t ¼ 1, 2, . . . ,T, ð7Þ

Table 2 (continued)

Study Data Model Research focus

and earned) vs. marketing
mix on sales.

Colicev et al.
(2018)

Daily data for 45 brands in
21 sectors on mindset
metrics and firm
performance

VAR with IRFs,
Granger
Causality

Role of mindset metrics on
social media – shareholder
value link.

Han et al.
(2019)

Weekly survey data for
4 years on customers’
attitudes for computer and
automobile brands

VAR with IRFs,
GFEVD

Impact of negative buzz on
awareness and purchase
intent
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where A is a 3 � 1 vector of intercepts, Yt is an 3 � 1 vector of the endogenous
variables (SALES, OMKT, CMKT), and Xt is a vector of exogenous control variables.
The exogenous variables often include terms such as (1) a deterministic-trend t to
capture the impact of omitted, gradually changing variables, and (2) dummy vari-
ables to account for seasonal fluctuations in sales, or any other endogenous variable,
and Σt is the covariance matrix of the residuals. Dekimpe and Hanssens (1995a)
provide a good summary of the multiple channels of influence that are captured by
VAR models. These are enumerated below. First, VAR models allow the capture of
contemporaneous effects of variables on each other. For example, suppose a brand
manager intends to launch a costly promotional campaign with a view to lifting the
brand’s declining sales performance. The anticipated immediate effect of the pro-
motion on sales is an important factor in the launch of the promotional campaign.
Many marketing actions including advertising, promotions, price changes, distribu-
tion changes, etc., often have a considerable immediate impact on performance. In
the reduced form of the VAR, these effects are reflected in the contemporaneous
correlation terms in the variance covariance matrix.

Second, there are carryover effects of marketing activity on sales, reflected in the
parameter ϕ12 in Eq. (6). Numerous studies have argued that the effect of advertising
in one period may be carried over, at least partially, into future periods (see Hanssens
et al. 2014, for example). Consumers are expected to remember past advertising
messages and create “goodwill” toward the brand that only gradually deteriorates
because of forgetting.

Third, purchase reinforcement effects suggest that the dynamic impact of
marketing actions on sales can also work indirectly through purchase reinforce-
ments: a given outlay may create a new customer who will not only make an initial
purchase, but also repurchase in the future. Purchase reinforcement is reflected in
the parameter ϕ11 in Eq. (6). Using a similar logic, Horsky and Simon (1983)
assume that advertising gives innovators an incentive to try the product after which
an imitation effect takes over, creating a larger customer base and higher future
sales. Current advertising should receive credit for these subsequent sales (e.g.,
Bass and Clarke 1972; Hanssens et al. 2001). Villanueva et al. (2008) in their study
of customer equity note that an increase in the number of customers acquired
through word-of-mouth might influence future word-of-mouth acquisitions
because these customers may generate more referrals than customers acquired
through marketing.

Fourth, feedback effects suggest that future marketing actions (e.g., advertising)
may be influenced by past sales as well as current sales. Feedback from sales to
marketing action is reflected in the parameter ϕ21 in Eq. (6). Dekimpe and Hanssens
(1995a) point out that this is highly likely when percentage-of-sales budgeting rules
are applied. Such feedback effects manifest due to a chain reaction where an increase
in advertising in period t results in an increase in sales in period t, which in turn
results in increased advertising in period t+1 and so on. The profit implications of
such advertising increases should consider both the revenue impact as well as the
additional expenditures in advertising due to the initiating increase in advertising.
Using persistence modeling approaches such as VARs, credit is given to the initial
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advertising increase for the subsequent sales increases since without it, none of the
subsequent effects would have occurred.

Fifth, the VAR model allows the researcher to capture firm-specific decision rules,
which typically model the dependence of current marketing activity such as adver-
tising and prices on previous advertising and prices. Such a decision rule is reflected
in the parameter ϕ22 in Eq. (6). For instance, Nijs et al. (2007) find that a brand’s past
prices are the dominant driver of current retail prices in each category studied, and
account anywhere from 50% to 60% of the variation in current prices, confirming the
powerful tendency to rely on past prices in determining future prices (Srinivasan
et al. 2008).

Last but not the least, VAR models allow the capture of competitive reaction
effects. Competitive reaction effects are reflected in the parameter ϕ23 and the
parameter ϕ32 in Eq. (6). For instance, competitive activities may change own
marketing effectiveness drastically. Similarly, in the context of retail pricing, com-
petitive retailer activity is expected to influence retailer prices and performance
(Srinivasan et al. 2008). For instance, price promotions by competing retailers may
reduce store traffic, inducing the retailer to respond (Srinivasan et al. 2004).

The representation in Eq. (7) is the reduced-form of the VAR model in which the
errors are contemporaneously correlated, with the contemporaneous correlations
reflected in the off-diagonal terms of the variance-covariance matrix. The residual
correlation matrix can be used to establish the presence and the direction of the
effects. Various procedures have been used in the marketing literature to deal with
identification, such as by imposing an a priori imposition of a certain causal ordering
on the variables. When researchers work on model identification, they assert a
connection between the reduced form and the structure so that estimates of reduced
form parameters translate into structural parameters. In the words of Sims (1986,
p.2), “Identification is the interpretation of historically observed variation in data in
a way that allows the variation to be used to predict the consequences of an action
not yet undertaken.”

An important feature of the reduced-form model is that all variables on the
right-hand side (RHS) of Eq. (7) are predetermined at time t, and the system can
be estimated without imposing restrictions or a causal ordering. Moreover,
because all RHS variables are the same in each equation, there is no efficiency
gain in using Seemingly Unrelated Regression (SUR) estimation. In that case, the
Ordinary least squares (OLS) estimates are consistent and asymptotically effi-
cient even if the errors are correlated across equations (Srivastava and Giles
1987, Chap. 2) and asymptotically efficient in using OLS estimation, equation
by equation. This feature is especially valuable in marketing applications with
many endogenous variables. For example, a 6-equation VAR model requires
estimation of 6*6 ¼ 36 additional parameters for each lag added to the model.
This does not bode well for estimations with the typical weekly scanner panel
data of 104 observations for 2 years, due to over-parameterization concerns. In
contrast, OLS estimation equation-by-equation implies that only six additional
parameters have to be estimated.
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Several authors (e.g., Pesaran et al. 1993; Dekimpe and Hanssens 1995a; Pauwels
et al. 2004) have restricted all parameters with |t| < 1 to zero as a step toward
parsimony. Others such as Nijs et al. (2007) and Srinivasan et al. (2008), also for
parsimony of estimation, reduce the number of parameters by eliminating the
insignificant ones and reestimating the model. In this case, when researchers reduce
the number of parameters by eliminating the insignificant lagged parameters and
reestimating the model, they need to use SUR for estimation as the RHS variables are
no longer identical across equations. While such strategies accomplish the goal of
parsimony and may alleviate the problem of estimating and interpreting so many
parameters, they are unlikely to fully eliminate it. As a consequence, VAR modelers
typically do not interpret the individual parameters themselves, but rather focus on
the impulse-response functions (IRFs) derived from these parameters.

Structural Vector-Autoregressive Model (SVAR)

The structural VAR (SVAR) representation of the reduced form VAR in Eq. (7) is
written as:

B0Yt ¼ Aþ B1Yt�1 þ B2Yt�2 þ . . .þ BpYt�p þ Σt ð8Þ
The vector of endogenous variables Y is regressed on constant terms (which may

include a deterministic time trend) and on its own past, with p being the number of lags,
and B coefficient matrix of a given lag. Note that the contemporaneous effects are
captured in the B0 matrix; as a result, the structural errors ε are uncorrelated (orthogonal)
across equations. This structural form of the VAR model is directly interesting for
decision makers, as it generates predictions of results of various kinds of actions, by
calculating the conditional distribution given the action (Sims 1986). It is also the
appropriate form for imposing restrictions, typically on the B0 matrix (e.g., Amisano
and Giannini 1997). For instance, researchers provide theory-based reasons for why one
group of variables does not cause another group of variables (e.g., Bernanke 1986).

Structural VARs have seen quite a few applications in marketing (DeHaan et al.
2016; Gijsenberg et al. 2015; Horváth et al. 2005). Horváth et al. (2005) show that
the inclusion of competitive reaction and feedback effects is more important in the
tuna category but not in the shampoo category where competitive interactions are
limited due to differentiated brand positioning. Gijsenberg et al. (2015) develop a
Double-Asymmetric Structural VAR (DASVAR) model that allows for asymmetric
effects of increases versus decreases and for a different number of lags in each
equation. In their analysis of the effect of service on customer satisfaction, they find
that losses (service failures) not only have stronger (the first asymmetry), but also
longer-lasting (the second asymmetry) effects on satisfaction than gains. Finally,
DeHaan et al. (2016) find support for their proposed restriction of both immediate
and dynamic feedback loops within the online funnel of a retailer; they find that
increases in product page visits increase checkouts, but not vice versa.
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Vector Error Correction Model

If some of the variables have a unit root, the VAR model is specified in differences. If
there is a cointegrating relationship, we estimate a Vector-Error Correction Model
(VECM). Srinivasan et al. (2000) estimate a VECMmodel, among market share and
prices of four brands of beer, which have a long-run cointegrating relationship; the
rationale is that different price levels correspond to different long-run demand or
sales levels, and these, in turn, are associated with different levels of shares.
Specifically, if SALESt, OMKTt, and CMKTt are cointegrated, then the VECM
model in differences includes the error-correction term to capture the long-run
cointegrating relationships as shown below:
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The addition of the error correction terms reflects the fact that in each period the
system adjusts toward the long-run cointegration relationship, with the coefficients
of the error-correction term reflecting the speed of adjustment toward the equilib-
rium. When the variables are evolving, omitting the long run cointegrating relation-
ship will underestimate the effects of marketing mix variables on performance
(Vanden Abeele 1994). Incorporating the long-run relationship among variables
will allow an estimation of long-run elasticities as well as short-run elasticities
(Srinivasan et al. 2000).

Typically, VAR modelers do not interpret the individual parameters themselves,
but tend to focus on the impulse-response functions derived from these parameters.
Impulse-response functions trace the incremental performance and spending impli-
cations of an initial one-period change in one of the support variables, over time. In
so doing, they provide a concise summary of the information contained in the
multitude of VAR parameters, a summary that lends itself well to a graphical and
easy-to-interpret representation.

Policy Simulation Analysis

Impulse Response Functions (IRF)

An impulse-response function (IRF) traces the incremental effect of a one-unit
(or one-standard-deviation) shock in one of the variables on the future values of
the other endogenous variables (e.g., Srinivasan et al. 2000, 2004). IRFs can also
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be viewed as the difference between two forecasts: a first forecast, based on an
information set that does not take the marketing shock into account, and another
prediction based on an extended information set that takes this shock into
account. As such, IRFs trace the incremental effect of the marketing action
reflected in the shock. Note that marketing actions (such as, for example, a
price promotion) are operationalized as deviations from a benchmark, which is
derived as the expected value of the marketing-mix variable (for example, the
price) as predicted through the dynamic structure of the VAR model. Response
functions are based on the estimated parameters of the full VARX model. Note
from Eqs. (6) and (7) that VARX models capture immediate as well as lagged,
direct as well as indirect interactions among the endogenous variables. Based on
all these estimated reactions, the impulse response function estimates the net
result of a “shock” to a marketing variable on the performance variables relative
to their baselines (their expected values in the absence of the marketing shock).
Specifically, it measures the long-term performance response to a one-unit shock
(Pauwels et al. 2002; Nijs et al. 2001; Srinivasan et al. 2004).

Starting from the reduced-form model specification in Eq. (7), we can substitute
each lag of each endogenous variable by the same equation and thus express the
right-hand side as a function of only current and lagged values of the error terms.
This yields the Vector Moving Average (VMA) representation:

Yt ¼ Aþ I � Φ1B� Φ2B
2 � . . .�ΦpB

p
� ��1

Σt ð10Þ
In words, each endogenous variable is explained by a weighted average of current

and past errors or “shocks” both to itself and to the other endogenous variables.
Therefore, we operationalize a change to a variable (e.g., a price promotion) as a
shock to the variable series (e.g., to sales). An impulse response function then tracks
the impact of that shock to each variable in the system (price, sales, competitive
price, etc.) during the shock (typically denoted as period 0) and for each period
thereafter.

For a simple illustration of the IRFs, let’s consider the VAR model below:
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For a unit shock to own marketing action OMKT, one sets [uSales, uOMKT,
uCMKT]¼[0, 0, 0] prior to t; to [0, 1, 0] at time t; and to [0, 0, 0] after time t. One
then computes (simulates) the future values for the various endogenous variables:
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A plot of these forecasts against time yields the impulse response function;

allowing all endogenous variables to respond according to the historically observed
reaction patterns, as captured by all estimated VAR-coefficients. In case the affected
variable is evolving (has a unit root), the shock may (but does not need to) have a
permanent impact, i.e., the variable does not return to its pre-shock level. In the
typical case of stationary variables, these shock effects die out, i.e., the permanent
impact is 0 and the variable returns to its steady-state, i.e., pre-shock level.

How can IRFs show permanent effects if the VAR-model can only include
stationary variables? If the performance variable (e.g., sales) is evolving, we indeed
include it in the model in first differences, i.e., in changes to the variable. Therefore,
the impulse response function on this variable (change in sales) will die out. To
derive the effect on sales itself, we must accumulate the IRF values starting from the
first period. Thus, the IRFs for evolving variables will converge to the persistent
impact and the IRFs for stationary variables will return to their baseline with
permanent impact of 0. What happens when the impulse (i.e., marketing) is the
evolving variable? Again, we include the marketing action (e.g., price) in first
differences in the model, and its IRF therefore shows the performance impact not
of a temporary shock but of a permanent change (e.g., reduction in regular price). We
need to keep this in mind when interpreting the result.

Researchers often derive the three summary statistics from IRFs using the VAR
model: (1) the immediate or short-term performance impact of own marketing
(MKT) or competitive marketing (CMKT) on brand sales (SALES), which is readily
observable to managers, and may therefore receive considerable managerial scru-
tiny; (2) the persistent or the long-term impact (i.e., the value to which the IRF
converges); and (3) the total or cumulative impact, which combines the immediate
effect with all effects across the dust-settling period. In the absence of permanent
effects, this total impact becomes the relevant metric to evaluate performance out-
comes (Pauwels et al. 2002; Pauwels and Srinivasan 2004).

Srinivasan et al. (2004) answer the question of whether of price promotions
benefit manufacturers and retailers by analyzing 7 years of scanner data, covering
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25 product categories and 75 brands, from the Chicago area’s second-largest super-
market chain, Dominick’s Finer Foods. Previous research showed that price pro-
motions tend to have little long-term effect on sales volume. Their research found
that the same is true for revenues and margins. Figure 2 shows the impulse response
functions of the impact of price promotion on manufacturer and retailer revenues for
two categories, tuna and cheese, from the 25 categories that they study. It outlines the
immediate, the dust-settling, and the persistent effects of promotions for these two
categories.

During the 1-week promotion, the cheese manufacturer saw an immediate reve-
nue increase as customers bought more of its brand. But the retailer saw a loss,
because gains from increased sales of the promoted brand were more than offset by
loss of sales from regularly priced brands. During the dust-settling weeks, 2–6, the
manufacturer saw a negative impact on revenue as customers switched back to their
usual brands and toward competing brands that had launched their own promotions.

A: Impulse response function of a price promotion

of one cent per ounce on manufacturer revenue   

B: Impulse response function of a price promotion

of one cent per ounce on retailer revenue   

C: Impulse response function of a price promotion

of one cent per ounce on manufacturer revenue   

D: Impulse response function of a price promotion

of one cent per ounce on retailer revenue   
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Fig. 2 Impulse-response functions. (a) Impulse response function of a price promotion of 1 cent
per ounce on manufacturer revenue. (b) Impulse response function of a price promotion of 1 cent
per ounce on retailer revenue. (c) Impulse response function of a price promotion. (d) Impulse
response function of a price promotion of 1 cent per ounce on manufacturer revenue of 1 cent per
ounce on retailer revenue
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Meanwhile, retailer revenue for the cheese category gradually moved back to
baseline as the promotion effects tailed off. By week 6, manufacturer and retailer
revenues had returned to their prepromotion levels and remained stable through
week 26. They find that promotions of frequently promoted brands, for example,
tend to have a positive short-term effect on both retailers’ and manufacturers’
revenues but a negative impact on retailers’ profit margins. Thus, the interests of
manufacturers and retailers may well be aligned for one financial metric, such as
revenue, but not for another, such as profit. Impulse Response Functions can
therefore be used to obtain insights into impact on relevant performance metrics.
Researchers can also obtain the wear-in time of each driver’s effect on performance
as the period with the highest (in absolute value) impulse response coefficient
(Pauwels and Hanssens 2007; Srinivasan et al. 2010).

An approach to identify the shocks of a VAR model is to use orthogonal
impulse responses where the basic idea is to decompose the variance-covariance
matrix so that Σ¼PP0, where PP is a lower triangular matrix with positive diagonal
elements, which is often obtained by a Cholesky decomposition. Note that the
output of the Cholesky decomposition is a lower triangular matrix so that the
variable in the first row will never be sensitive to a contemporaneous shock of any
other variable and the last variable in the system will be sensitive to shocks of all
other variables. Therefore, the results of orthogonal impulse response analysis
might be sensitive to the order of the variables and it is advised to estimate the
VAR model with different orders to see how strongly the resulting IRFs are
affected by ordering.

Generalized IRFs (GIRF) can be obtained with the simultaneous-shocking
approach (Evans and Wells 1983; Dekimpe and Hanssens 1999), in which the
information in the residual variance-covariance matrix of Eq. (7) is used to derive
a vector of expected instantaneous shock values. The advantage of this approach
is that it does not require selecting a temporal ordering among the variables of
interest. Standard errors are subsequently derived using the Monte Carlo simu-
lation approach with 250 runs in each case (see Horváth et al. 2005). The GIRF
estimates, given a one-unit shock to variable I, the expected value for shocks
occurring simultaneously to the other variables j (i 6¼j) and is shown in Eq. (12)
below:

E u j j ui ¼ 1
� � ¼ σij=σii; with σij; σii elements of Σ ð12Þ

(from Eq. 7).
As explained in Dekimpe and Hanssens (1999) and Nijs et al. (2001), we can now

calculate generalized IRFs (GIRFs), which do not depend on a causal ordering.
When the causal ordering is clear (e.g., retail prices that cannot be changed by
manufacturers for weeks; Leeflang and Wittink 1996), GIRFs lead to the same
inferences as IRFs. GIRFs are particularly important when prior theory or observa-
tion does not suggest a clear causal ordering, e.g., among different marketing
actions, competitors, or online customer actions (e.g., DeHaan et al. 2016), and
typically most marketing papers tend to use GIRFs.
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Dynamic Multipliers

The marginal impact of changes in the exogenous variables can be investigated with
the help of dynamic multiplier analysis. For example, if the exogenous variables are
marketing actions, such as promotional display or feature variables, the conse-
quences of changes in these actions can be analyzed (if they are endogenous we
apply impulse response analysis described earlier). VAR models with exogenous
variables (i.e., VARX) as shown in Eqs. (6) and (7) can be expressed in the following
way:

B Lð ÞYt ¼ Aþ C Lð ÞXt þ ut, t ¼ 1, . . . , T ð13Þ
where Xt is an h-dimensional vector of exogenous variables and C(L) is a matrix
polynomial with lag operator L: C(L)¼ C0� C1L� C2L

2� ...– CSL
S and Ci are h� k

coefficient matrices, i ¼ 0, .., S. The model is referred to as a VARX (P,S) process. If
ut is an MA(Q) process the model becomes a VARMAX (P,S,Q) process.

Dynamic multiplier analysis can be used for policy simulation. For instance, a
brand manager may want to know about the consequences of an increase in pro-
motions of its brand over time. Or, the effects of changes in exogenous variables that
are not under control of any decision maker may be of interest (see Horvath 2003).
The dynamic effects of exogenous variables on the endogenous variables are
captured by the dynamic multipliers (Lütkepohl 1993, p. 338):

D Lð Þ ¼
X1
i¼0

DiL
i ¼ B Lð Þ�1C Lð Þ ð14Þ

where B(L) and C(L) are defined in Eq. (13). From this representation, the response
of Yi,t+τ to a unit change in Xjt can easily be obtained:

@Yi,tþτ

@X j,t
¼ dij,τ, t ¼ 1 . . . :τ ð15Þ

where δij,τ is the row ith, column jth element of the h�kmatrix of coefficientsDτ, the
coefficient matrix of the τ-th lag in Eq. (14), τ ¼ 0,...,1.

Granger Causality Tests: Do We Need to Model a Dynamic
System?

Granger causality implies that knowing the history of a variable X helps explain a
variable Y, beyond Y’s own history. This temporal causality is the closest proxy
for causality that can be gained from studying the time series of variables (i.e., in
the absence of manipulating causality in controlled experiments). Granger cau-
sality tests, for instance, allow the testing of the traditional market response
assumption that brand performance is driven by marketing actions. Srinivasan
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et al. (2010) use Granger causality tests to assess whether marketing performance
could be driven by past performance, by own and competitive mindset metrics,
and by own and competitive marketing actions. Franses (1998) notes that not
accounting for this marketing endogeneity may lead to substantially wrong
conclusions about marketing effectiveness. Unfortunately, marketing (and eco-
nomic) theory is typically insufficient to correct a priori specification of such
models, and their identification thus requires “incredible identifying restrictions”
to which Sims (1980) objected. In the absence of strong theoretic rationale to
exclude specific directions of causality, he prefers to establish them empirically
using the available data (see Pauwels 2018).

Specifically, one can test for the presence of endogeneity among all variables with
Granger causality tests (Granger 1969). As Pauwels (2018) insightfully notes “tem-
poral causality” is the closest proxy for causality that can be gained from studying
the time series of the variables (i.e., in the absence of manipulating causality in
controlled experiments). In other words, a variable x Granger causes a variable y if
knowing the past of x improves the forecast for y based on only the past of y.
Formally, x Granger causes y if, at the 5% significance level:

MSFE ytjyt�1, . . . , yt�k, xt�1, . . . , xt�mð Þ < MSFE ytjyt�1, . . . , yt�kð Þ ð16Þ
with MSFE ¼ mean squared forecast error and k and m the maximum lags for y and x.
An important caveat is that Granger causality tests are pairwise, i.e., they can indicate
variable x is Granger causing ywhile instead they are both being driven (x earlier than y)
by a third variable z. Accordingly, the researcher should develop a full understanding of
the web of Granger causality and how performance can be affected.

Several marketing papers have applied Granger Causality tests to assess the issue
of temporal causality.
Hanssens (1980) applied Granger Causality tests to sort out patterns of competitive
interactions in the airline industry. Trusov et al. (2009) find that offline events
organized by a large social media company increased the number of online friend
referrals they received. Therefore, these organized events had a higher total ROI than
would be calculated from their direct performance effects. Srinivasan et al. (2010), in
their Granger-causality tests, show that marketing actions and mind-set metrics more
often Granger-cause sales than vice versa. Awareness, consideration, and liking
Granger-cause sales for, respectively, 73%, 71%, and 63% of all brands, and sales
Granger-causes the mind-set metrics for, respectively, 52%, 60%, and 51% of all
brands. Recently, Kireyev et al. (2016) find that display impressions Granger cause
Search Impressions and Search Clicks.

Granger Causality tests are useful to assess whether managers react to market
performance when deciding on marketing actions. As Pauwels (2018) notes the
feedback could be from actions to performance and vice versa since high sales may
induce marketing spending (e.g., sales may Granger cause advertising) and low sales
may induce management to take course corrections by changing marketing spending
(e.g., low sales may Granger cause price promotions). Horváth et al. (2005) consider
the relative importance of such feedback in their model. Overall, Granger Causality
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has been used extensively in time-series applications in marketing to shed light on
the direction of causality, as outlined above.

Forecast Error Variance Decomposition (FEVD)

Based on the VARX parameters, researchers also obtained the Forecast Error
Variance Decomposition (FEVD) estimates to investigate whether, for example,
own and competitive actions explain brand sales performance beyond the impact
of past brand sales performance. FEVD quantifies the dynamic explanatory value on
performance of each endogenous variable. Akin to a “dynamic R2,” the FEVD
provides a measure of the relative impact over time of shocks initiated by each of
the individual endogenous variables in a VARX model (Pesaran and Shin 1998; Nijs
et al. 2007).

The idea behind FEVD is to stimulate a “typical” shock on the fully estimated
system, realize a forecast up to a chosen horizon, and then decompose the variance of
the forecast error. The “typical” shock is simulated on the residuals which are
contemporaneously correlated. As a result, the impact of a simulated shock is likely
to incorporate the degree of correlation between the error terms. Therefore, the
influence of a shock cannot be completely attributable to a precisely defined variable
of the model. Cholesky orthogonalization of the error terms offers a way to over-
come this problem by rewriting the system to impose a causal ordering. The
procedure is however sensitive to the way in which variables enter the system.
The first variable in the model is allowed to affect all the variables whereas the
second variable affects all the variables except the first one, and so on. This is
equivalent to imposing a hierarchy of effects to aid FEVD interpretation. I refer the
interested reader to Valenti et al. (2020) who perform a Cholesky FEVD to inves-
tigate advertising’s hierarchy of effects by imposing a causal structure to advertising
and intermediate factors.

The Generalized Forecast Error Variance Decomposition (GFEVD) is order-
invariant like the GIRFs are and can be derived using the following equation:

θgij nð Þ ¼
Pn

l¼0 ψg
ij lð Þ

� �2

Pn
l¼0

Pm
j¼0 ψg

ij lð Þ
� �2

, i, j ¼ 1, . . . ,m: ð17Þ

where ψg
ij lð Þ is the value of a Generalized Impulse Response Function (GIRF)

following a one-unit shock to variable i on variable j at time l (Pesaran and Shin
1998). In GFEVD an initial shock can (but need not, depending on the size of the
corresponding residual correlation) affect all other endogenous variables instanta-
neously. This has been applied in a marketing setting by Nijs et al. (2007). Impor-
tantly, the GFEVD attributes 100% of the forecast error variance in performance to
either (1) the past values of the other endogenous variables or (2) the past of
performance itself. The former (e.g., does a past change in awareness drives current
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sales) is much more managerially and conceptually interesting than the latter (a past
change in sales drives current sales, but we do not know what induced that past
change in sales). One can assess the dynamic explanatory value of the marketing and
competitive marketing by the extent to which they increase the sales forecast error
variance explained by the potential drivers of sales, and thus reduce the percentage
explained by past sales. The relative importance of the drivers established is typi-
cally based on the GFEVD values at 6 months, which reduces sensitivity to short-
term fluctuations. Studies have shown that a period of 26 weeks (6 months) is
sufficient for stationary series in consumer-packaged goods to capture dynamic
effects (Pauwels and Srinivasan 2004; Srinivasan et al. 2004).

To evaluate the accuracy of the GFEVD estimates, standard errors can be
obtained using Monte Carlo simulations (see Benkwitz et al. 2001). While
GFEVD is the appropriate method to assess the dynamic R-squared, it does come
at a cost: it only allows comparable analyses of brands with stationary variables
because the variance for evolving variables is (theoretically) infinite (Pesaran and
Shin 1998; Srinivasan et al. 2008).

(Generalized) Forecast Error Variance Decomposition always sums up to
100%, with typically the own past of the focal variable, explaining most of its
variance. In some marketing applications, the % of “inertia” is of special impor-
tance, e.g., indicating price inertia in Nijs et al. (2007) and Srinivasan et al.
(2008). In most others though, it is the least interesting of % categories, and thus
gets reduced from the 100% to yield the % of performance explained by the other
groups of variables. For instance, Srinivasan et al. (2010) show how adding
mindset metrics improves the % of the GFEVD not explained by own past
performance, while Srinivasan et al. (2016) and Colicev et al. (2018) show how
adding online behavior metrics (owned, earned, and paid) does the same in a
multichannel context.

Turning to the applicability of VAR models, researchers have successfully
applied VAR models to a variety of datasets, including annual observations (e.g.,
Baghestani 1991), decades of quarterly observations (e.g., Pauwels et al. 2004),
several years of weekly observations (e.g., Srinivasan et al. 2010), and a number of
months of daily observations (e.g., Colicev et al. 2018). VAR models require an
adequate number of degrees of freedom to provide reliable estimates (e.g., Colicev
and Pauwels 2020). A rule of thumb is to have at least five observations per
parameter (Leeflang et al. 2015), which practically translates into a minimum of
about 50 time periods (e.g., 12 years of quarterly data or 5 years of monthly data)
per firm.

Researchers additionally need to consider the sample size and the sampling
frequency. Mitchell and James (2001) provide an overview of how data frequency
can allow or jeopardize how researchers can establish causality among variables. For
example, finance and marketing fields often deal with weekly, daily, and hourly data.
Tellis and Franses (2006), in the context of the duration of advertising carryover
effect on sales, argue that the optimal data interval for researchers to collect data is
the unit exposure time. For example, if firms change pricing strategies once a quarter,
the quarterly level data is appropriate for studying the impact of pricing changes.
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Colicev and Pauwels (2020) advocate that the best approach would be to measure the
variables as frequently as possible.

Finally, when the time-series data is available over an extended period, the
variables may exhibit time-varying volatility, i.e., periods of swings interspersed
with periods of relative calm. ARCH-type models are appropriate to investigate this
explicitly, given that they model the variance of the current error term as a function
of the size of previous error terms (see Colicev and Pauwels 2020 for a good
discussion on this topic).

Software Programs for VAR Estimation

Modern time series packages are included in software as Stata, Matlab, Gauss, and
R. Dedicated software packages include Time Series Processor (TSP), OX/PcGive,
Eviews, and RATS. Stata is the most commonly used while Matlab has embedded
functions not available in Stata, but requires more coding. R is versatile in its time
series functions while TSP and RATS are dedicated to time series. Eviews and
OX/PcGive provide an easy-to-use interface with click-and-find program options.
Moreover, Eviews has the most typical VAR option as the default in its software and
offers regular updates, adding the state-of-the-art tests and deleting less relevant
ones. Its student version is a low-cost option to get started for a novice. I refer the
interested reader to Colicev and Pauwels (2020) who employ a dataset, which
combines public social media data from Facebook with corporate reputation data
from a private data source, to illustrate the VAR model by explaining the key
methodological steps needed to estimate and interpret the results through a software
tutorial in R and STATA.

Illustrative Applications of VAR Modeling in Marketing

Empirical work using VAR models has expanded and is now part of the mainstream
in marketing applications. Next, I will outline three substantive applications of VAR
models in the following domains: (1) Investor Response Models, (2) Marketing Mix
and Mindset Metrics Models, and (3) Digital Marketing Models.

Investor Response Models in the Marketing-Finance

VAR models are useful in modeling the marketing-finance interface since they use a
system’s representation (e.g., Dekimpe and Hanssens 1995a; Pauwels et al. 2002), in
which each equation tracks the behavior of an important agent; for example, the
consumer (demand equation), the manager (decision rule equations), competition
(competitive reaction equation), and the investor (stock price equation). The long-
run behavior of each endogenous variable is obtained from a shock-initiated chain
reaction across the equations. For instance, a successful new-product introduction
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will generate higher revenue, which may prompt the manufacturer to reduce sales
promotions in subsequent periods. The combination of increased sales and higher
margins may improve earnings and ultimately stock price. Because of such chains of
events, the full performance implications of the initial product introduction may
extend well beyond its immediate effects. As an example, a persistence model
estimated as a vector autoregressive model (VAR) in differences can be specified
for each brand (two in the illustration) of firm i, as follows:
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with Bn, Γ vectors of coefficients, [uMBRit, uINCit, uREVit, uMKT1t, uMKT2t]’ ~N(0,Σu),
N the order of the system based on Schwartz’ Bayes Information Criterion (SBIC),
and all variables expressed in logarithms or their changes (Δ). In this system, the first
equation is an expanded version of the stock-return response model (Srinivasan and
Hanssens 2009a, b). The second and third equations explain the changes in, respec-
tively, bottom-line (INC) and top-line financial performance (REV) of firm i. The
fourth and fifth equations represent firm’s marketing actions (e.g., for each brand),
i.e., (MKT1t) and (MKT2t). For example, Pauwels et al. (2004) considered a brand’s
new-product introductions and sales promotions. The exogenous variables in this
dynamic system (X1t, X2t, X3I.) could include controls such as the Carhart four factors
and the impact of stock-market analyst earnings expectations. The impact of con-
temporaneous shocks is incorporated through the elements of Σu. As described
earlier, such models provide baseline forecasts of each endogenous variable, along
with estimates of the shock or surprise component in each variable.

Several applications of the VAR model exist in the marketing-finance domain.
Pauwels et al. (2004) assess investor reactions to auto companies’ new product
introductions with price promotions to find that new product introductions have a
gradually increasing influence on stock price, all else being equal, while price
promotions generally lower firm value, even though they may successfully stimulate
sales. Thus, investors view new product activity as generating long-term value and
promotions as destroying long-term value. They show that investors in the automo-
tive industry need about 6 weeks to fully incorporate the impact of a new-product
introduction on stock returns. Joshi and Hanssens (2010) have found that advertising
in the PC industry has a small but positive long-term effect on stock prices, again
after controlling for advertising’s direct impact on sales and profits.

In a recent application of VARX models to the marketing-finance interface,
Colicev et al. (2018) examine the effects of owned and earned social media on
brand awareness, purchase intent, and customer satisfaction and link these consumer
mindset metrics to shareholder value metrics including abnormal returns and idio-
syncratic risk. Analyzing daily data for 45 brands in 21 sectors using vector
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autoregression models, they find that brand fan following improves customer
mindset metrics, and that purchase intent and customer satisfaction positively affect
shareholder value. This chapter represents an application of VAR modeling that
combines mindset metrics with the marketing-finance interface.

When authors want to combine the results from multiple entities (e.g., firms)
together and provide an overall picture of the analysis, Panel Vector Autoregression
(PVAR) specifications are useful (e.g., Holtz-Eakin et al. 1988). Kang et al. (2016)
use a structural panel VAR to show that corporate social responsibility actions are
not driven by slack resources, but by an (only partially successful) attempt to make
up for past social irresponsibility.

Marketing and Mindset Metrics Models

Papers in this stream research the question of whether it is useful or not to include
marketing mix actions and customers mindset metrics into one overall model to
explain brand performance. Specific questions addressed include: (1) Does the
addition of mindset metrics to a sales model that already includes marketing mix
actions enhance explanatory power? (2) And, if so, does this inclusion help in
understanding how marketing actions drive sales? Using a 4-weekly data set with
comprehensive information on performance metrics, marketing mix, and mindset
metrics for over 60 brands in four fast-moving consumer goods categories over a
period of 7 years, Srinivasan et al. (2010) estimate Vector Autoregressive (VARX)
models to find that addition of mindset metrics to a sales model that already includes
marketing mix significantly enhances explanatory power in predicting brand sales.

In a recent application, Valenti et al. (2020) examine where there is a dominant
hierarchical sequence on how advertising influences purchases, given that it changes
how consumers think and feel about brands. While the Hierarchy of Effects (HoE)
model has guided advertising decisions for decades, there is little support for any
hierarchy, thus suggesting the death of HoE. To answer the question of whether a
hierarchical sequence holds for advertising effects, they undertake a large-scale
VAR-based econometric analysis in which they compare 13 alternative hierarchies,
each in two different versions (correlated and orthogonal errors), leading to
26 models proposed in previous literature. These hierarchies come in three types:
The Classical HoE, a Simultaneous HoE (based on Vakratsas and Ambler 1999), and
an Integrated HoE (based on Bruce et al. 2012). They estimate the corresponding
models (involving restrictions on the VAR parameters depending on the sequence)
for the top brands over 150 brands in different consumer packaged goods categories
to find that the death of the HoE has been greatly exaggerated. They find that the
Integrated HoE sequence fits better than any alternative. The sequence of the
hierarchy differs by brand, with Affect!Cognition!Experience being the most
common, and they identify moderators of the sequence including brand and category
characteristics. This chapter offers important findings for brand managers, especially
as it counters a prevailing belief in the advertising literature that there exists little
support for a hierarchical sequence.
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Digital Marketing Models

With the growth of digital marketing, there is considerable interest in examining the
impact of offline and online marketing on market performance, and their interactions
among each other. Srinivasan et al. (2016) quantify the role of online consumer
activity measured by paid, owned, earned, and unearned media metrics in driving
sales within the context of traditional marketing mix variables price, distribution,
and advertising. Based on the Vector Autoregressive (VAR) model, they derive
Generalized Forecast Error Variance Decompositions (GFEVD) and Generalized
Impulse Response Functions (GIRF) to quantify the elasticity and relative influence
of consumer activity and traditional marketing mix actions on sales for a consumer-
packaged good product. Beyond establishing online consumer activity metrics as
leading sales indicators, their study also shows that even small changes to online
engagement metrics can lead to sales declines. Pauwels and van Ewijk (2013) also
show how adding online behavior metrics (owned, earned, and paid) does the same,
also using VAR models. As a potential wellspring of strategic intelligence, tracking
online consumer activity metrics could prove instrumental in expanding the role of
marketing in corporate decision making in practice.

Consumers are regularly exposed to negative information about brands through
word-of-mouth, news, reviews, and social media. Prior literature on consumers’
response to negative brand information has shown that when more negative infor-
mation is available about a brand, sales are depressed. In contrast, Han et al. (2019)
find that an increase in negative information about a brand may lead to an increase in
brand awareness and purchase intent for the brand. Using 4 years of weekly survey
data tracking customers’ attitudes toward computer and automobile brands, they
estimate VARX models that relate a survey measure of exposure to negative
information about a brand (negative buzz) with brand awareness, positive feeling
toward the brand, and purchase intent for the brand. As expected, for automotive
brands, they find that a shock in negative buzz leads to higher brand awareness and
negative effects on positive feeling and purchase intent. However, for computers,
they find that an increase in negative buzz is followed by increases in awareness,
positive feeling, and purchase intent. This research therefore suggests there are
circumstances when negative buzz should not be suppressed.

Pauwels et al. (2016) have a novel application of Bayesian VARs in a
multichannel (offline/online) setting. Unrestricted estimation of VAR models risks
over-parametrization because the parameter space proliferates with the number of
endogenous variables. In a standard VAR model, a large number of parameters may
produce a good model fit, but still result in multicollinearity and loss of degrees of
freedom, which in turn may lead to inefficient estimates and poor performance in the
impulse-response functions. Bayesian models alleviate such issues thanks to shrinkage,
which imposes restrictions on the parameters of the VAR model. Bayesian Vector
Autoregressive (BVAR) models are formulated in Litterman (1986) and Doan et al.
(1984) but have seen little application in marketing (for an exception see Horvarth and
Fok 2013; Pauwels et al. 2016). Several priors have been used in the econometrics
literature to estimate the Bayesian VAR models, including Minnesota prior and
NormalWishart prior. Pauwels et al. (2016) estimate the BVAR model through the
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“mixed estimation” technique developed by Theil and Goldberger (1961), which
involves supplementing data with prior information on the distributions of the coeffi-
cients. Their results indicate that within-online synergy is higher than online-offline
synergy for familiar brands but not for unfamiliar brands. Managers of unfamiliar brands
may obtain substantial synergy from offline marketing spending, even though its direct
elasticity pales in comparison with that of online media while managers of familiar
brands can generate more synergy by investing in different online media.

Conclusion

Vector-autoregressive models have come a long way in terms of their scope and scale
of applications in marketing, not only because more extensive data sets have become
available, but also because of growing interest in marketing on research (1) that
potentially involve multiple dynamic feedback loops, and (2) where marketing
theory is insufficiently developed to specify a priori all temporal precedence rela-
tionships (Dekimpe and Hanssens 2018). In those instances, the flexibility of VAR
models to capture dynamic inter-relationships, and to quantify the short- and long-
run net effects of the various influences at hand, renders them more appropriate.
Such models allow researchers to obtain the short-run and the long-run impact of
marketing on business performance. Furthermore, VAR models acknowledge and
incorporate the idea that the impact of marketing actions is determined by the
interplay between the responses of consumers, firm, competitors, investors, and
other stakeholders. Given the growth of data availability particularly in digital
settings, the marketing field will see a continued growth of digital applications of
VAR models in the coming years. I hope the current chapter will contribute to a
further adoption and diffusion of these techniques in the marketing community.

Cross-References

▶Applied Time-Series Analysis in Marketing
▶Assessing the Financial Impact of Brand Equity with Short Time-Series Data
▶Return on Media Models
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Abstract

This chapter presents an overview of the process of structural equation modeling,
involving the steps of model specification, model estimation, overall fit evalua-
tion, model respecification, and local fit assessment (including interpreting the
parameters of the model). Various extensions of the core structural equation
model are described to enable more general representations of measurement
and latent variable models as well as applications of the model to heterogeneous
populations. An empirical example is provided to illustrate the process of struc-
tural equation modeling and to demonstrate some of the complexities that may
arise in practical applications.

Keywords

Structural equation modeling · Confirmatory factor analysis · Measurement
models · Path analysis · Multi-sample analysis

Introduction

Only a few decades ago structural equation modeling (SEM) was regarded as an
advanced statistical methodology that was used primarily by academic researchers to
conduct sophisticated measurement analyses or to test the validity of theoretical
models based on empirical data (Bagozzi 1980). Nowadays, SEM is a standard data
analysis method that is employed widely by both academic and industry researchers
(e.g., Chapman and Feit 2019). The success and rapid adoption of SEM is likely due
to the following three reasons. First, SEM allows researchers to take into account
measurement error (both random and systematic) when estimating correlations or
structural relationships between constructs. Since observed measures in practical
applications are usually measured with error, the suspect assumption of perfect
measurement in conventional correlation and regression analysis is circumvented
(see chapter▶ “Regression Analysis” by Skiera, Reiner, and Albers, this volume, for
a discussion of regression analysis). For example, it is unlikely that constructs such
as the quality or value of a product or the satisfaction experienced by a customer can
be measured well with single items, and even when multiple measures of these
constructs are averaged (which corrects for unreliability of measurement to some
extent), this does not provide much insight into the quality of measurement of the
constructs by their measures. Second, researchers are often interested in estimating
and testing models in which the dependence of multiple constructs on different sets
of antecedents is modeled simultaneously and the process through which one
construct influences another is investigated. SEM enables researchers to study
complex conceptual frameworks in an integrative fashion and avoids the piecemeal
testing of chains of effects as in conventional regression analysis. For example, a
researcher may want to investigate both the antecedents of customer satisfaction
such as expectations, perceived quality, and perceived value, and the consequences
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of customer satisfaction such as loyalty and complaints, as well as the mediating role
of satisfaction in this process. Third, researchers who want to study the invariance of
model parameters across discrete populations (e.g., different demographic groups,
industries, or countries) or test hypotheses about specific group differences can
specify models for multiple populations in which both the homogeneity and hetero-
geneity of parameters can be investigated in a straightforward manner.

Although SEM is widely used, it is not always used well. A first goal of this
chapter is to present an overview of the methodology, with special emphasis on
issues that are sometimes misunderstood in applications of the technique (e.g.,
global fit testing). SEM is a rather vibrant research domain, and the core model
has been extended in a variety of ways. A second goal of this chapter is to bring these
developments to the attention of a wider audience and to encourage additional
applications of SEM. Although we will not be able to cover advanced topics in
using SEM in any detail, we will raise several important issues and point interested
readers to the relevant literature. The final goal is to offer an empirical illustration of
many of the issues discussed in this chapter, which will hopefully demonstrate the
power of SEM for data analysis and convince researchers who have not used SEM to
apply it in their own research. The data set used in the illustration and the code
necessary to run the models in R, using the package lavaan (Rosseel 2012) and
various supporting packages, are available for download on Github (https://github.
com/HansBaum129/SEM).

The Core Structural Equation Model and Its Submodels

A full structural equation model consists of two parts: a model specifying the
structural relationships between the substantive variables or constructs of interest
(called the latent variable model because the constructs in one’s model often cannot
be observed and measured directly), and a model specifying the relationships
between the constructs and their hypothesized observed (manifest) measures or
indicators (called the measurement model). We will assume that the latent variable
underlying a set of observed variables is equal to the construct of interest, and we
will therefore use the terms construct and latent variable interchangeably. However,
a researcher should carefully evaluate whether this assumption is justified when a
structural equation model is specified for a particular substantive context. In the
simplest case, the latent variable model is like a regression model (although the
variables in the model are usually unobserved or latent), but in more complex
models, the latent variable model could be comprised of a series of regression
models, one for each construct to be explained in one’s conceptual framework or
theory. If a researcher is willing to assume that a construct is measured perfectly by a
single indicator (where the single indicator could be an average of several observed
measures), then an explicit measurement model is superfluous (i.e., the construct is
identical to the observed measure). However, in many (most) cases, this is a tenuous
assumption, and often (usually) researchers will want to specify a measurement
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model which enables a thorough investigation of the measurement quality of the
indicators of the constructs of interest.

Two types of measurement models can be formulated (e.g., MacKenzie et al.
2011). In a reflective measurement model, the observed variables (effect indicators)
are specified as a function of (and thus a reflection of) hypothesized latent variables,
which presumably represent the substantive variables the researcher is interested in.
For example, a customer’s satisfaction with a product may be measured with
semantic differential scales such as satisfied-dissatisfied or happy-sad and these
observed measures are assumed to be (fallible) reflections of respondents’ satisfac-
tion. In a formative measurement model, the observed variables (cause indicators)
are specified as determinants of hypothesized latent variables, which means that
constructs are formed by their indicators. For example, a customer’s satisfaction with
a service may depend on the friendliness, knowledgeability, and responsiveness of
the sales staff and these service attributes are all assumed to contribute to a respon-
dent’s overall satisfaction. In general, a formatively measured construct is not
completely captured by its indicators (i.e., the construct is measured with error),
but sometimes it is assumed that the formative construct is equal to a linear
combination of its indicators; Bollen (2011) refers to the two types of indicators as
cause and composite indicators, respectively.

Formative indicators are frequently misspecified as reflective indicators (Jarvis
et al. 2003; MacKenzie et al. 2005), and such measurement model misspecifications
can have various negative consequences (see Diamantopoulos et al. 2008 for a
summary). Indicators should therefore be evaluated carefully before a reflective
measurement model is specified (usually almost by default). Jarvis et al. (2003)
and MacKenzie et al. (2005) recommend that researchers ask themselves the fol-
lowing four questions about each indicator: Is the indicator a manifestation of the
underlying construct (rather than a defining characteristic of it)? Is a given indicator
conceptually interchangeable with the other indicators of the same construct? Will
the indicators of the construct necessarily covary? And does each indicator have the
same antecedents and consequences as the other indicators of the same construct? If
the answer to these questions is yes, the measurement model is reflective; if the
answer is no, it is formative. Although formative indicators should not be mis-
specified as being reflective (Rhemtulla et al. 2020), it is difficult to recommend
formative measurement models for general use because they give rise to many
difficult problems (see the recent discussion in Baumgartner and Weijters 2019).
Since formative measures can sometimes be reformulated to make them reflective, it
might be preferable to ensure that the measures used are truly reflective, rather than
specifying a formative measurement model. Alternatively, the presumed formative
indicators can be specified as (possibly errorful) determinants of the overall (forma-
tive) construct, although the construct has to be directly measured by reflective
indicators in this case. In the sequel, we will focus on reflective measurement
models, but we will briefly return to the difference between reflective and formative
measurement models when discussing how to assess the quality of construct
measurement.
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Formally, a structural equation model can be specified as follows:

η5Bηþ Γξ þ ς ð1Þ
y5Λyηþ « ð2Þ
x5Λxξ þ δ ð3Þ

Equation (1) is the latent variable model in which the vector η (eta) contains the
endogenous constructs (i.e., constructs that are functions of other constructs in the
proposed model) and the vector ξ (ksi) contains the exogenous constructs (i.e.,
constructs that are not affected by other constructs in the model). The matrix B
(Beta) contains the coefficients representing the effects of endogenous on other
endogenous constructs (i.e., βij is the effect of ηj on ηi, and the diagonals of this
matrix are zero since a variable cannot influence itself); the matrix Γ (Gamma)
contains the coefficients representing the effects of exogenous on endogenous
constructs (i.e., γij is the effect of ξj on ηi). The vector ς (zeta) contains the errors
in equations (structural disturbances) associated with each endogenous construct.
If B is subdiagonal (i.e., all the coefficients above and on the diagonal are zero) and
the error terms in ς are pairwise uncorrelated, the model is called recursive. In a
recursive model, there are no reciprocal effects between the endogenous constructs
and no feedback loops from one endogenous construct to itself, and the errors in
equations are uncorrelated (i.e., there are no unobserved variables causing the
endogenous variables to be correlated). Most structural models encountered in
practice are recursive models, although they are often not realistic representations
of reality.

Equations (2) and (3) are the measurement models (confirmatory factor
models) for the endogenous (η) and exogenous (ξ) constructs, respectively; y is
a vector containing the (mean-centered) measures of the endogenous constructs,
and x is a vector containing the (mean-centered) measures of the exogenous
constructs. The coefficients expressing the effects of the endogenous and exog-
enous constructs on their observed measures (called factor loadings) are
contained in the matrices Λy and Λx (Lambda-y and Lambda-x), respectively.
The vectors ε (epsilon) and δ (delta) contain the unique factors (measurement
errors) corresponding to the observed measures. The variance-covariance matri-
ces of ξ, ε, and δ are called Φ (Phi), Θε (Theta-epsilon) and Θδ (Theta-delta),
respectively. We will not discuss the model assumptions in detail, but it is
important that ς, ε, and δ are uncorrelated with η and ξ.

If only a single measure is available for each construct (or multiple measures are
averaged to form a single composite) and measurement error in observed variables is
ignored, Eqs. (2) and (3) are not needed and the analysis is based on Eq. (1); this is
the conventional econometric simultaneous equation model. If a researcher is only
interested in conducting a measurement analysis, Eq. (3) is sufficient.

Many different measurement models can be specified, depending on whether an
observed variable is allowed to load on multiple constructs, whether method factors
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are considered in addition to the substantive factors (as in multi-trait multi-method
analyses), and whether measurement errors (unique factors) are specified to be
correlated or uncorrelated (so-called correlated uniquenesses). Usually (at least in
the first step), each observed measure is hypothesized to load on a single latent
variable (the so-called target factor, which is thought to represent the substantive
construct of interest), and while the variances of the unique factors are allowed to
differ across observed measures, all unique factors are specified to be pairwise
uncorrelated. This is called a congeneric factor model.

The model specification in Eqs. (1) to (3) is very general, but if the model
parameters are to be unique, it is necessary to impose some restrictions on the
model (i.e., a researcher has to make sure that the model is identified). Identifica-
tion rules for structural equation models in general do not exist, but some guide-
lines can be offered. First, a necessary condition for a model to be identified is that
the number of free model parameter not be greater than the number of distinct
elements in the variance-covariance matrix of the observed variables. If this is the
case, the degrees of freedom of the model will be nonnegative. Second, it is useful
to break down model identification into two parts. In the first step, ignore the
specific structural specification expressed by Eq. (1) and consider a (congeneric)
measurement model for all the constructs and observed measures, in which the
constructs are freely correlated. If there are no directed relationships between the
constructs, all constructs can be treated as exogenous constructs and the measure-
ment model can be specified using Eq. (3). Since all the variables on the right-hand
side of Eq. (3) are latent, the scale in which each construct in ξ is measured has to
specified; this can be done by setting either the loading of one observed measure
per construct or the variance of each construct in ξ to one. If there are at least two
indicators per construct, a (congeneric) measurement model with at least two
correlated factors is identified. If a construct is measured by a single indicator,
the variance of the unique factor corresponding to this indicator has to be set to
zero (or another assumed value). If there are at least three indicators per construct,
the constructs do not have to be correlated, and when a construct is measured by at
least four indicators, even a single-factor model is overidentified (i.e., the model
has a positive number of degrees of freedom, which implies that the fit of the model
to data can be tested).

In the second step, once the measurement model has been shown to be identified,
the identification status of the structural specification of interest should be checked.
Recursive models (see the earlier discussion) are known to be identified, but
demonstrating identification for more complex models (e.g., by using the rank
rule) is more difficult. Frequently, researchers rely on empirical identification strat-
egies, which basically means that they trust that the computer program used for
estimation will issue a warning when a model is not identified.

Figure 1 is a graphical depiction of the SEM model that will be used later in the
chapter to illustrate the process of structural equation modeling. The model repre-
sents the core constructs in the so-called Technology Acceptance Model (TAM)
(Davis 1989) and consists of two endogenous latent variables (or etas), perceived
usefulness (PU) and behavioral intention to use the new technology (BI), and one
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exogenous construct (or ksi), perceived ease of use (PEOU). By convention, latent
variables of substantive interest are shown as ellipses (or circles). Directed arrows
show causal effects, so the model assumes that PU is caused by PEOU (the strength
of this relationship is expressed by γ11) and BI is caused by PEOU and PU (the
strength of these relationships is expressed by γ21 and β21, respectively). PEOU is
not expected to account for all the variation in PU, and PEOU and PU are not
expected to account for all the variation in BI, so errors in equations (structural
disturbances) are associated with each endogenous variable; the variances of these
errors (zetas) are called psis and are shown as double-headed arrows. Since the
structural errors are not connected with two-headed arrows (which can refer to either
variances or covariances), it means that they are specified to be uncorrelated. This is
a highly restrictive (and unrealistic) assumption, since it implies that there are no
other unobserved variables that may cause PU and BI to be correlated. Unfortu-
nately, a model with correlated structural errors is not identified in the present case
since the latent variable model is saturated (see below), so the assumption cannot be
relaxed. Because there are no feedback loops (as in PEOU! PU! BI! PEOU) or
reciprocal relationships (e.g., PU ⇄ BI), and since the errors in equations are
uncorrelated (i.e., there is no double-headed arrow between ζ1 and ζ2), the model
is recursive.

PEOU and PU are each measured by four indicators (PEOU1-PEOU4 and PU1-
PU4), and BI is measured by two indicators (BI1-BI2). By convention, observed
measures are shown as rectangles or squares. The strength of the relationships
between the latent variables and their indicators is given by the lambdas (λij),
which are the factor loadings. Associated with each observed variable is a unique
factor (or error of measurement), either epsilon or delta, and the variances of the
unique factors are called thetas (again indicated by double-headed arrows). All
unique factors are pairwise uncorrelated.

The graphical model specification shown in Fig. 1 is equivalent to the algebraic
model formulation shown in Table 1. There are two latent model equations
corresponding to the two endogenous latent variables (PU and BI) and 10 measure-
ment equations corresponding to the 10 observed variables.

Since the latent variable model is saturated, the model in Fig. 1 is equivalent to a
confirmatory factor model in which PEOU, PU, and BI are freely correlated. Each

Fig. 1 Illustrative structural equation model
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observed variable loads on a single factor and the unique factors are uncorrelated, so
the confirmatory factor (or measurement) model is congeneric. For identification,
one loading per factor (e.g., λx11, λ

y
11, and λ

y
52) has to be constrained to one, or the factor

variances have to be set to unity. In a confirmatory factor model, it is best to set the factor
variances to one because this yields significance tests and readily interpretable
factor loadings for all indicators, and the factor covariances are actually correlations;
in a full structural equation model, the variances of PU and BI are functions of other
model parameters, so it is better to set one loading per factor to one. Since all constructs
are measured with at least two indicators and the measurement model is congeneric, the
confirmatory factor model is identified as long as the correlation of BI with the other
constructs is nonzero. The latent variable model is also identified because it is a recursive
model (i.e., there are no feedback loops or reciprocal effects between PEOU, PU, and
BI, and the covariance between the structural disturbances ζ1 and ζ2 is zero). The
variance-covariance matrix of the 10 observed variables consists of 55 distinct elements
(10� 11/2¼ 55, i.e., 10 variances and 45 covariances), and since the model in Fig. 1 (or
Table 1) contains 23 free parameters (7 loadings, 10 unique factor variances, the
variance of PEOU, three structural coefficients, and 2 structural disturbance variances),
the model is overidentified with 32 degrees of freedom.

Model Estimation

The goal of estimation is to find values for all model parameters such that the
variance-covariance matrix implied by the estimated parameters is as close as
possible to the sample variance-covariance matrix. Structural equation models are

Table 1 Algebraic formulation of the model in Fig. 1

Latent variable model:

PU ¼ γ11PEOU + ς1
BI ¼ β21PU + γ21PEOU + ς2

with VAR(PEOU) ¼ φ11, VAR(ζ1) ¼ ψ11, VAR(ζ2) ¼ ψ22, and COV(ζ1, ζ2) ¼ 0.

Measurement model:

PEOU4 ¼ PEOU + δ1
PEOU1 ¼ λx21PEOUþ δ2
PEOU2 ¼ λx31PEOUþ δ3
PEOU3 ¼ λx41PEOUþ δ4
PU4 ¼ PU + ε1
PU1 ¼ λy21PUþ ε2
PU2 ¼ λy31PUþ ε3
PU3 ¼ λy41PUþ ε4
BI1 ¼ BI + ε5
BI2 ¼ λy62BIþ ε6

with VAR δið Þ ¼ θxii, VAR εið Þ ¼ θyii, and all δi, εi, and ζi mutually uncorrelated. All observed and
latent variables are assumed to be mean-centered, so intercepts are not included in the model
specification.
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usually estimated using the maximum likelihood (ML) method under the assumption
that the observations are sampled independently from an underlying multivariate
normal distribution. Before estimating the model, a researcher should ascertain that
the assumption of multivariate normality is not too badly violated by graphically
examining the data (e.g., checking the symmetry of the variable distributions via
histograms, doing normal probability plots, etc.) and computing statistics such as
skewness and kurtosis (both univariate and multivariate), and possibly conducting
formal tests of normality. In order for normality to hold, the variables have to be
continuous, which is rarely the case, so the hope is that the results based on ML will
be robust to (moderate) violations of underlying assumptions. Although estimation
procedures are available that do not require normality (e.g., so-called asymptotically
distribution-free procedures), they have been shown not to perform well unless the
sample size is very large. There are also estimation procedures that lessen the
influence of unusual observations (outliers), but these are not used very often.
Structural equation models can also be estimated using partial least squares (PLS)
estimation, but we will not discuss PLS estimation in this chapter because it is based
on a different statistical model; the reader is referred to the chapter ▶ “Partial Least
Squares Structural Equation Modeling” by Sarstedt, Ringle, and Hair (this volume).

In theory (i.e., when the underlying assumptions are satisfied), ML estimation is
attractive because the ML estimator is consistent, asymptotically unbiased, asymp-
totically efficient, and asymptotically normally distributed. In practice, the param-
eter estimates themselves tend to be reasonably robust (close to the true
parameters, at least in simulations), but this robustness does not hold for the overall
test of model fit and the estimates of the standard errors of the parameters, which
are needed for the statistical tests conducted on individual parameters or sets of
parameters. Possible solutions to this problem are discussed below in the context of
model testing.

Since the desirable properties of the ML estimator only hold asymptotically, the
question arises how large the sample size should be so that one can have confidence
in the estimates and statistical tests. Few reliable guidelines are available. Existing
sample size recommendations are based on rules of thumb such as the sample size
should be at least 200, there should be at least 5–10 observations per estimated
parameter, or at least 10 cases should be available per observed variable (see Muthén
and Muthén 2002 and Wolf et al. 2013 for references). Since there is no magic cutoff
above which the desirable properties of ML suddenly kick in, the usefulness of these
rules of thumb may be questioned. Furthermore, research has shown that the
required sample size depends on a host of factors, including the number of observed
and latent variables, the distribution of the observed variables, the reliability of the
measures, the strength of the relationships between the latent variables, the type of
model (CFA models vs. models with a latent variable specification), and the amount
of missing data (Muthén and Muthén 2002; Wolf et al. 2013). Finally, the required
sample size depends on the magnitude of the bias in parameter and standard error
estimates that the researcher is willing to tolerate, the desired accuracy of the
coverage rate of confidence intervals (how often, say, a 95% confidence interval
includes the true parameter value), and the power for detecting specific effects or sets
of effects that the researcher wants to achieve.
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Instead of relying on questionable rules of thumb, a researcher can use a Monte
Carlo analysis to determine the required power. To provide a specific example,
consider the model in Fig. 1. Assume that each indicator has a reliability of 0.64
(i.e., with standardized observed variables, all loadings are 0.80), and the standard-
ized path coefficients between PEOU and PU, PEOU and BI, and PU and BI are all
0.5. Thus, the amounts of variance explained in PU and BI are 25% and 75%,
respectively. To conduct the analysis, a large number of samples of a given size is
generated from the assumed population, for each data set the model is estimated, and
the performance of the estimator at a given sample size is assessed. Specifically,
Muthén and Muthén (2002) and Wolf et al. (2013) propose the following two-step
procedure for determining sample size. First, the bias of both the parameter and
standard error estimates should not exceed a certain percentage (e.g., the ratio of the
value estimated for a given sample minus the population value over the population
value should be within, say, 5% of the true value on average). In addition, the 95%
confidence interval should include the true value in, say, at least 90% of the
replications. Second, the estimated power for the parameter(s) of interest should
be, say, at least 80% (i.e., the estimated parameter should be significant in at least
80% of samples). For the illustration, we used Mplus to conduct an analysis for
10,000 replications (the results are available on Github). Even at a sample size of
only 100, most parameters had little bias (with the exception of the effects of PEOU
and PU on BI, as well as the indirect effect). The same was true for standard error
bias. The minimum coverage accuracy was 0.929, and power was at least 95%. At a
sample size of 200, bias, coverage, and power were at acceptable levels for all
parameters.

Two problems may arise during the estimation of the model. First, the estimation
procedure may fail to converge within a given number of iterations or within a given
time limit. For example, in the sample size simulation, the nonconvergence rate was
0.33% at a sample size of 100. Second, even if the estimation does converge, the
solution may not be admissible. For example, estimated correlations may be greater
than one in absolute magnitude or variance estimates may be negative. The causes of
both problems include poorly specified models, few observed indicators per factor,
small sample sizes, and bad starting values. It is possible to constrain questionable
parameters so that inadmissible estimates are impossible, but this may lead to
nonconvergence. Another possibility is to fix inadmissible estimates to a certain
value (e.g., +1 or�1 for correlations that exceed 1 in absolute value or 0 for negative
variance estimates); this may be defensible when the confidence interval about the
estimated parameter includes the boundary of the parameter space (+1 or �1 for
correlations, 0 for negative variance estimates).

Testing the Global Fit of Models

When a model is overidentified (i.e., when the degrees of freedom are positive), the
fit of the model to data can be tested with a chi-square goodness-of-fit test. The null
hypothesis for the test is that the model fits perfectly, whereas the alternative
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hypothesis is that the fit is less than perfect (i.e., the model fits less well than the
saturated model with zero degrees of freedom). The test statistic (which we will call
TML in the case of maximum likelihood estimation based on the multivariate normal
distribution) is compared to the critical value of a reference distribution (e.g., a chi-
square distribution with df degrees of freedom), and if TML exceeds the critical
value, the null hypothesis of perfect fit is rejected. The test assumes that (a) the
assumptions on which the chosen estimation procedure is based are satisfied (e.g., in
the case of maximum likelihood, it is assumed that the observations are indepen-
dently and identically distributed and are sampled from a multivariate normal
distribution) and (b) the sample size is large (because the test is only asymptotically
valid). In practice, the chi-square test may not be useful because (a) it is not robust to
violations of the underlying assumptions; (b) it requires a large sample size and the
available sample may not be large enough to yield a trustworthy test; and, maybe
most importantly, (c) the null hypothesis assumes that the specified model fits
perfectly in the population, which is likely not a realistic assumption since most
models are at best only approximately true. If the model is only an approximation, a
large enough sample will invariably lead to the decision that the model does not fit
perfectly. Sample size is thus a two-edged sword: on the one hand, a large sample is
required for the chi-square test to be valid, but on the other hand, when the specified
model is not literally true in the population, a large sample will lead to the rejection
of the specified model. If the reasons for the departure from perfect fit could be
reliably detected and sensibly corrected, this would not be a problem, but unfortu-
nately, there are often small discrepancies in many different parts of the model that
defy easy rectification.

Modified test statistics for assessing overall model fit have been suggested to deal
with both a violation of normality and a small sample size. When multivariate
normality is violated, the Satorra-Bentler rescaled (mean-adjusted) test statistic
(TMLM) is commonly used (Satorra and Bentler 2001). Unfortunately, research has
shown that correct models are rejected too frequently by this test statistic when the
number of variables is large and/or the sample size is small (i.e., the type I error rate
is too high). Other modifications of TML to correct for non-normality (e.g., mean-
and variance-adjusted test statistics) have been proposed as well.

To deal with small samples, Bartlett suggested multiplying the minimum of the
ML discrepancy function not by (N-1) but by a different factor that depends on the
number of observed variables and the number of factors. This modification was
initially introduced for exploratory factor models, but it has been applied to confir-
matory factor models and more general structural equation models as well. Further-
more, the correction has also been applied to TMLM. Modified versions of the Bartlett
correction have been proposed as well.

Yang, Jiang and Yuan (2018) studied the performance (in terms of type I error
rates) of 11 modifications of the conventional TML statistic (including TMLM and the
Bartlett correction) for a correctly specified SEM model across different numbers of
observed variables (15–80), different sample sizes (70–2500), and different popula-
tion distributions (normal, elliptical, skewed, and rescaled skewed). The degrees of
freedom for the models studied ranged from 76 to 3066, so model complexity was
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much higher than in many models encountered in practice. Yang et al. found that
TMLM showed the worst performance among all the modifications of TML and the
Bartlett correction applied to TMLM showed the best performance (although some
other modifications performed similarly well). The performance of the test statistics
that performed well depended on all three factors studied (number of observed
variables, sample size, and distribution of the observed variables), although when
the number of observed variables did not exceed 30, the performance of TMLM with
the Bartlett correction was good in general. When the number of observed variables
was large and the sample size small, none of the test statistics yielded trustworthy
results.

A different small-sample correction was recently proposed by McNeish (2020),
who suggested that an F-distribution (rather than a chi-square distribution) be used
as the reference distribution. Specifically, the chi-square statistic has to be divided by
the degrees of freedom of the model (df) and the resulting ratio is then compared to
an F-distribution with df and (sample size minus 1) degrees of freedom. This is based
on the fact that as the denominator degrees of freedom of an F-distribution go toward
infinity (i.e., as the sample size becomes very large), the F-distribution converges
to a chi-square distribution divided by the numerator degrees of freedom. When
the data are not normal, TMLM, rather than TML, should be compared to an
F-distribution.

An alternative to tests of overall model fit based on T (either TML or the various
modifications discussed above) is to rely on various alternative fit indices. Generally,
these do not enable inferential tests of model fit (although some, such as RMSEA,
do) and instead quantify the degree of fit on a continuous scale. In order to judge fit
based on these alternative fit indices, researchers need guidelines on how to interpret
the scale on which fit is measured. Different researchers have proposed various
cutoff values for different fit indices, based on either personal experience or simu-
lation evidence. Initially, researchers hoped that general cutoff criteria could be
developed that would be independent of model and data characteristics. For exam-
ple, based on extensive simulations in which they varied sample size, distributional
characteristics (normal distribution and different types of non-normality), estimation
method, and type of misspecification (of either the factor loadings or the factor
correlations), Hu and Bentler (1998, 1999) made recommendations about (a) which
estimation procedure researchers should use (ML is preferable to generalized least
squares or GLS and asymptotically distribution-free or ADF methods); (b) which fit
indices researchers can rely on (among the preferred fit indices are the standardized
root mean residual [SRMR], the root mean squared error of approximation
[RMSEA], the confirmatory fit index [CFI], and the Tucker-Lewis index [TLI],
although some caution is required for RMSEA and TLI when the sample size is
250 or smaller); and (c) what cutoffs researchers should employ to evaluate fit. In
particular, they suggested that researchers use a two-index presentation strategy in
which SRMR is combined with one of the other recommended fit indices, primarily
because SRMR was particularly effective in detecting structural model mis-
specification (misspecification of the factor correlations), while the other fit indices
were more effective in detecting measurement model (loading) misspecification. In
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their words, “our results suggest a cutoff value close to .95 for the ML-based TLI . . .
[and] CFI . . .; a cutoff value close to .08 for SRMR; and a cutoff value close to .06
for RMSEA, before one can conclude that there is a relatively good fit between the
hypothesized model and the observed data” (Hu and Bentler 1998, p. 449). Note that
low values of RMSEA and SRMR and high values of CFI and TLI are indicative of
good fit.

Unfortunately, subsequent research has shown that the distribution of the various
fit indices depends on many different model and data characteristics, including the
number of indicators per factor, the number of factors, the magnitude of the factor
loadings, and the sample size (in addition to degree of misspecification, degree of
normality, etc.). This implies that these model and data characteristics have to be
taken into account when formulating guidelines for model fit. This has led to the
development of so-called flexible cutoffs (Niemand and Mai 2018). In addition,
researchers must take into account to what extent they are concerned about type I
(rejecting a correct model) or type II (failing to reject an incorrect model) errors. A
website (www.flexiblecutoffs.org) is available that readers can use to derive cutoffs
for specific models of interest.

To summarize the discussion, it is unfortunate that, in spite of the voluminous
research on the topic, generally applicable guidelines for overall fit assessment
(“golden rules”) remain elusive (Marsh et al. 2004). It also seems doubtful that
flexible cutoffs will prove to be a fully satisfactory solution to the fit conundrum.
Furthermore, since even a well-fitting model based on the most stringent standards
(e.g., the standard chi-square goodness-of-fit test) is not necessarily the “true”
model, an acceptable overall model fit should never be used as the sole (or primary)
arbiter of whether a proposed theory is correct (especially since usually most of the
overidentifying restrictions come from the measurement model, not the latent
variable model). This is especially true when alternative fit indices are used to
adjudge model fit because the cutoffs for the alternative fit indices are essentially
arbitrary.

Our recommendation is twofold. First, lack of fit based on the chi-square good-
ness-of-fit test (or more robust alternatives) should instigate a search for major and
correctable misspecifications. Second, if a respecified model still does not meet the
stringent requirements of the chi-square test (after readily correctable mis-
specifications have been implemented), alternative fit indices (probably in combi-
nation with flexible cutoff values) may be used to justify the conclusion that the
hypothesized (or respecified) model is good enough to evaluate the local fit of the
model and interpret the parameters of interest. The guidelines offered by Hu and
Bentler (1998) may be used as rough rules of thumb to judge model fit (i.e., if
RMSEA <0.06, SRMR <0.08, CFI > 0.95, and TLI >0.95, the model fits reason-
ably well), but they should not be employed dogmatically and supplemented with
flexible cutoff values. Finally, instead of evaluating a single model, it is usually
preferable to compare several plausible competing models and to determine which
model is most consistent with the data. Information criteria such as the Bayesian
Information Criterion (BIC) can be helpful when comparing alternative models
(Bollen et al. 2014), especially when non-nested models are to be compared.
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Respecifying Models That Do Not Pass the Global Fit Test

Based on our own experience with estimating numerous structural equation models,
it is rare that the originally hypothesized model will provide an acceptable fit to the
data. If all the fit indices indicate that the fit is poor, the model should not be
interpreted before appropriate modifications are introduced. Frequently, the situation
is complicated by the fact that some fit indices indicate that the fit is acceptable,
while others suggest that the fit is questionable. It is not unusual to read papers in
which the authors’ primary concern seems to be to defend their favored model by
selectively focusing on the fit indices that imply acceptable fit. Obviously, a better
approach is for researchers to be skeptical of their own models and to thoroughly
investigate potential sources of misfit before moving on to a substantive interpreta-
tion of the results.

The two primary tools for model modification are residual analysis and inspection
of the modification indices and expected parameter changes. Residuals are the
differences between the observed covariances or correlations and the covariances
or correlations implied by the estimated model. A positive residual indicates that an
observed covariance or correlation is underfitted, whereas a negative residual signals
overfitting. In our experience, modification indices are easier to use and provide
more useful information, so we will focus on them. A modification index (MI), also
called Lagrange multiplier or LM statistic in some programs, is the expected
decrease in the chi-square statistic (e.g., TML) when a previously fixed parameter
is freely estimated or an equality constraint is relaxed. If a MI exceeds the critical
value of a chi-square distribution with one degree of freedom (e.g., 3.84 for a
significance level of 0.05), relaxing the constraint in question will significantly
improve the fit of the model. Associated with each MI is an expected parameter
change (EPC) statistic, which is the predicted estimate when a parameter is freely
estimated in the revised model. When the model is reasonably complex and the
sample size relatively large, many MI’s can be significant, and it may not be
straightforward to decide how to modify the model. Parameters should be freed
one at a time in a stepwise fashion, and model modifications should be strongly
guided and tempered by conceptual considerations. Sometimes, potential revisions
to the model suggested by highly significant MI’s make no conceptual sense, and
simulations have shown that data-driven specification searches frequently fail to
identify known misspecifications (e.g., MacCallum 1986; MacCallum et al. 1992). It
is also important to check the EPC’s associated with significant MI’s to ascertain
whether a suggested model modification is practically relevant and substantively
interpretable. For example, the MI for a nontarget loading or an error covariance may
be highly significant, but if the EPC is negligible (e.g., a standardized nontarget
loading of 0.05), it is probably not meaningful to add an additional parameter to the
model. Finally, researchers should compare the substantively important parameter
estimates in the original model (or the model in which the major misspecifications, if
any, were corrected) with those in the final, modified model, ideally one that is
judged acceptable on all (or most) fit criteria. If there are no substantively important
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differences, the simpler model might be preferable even when it fits the data less well
than the more complex model, especially if some of the parameter estimates in the
more complex model are difficult to interpret or explain.

The most common model modifications are the following. In the measurement
model, observed variables often have nonzero loadings on factors other than the
target factor on which each observed variable is supposed to load. It can happen that
these nontarget loadings are actually stronger than the target loading, in which case
the measurement model has to be revised or the offending indicator has to be
dropped from the model (although this may cause other problems, such as a
restriction of the domain of content of the construct). Another problem in the
measurement model could be that some correlations between the unique factors
(error terms) associated with different observed variables are nonzero, or that
additional factors are needed to fully account for the correlations between the
observed variables. For example, if some indicators are coded such that a higher
score indicates a higher standing on the construct of interest (so-called regular
items), whereas for other items a lower score indicates a higher standing on the
underlying construct (so-called reversed items), the keying direction of the items
may lead to correlated uniquenesses or require the inclusion of a method factor (or
several method factors) to model this source of covariation (see Baumgartner and
Weijters 2019).

In the latent variable model, the covariances between the exogenous variables are
usually freely estimated, so there should be no misspecification in this part of the
model. However, a saturated structural model in which all possible pairwise relation-
ships between constructs are estimated is not parsimonious, and since researchers
prefer simple models, usually some relationships between exogenous and endoge-
nous constructs, or between endogenous constructs, are specified to be zero. For
example, construct M may be hypothesized to fully mediate the relationship between
constructs X and Y, in which case the direct path from X to Y should be zero.
However, it is possible that the mediation is only partial in the data analyzed. This
means that the MI for the direct path from X to Y will be significant (see also chapter
▶ “Mediation Analysis in Experimental Research” by Koschate-Fischer and
Schwille, this volume). Such a misspecification is easily rectified. However, signif-
icant modification indices are not always informative. For example, in a panel data
set in which construct X is measured at time t and construct Y is measured at (t + 1),
the MI for the path from Y to X might be significant, but such a relationship is of
course impossible. The goal is to find a latent variable specification that is as simple
as possible and as complex as required (see Anderson and Gerbing 1988 for details).

Often, some of the covariances or paths between constructs will be nonsignifi-
cant. If a relationship was hypothesized a priori, it is best to retain the nonsignificant
path in the final model. If a relationship is not of explicit interest, one may prune the
model by dropping the nonsignificant path, but the overall goodness-of-fit test is no
longer interpretable as an a priori test. Ideally, modified models should be tested on
new data to avoid that misleading conclusions are derived from data sets that happen
to contain idiosyncratic associations.
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Assessing the Local Fit of Models

Even if a model explains the covariances between the observed variables very well
(as shown by a nonsignificant chi-square goodness-of-fit test), this does not mean
that the constructs are measured validly and reliably, that the relationships between
the constructs are consistent with the researcher’s hypotheses, or that a significant
proportion of the variance in the endogenous variables is accounted for. Answers to
these questions require a more detailed assessment of the local fit of the estimated
model. We recommend a two-step process in which the quality of the measurement
model is evaluated first and then the latent variable model is investigated in detail
(Anderson and Gerbing 1988). Unless the constructs are measured appropriately, it
will be difficult to interpret the relationships between the constructs with confidence.
Although a measurement analysis can be conducted for the model in which a
particular structure is imposed on the relationships between the constructs, it is
advantageous to start with a measurement model in which both the endogenous
and exogenous variables are allowed to be freely correlated. In such a model, the
latent variable model is saturated so that a structural misspecification will not distort
the measurement relations. Once the measurement model is deemed acceptable
(using the measurement model modification strategies described earlier), the hypoth-
esized structural specification can be implemented, and after the latent variable
model has been adapted, if necessary, the parameters of substantive interest can be
interpreted.

Measurement Model

We will assume that a congeneric factor model fits the data adequately. If the model
contains nontarget loadings or correlated uniquenesses (correlated errors), some of
the discussion below may not be applicable (e.g., the computation of composite
reliability).

The first step is to check the parameter estimates for the loadings, factor corre-
lations, and error variances (i.e., the variances of the unique factors). There should be
no improper solutions (e.g., the factor correlations should not exceed one in absolute
magnitude, the error variances should be nonnegative), and the factor loadings
should be positive (assuming all items are keyed such that higher scores reflect a
higher standing on the construct of interest), significant, and substantial.

The second step is to compute various statistics related to reliability and conver-
gent validity. Conceptually, reliability refers to the degree of convergence of mea-
sures that are very similar (they have perfectly correlated true scores) but may be
distorted by random error; convergent validity refers to the degree of convergence
between measures that are less similar (e.g., they might be based on different
methods for measuring a construct) and may contain nonrandom error. It is often
difficult to draw a sharp distinction between the two, and we will mostly use the term
reliability to refer to both reliability and convergent validity. Three measures of
reliability are commonly reported. As the name suggests, individual-item reliability
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(IIR) refers to the reliability of a single indicator as a measure of the target construct;
conceptually, it is the squared correlation between an indicator and the underlying
construct, and it is computed as the square of the completely standardized loading
(i.e., the loading from a factor model in which both the constructs and the observed
measures are standardized to a variance of one). A summary measure for the average
individual-item reliability of all measures of a construct is called average variance
extracted (AVE; Fornell and Larcker 1981). For example, if a construct is measured
by four items, the AVE would be the average of the four IIRs. The final reliability
measure is called composite reliability (CR), and it refers to the squared correlation
between an unweighted sum (or average) of all measures of a construct and the
construct. It can be computed as follows:

CRΣxi ¼
Σλij
� �2

φjj

Σλij
� �2

φjj þ Σθii
, ð4Þ

where the subscripts i and j refer to the ith measure of construct j. If, in the previous
example, the four items measuring the construct of interest were averaged (or
summed), CR would be the estimated reliability of that composite. Composite
reliability can be computed for both observed variables in their original metric or
standardized observed variables; the results will differ (corresponding to the differ-
ence between a coefficient alpha based on the original or standardized variables), and
if the observed variables are measured on very different scales, standardization is
preferable. Since multiple measures are generally more reliable than single mea-
sures, CR will usually be larger than IIR or AVE.

We hesitate to provide guidelines about desirable levels of reliability, because
reliability depends greatly on various item characteristics that do not necessarily
reflect differences in measurement quality. For example, a series of more or less
identical items administered one after the other will likely exhibit high reliability
because respondents will fail to see the difference between the items and there are
strong demands for consistency; in contrast, items that cover the domain of an
intended construct more broadly and comprehensively may demonstrate less con-
sistency. Of course, reliability assumes that the items are exchangeable, but in
practice, convergent validity is probably the more appropriate concept (because
measures should not be obviously redundant). Available recommendations also
differ widely, particularly with respect to IIR. For IIR and AVE, 0.5 is frequently
proposed as a lower limit of acceptability (i.e., observed measures should contain, on
average, at least 50% trait variance). This criterion may not sound very stringent, but
it frequently is not satisfied in practice. For CR, the same guidelines as for coefficient
alpha apply (the two tend to be very similar in magnitude); thus, values below 0.6 are
probably unacceptable, and values of 0.8 or higher are often deemed desirable.

The third step is to assess the discriminant validity of the constructs in one’s
model. The idea is that constructs should not correlate too highly, otherwise they
may not be distinct. An important goal of discriminant validity assessment is to
avoid construct proliferation. The primary and most defensible test of discriminant
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validity is that the disattenuated correlation between each pair of constructs (i.e., the
factor correlation corrected for the downward bias in observed correlations due to
measure unreliability) should be significantly different from unity (i.e., constructs
should not be perfectly correlated). The most straightforward way to conduct this test
is to construct confidence intervals around the estimated factor correlations; if the
confidence interval does not include one, discriminant validity is satisfied. The major
problem with this criterion is that rather high correlations will differ from one when
the test is sufficiently powerful and that constructs may not be distinct for practical
purposes (i.e., statistical significance is not the same as practical significance).
Ultimately, it is up to the researcher to decide whether a conceptual distinction
between two highly correlated constructs is justified; the final arbiter of this decision
should not be a statistical test. Many researchers also evaluate discriminant validity
using a criterion originally proposed by Fornell and Larcker (1981). It is not a
statistical test (although a statistical test could be conducted), but a numerical
comparison of the squared (disattenuated) correlation between two constructs and
the AVEs of the constructs involved in the correlation. If the squared correlation
between two constructs is smaller than the AVE of both constructs, discriminant
validity is said to be satisfied. Alternatively (and equivalently), the factor correlation
can be compared with the square root of AVE. The idea is that a construct should
share more variance with its own measures (as assessed by AVE) than with other
(supposedly distinct) constructs. On the one hand, since the squared correlation
between constructs is compared to AVE rather than unity, the Fornell and Larcker
criterion is more stringent than the test of whether two constructs are perfectly
correlated. On the other hand, since the Fornell and Larcker criterion usually
involves only a numerical comparison, it is less stringent than a statistical test of
whether two constructs are perfectly correlated (which takes into account the
uncertainty involved in this decision).

If two constructs lack discriminant validity, the model has to be respecified. The
two constructs may be combined (if a conceptual argument can be constructed
supporting this integration), one construct may be dropped, or better measures for
one of the constructs (or both constructs) may have to be developed.

So far we have only discussed discriminant validity at the construct level. At the
item level, discriminant validity means that an item is solely (or at least primarily)
related to its target construct, not to other, related constructs. In general, nontarget
loadings are undesirable, and if they are too high, the indicator in question is
probably not a good measure of the intended construct.

Once an appropriate measurement model is in place, the restrictions contained in
the latent variable model can be implemented and the reliability statistics should be
recomputed. The differences in the values of these statistics between the two
specifications should be minor, but the measurement analysis should be reported
for the final model.

It should be noted that the measurement analysis described for reflective measure-
ment models is inappropriate for formative indicators models. Formative indicators
need not be highly (positively) correlated, and error resides in the latent variable, not
the indicators, so the conventional reliability indices are not applicable. Furthermore,
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the notion of reliability is questionable with formative indicators, and convergent
validity is the more relevant concept. Convergent validity of individual formative
indicators can be assessed by the strength of the relationship between each formative
indicator and the construct it measures, and the convergent validity of the formative
indicators as a set can be expressed by the variance accounted for in the formatively
measured construct by its indicators. Discriminant validity at the construct level can be
assessed by testing whether the correlations between the constructs differ from one (as
with reflective measurement models), but the conventional Fornell and Larcker
criterion is not applicable. More detail is provided in Baumgartner and Weijters
(2019) and MacKenzie et al. (2011), as well as the references given there.

Latent Variable Model

In studies in which SEM is used to test conceptual frameworks, the latent variable
model will be of primary substantive interest. The research was probably motivated
by the desire to investigate particular relationships between constructs, so the
researcher will look at the sign and magnitude of the relevant parameter estimates
and their statistical significance (or, preferably, the confidence interval around the
estimated parameters). To get a sense of the explanatory power of the proposed
framework, it is also useful to look at the variance accounted for in each endogenous
construct. The chi-square goodness-of-fit test is sometimes used for evaluating the
explanatory power of a framework, but as stated earlier, this is inappropriate because
(a) usually most of the overidentifying restrictions tested by the chi-square test are
derived from the measurement model and the chi-square test does not directly test
the overidentifying restrictions contained in the latent variable model, and (b) the
“explanatory” variables may explain little variation in the endogenous constructs
even when the model fits well based on the chi-square test.

Sometimes, hypotheses to be tested involve indirect effects. For example, if it is
hypothesized that M mediates the effect of X on Y, the indirect effect of X!M and
M!Y is of interest. All programs used for SEM enable the estimation and testing of
indirect effects. However, the tests are usually based on normal-theory approxima-
tions (similar to the Sobel test), which are inferior to other alternatives such as
bootstrapping or Bayesian procedures. These should be used in preference to the
normal-theory tests. MacKinnon et al. (2002) compared 14 methods to test the
statistical significance of an indirect effect and they concluded that the “best balance
of Type I error and statistical power . . . is the test of the joint significance of the two
effects comprising the intervening variable [indirect] effect” (p. 83).

The Problem of Endogeneity

Amodel may have to be respecified not only when it fails to pass a global fit test, but
also when local fit tests indicate that something is amiss. A key assumption for both
the measurement and latent variable models is that the error term in each equation is
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uncorrelated with the explanatory variables in that equation. If this assumption is
violated, a so-called endogeneity problem exists (see chapter ▶ “Dealing with
Endogeneity: A Nontechnical Guide for Marketing Researchers” by Ebbes, Papies,
and Van Heerde, this volume, for details). Common causes of endogeneity include
measurement error in the explanatory variables; omitted variables that are correlated
with the included explanatory variables and become part of the error term when not
considered in the model; and reciprocal effects between the dependent variable and
an explanatory variable. The usual way to deal with endogeneity is to use instru-
mental variables for the endogenous explanatory variables (Wooldridge 2016). An
instrumental variable is a variable that is correlated with the endogenous explanatory
variable (instrument relevance) but does not have a direct effect on the dependent
variable and is uncorrelated with the error term in the equation of interest (instrument
exogeneity). When a researcher anticipates that there might be an endogeneity
problem, a so-called auxiliary variable (Bollen 2012) can be used as an instrument.
For example, assume that a researcher is interested in the effect of schooling on
earnings (Wooldridge 2016). When (unobserved) ability is not included in the
regression, schooling is likely endogenous because ability is expected to be related
to both schooling and earnings. A researcher might use proximity to a college/
university or father’s (mother’s) education as an instrument, although one may
question both choices because it is not clear that these variables are actually
uncorrelated with the error term in the earnings-schooling regression. Bollen
(2012, 2018) shows that observed variables included in a model can also serve as
instrumental variables (so-called model-implied instrumental variables or MlIVs).
We do not have the space to discuss MlIVs in detail but want to briefly present the
basic idea. Consider the model in Fig. 1 and Table 1 and rewrite the measurement
equations for the marker variables (i.e., the observed variables whose loading is set
to 1) so that the latent variable appears on the left-hand side and the observed
variable on the right-hand side (e.g., for PEOU this yields PEOU ¼ PEOU4 – δ1).
Then substitute this expression for all occurrences of PEOU. Do the same for PU4
and BI1. For the two latent variable equations in the model this yields the following
two equations:

PU4 ¼ γ11PEOU4� γ11δ1 þ ε1 þ ς1 ¼ γ11PEOU4þ u1 ð5Þ
and

BI1 ¼ β21PU4þ γ21PEOU4� γ21δ1 � β21ε1 þ ε5 þ ς2
¼ β21PU4þ γ21PEOU4þ u2: ð6Þ

Note that if we regressed PU4 on PEOU4 and BI1 on PU4 and PEOU4, the
coefficient estimates would be inconsistent because the explanatory variables in both
equations are correlated with the (composite) error terms u1 and u2. However, we
might be able to use other observed variables in the model as instruments for the
endogenous explanatory variables PEOU4 and PU4. For example, an instrumental
variable for PEOU4 in Eq. (5) would have to correlated with PEOU4 but
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uncorrelated with u1 (i.e., δ1, ε1, and ζ1). It turns out that PEOU1, PEOU2, and
PEOU3 are suitable instruments for PEOU4 in Eq. (5), and PEOU1, PEOU2,
PEOU3, PU1, PU2, and PU3 are suitable instruments for PEOU4 and PU4 in Eq.
(6), assuming that the specified model is correct. The MlIVsem package in R (Fisher
et al. 2020) can be used to identify model-implied instrumental variables and to
estimate the coefficients in both the measurement and latent variable model equa-
tions using two-stage least squares (2SLS). The advantage of using 2SLS estimation
rather than a system-wide procedure such as ML is that the 2SLS estimator is less
dependent on the normality assumption and that misspecifications in other parts of
the model are less likely to affect the estimation of the parameters in a specific model
equation (Bollen 2018). Furthermore, if an equation is overidentified (i.e., there are
more instruments than endogenous explanatory variables), a χ2 test is available to
test the null hypothesis that the MlIVs are uncorrelated with the equation error (the
so-called Sargan test). If the null hypothesis is rejected, the assumptions embedded
in the specified model must be questioned (e.g., because the MlIVs implied by the
model are apparently not valid instrumental variables) and the model may have to be
respecified. Further details will be provided in the empirical section.

Extensions of the Core Structural Equation Model

We do not have the space to discuss in detail the many extensions of the core
structural equation model that have appeared in the literature. However, we will
briefly mention various models that significantly expand the scope of SEM and point
the interested reader to the relevant literature.

Measurement Model Extensions

The extension from reflective to formative indicator models has already been
mentioned and we will not discuss it further. The interested reader can consult
sources such as Baumgartner and Weijters (2019), Bollen (2011), Diamantopoulos
(2011), Diamantopoulos et al. (2008), Diamantopoulos and Winklhofer (2001),
Edwards (2011), Howell et al. (2007), Jarvis et al. (2003), Kline (2013), MacCallum
and Browne (1993), MacKenzie et al. (2005), MacKenzie et al. (2011), and Wilcox
et al. (2008).

The (reflective) measurement model described so far assumes that the observed
variables are continuous and measured on an interval scale. This assumption is
violated in nearly all applications of SEM. Extensions to ordered-categorical (dis-
crete-ordinal) observed variables (e.g., Likert-type scales) are available and deserve
more widespread use. The conventional measurement model for continuous observed
variables still applies, but the assumption is that continuous observed variables are not
directly observed and only discretized versions of these variables are available.
Although the statistical theory underlying these models has been around for a long
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time, and even though it is relatively easy these days to estimate these models in
existing computer programs, they do introduce various complications, including the
fact that the interpretation of the parameters of the model is less straightforward.

Fortunately, in many circumstances, methods developed for continuous data
based on normal theory maximum likelihood estimation provide acceptable answers
when robust corrections are applied to the test statistics and standard errors (this is
necessary because categorical data are by definition non-normal). Specifically, based
on an extensive simulation study, Rhemtulla et al. (2012) concluded that for scales
with at least five answer categories, “reliance on continuous methodology in the
presence of ordinal data will produce acceptable results” (p. 371).

One way in which researchers can improve the continuousness of their indicators
is to form item parcels (i.e., sums or averages of sets of individual items within scales
or subscales) and to use these item parcels as indicators. Measurement experts
commonly agree that parceling should not be used in scale development and/or
validation studies, or when the factor structure of a set of items is not well-under-
stood, but when the number of items used to measure a construct is relatively large
(e.g., greater than, say, 5), it may be impractical or even infeasible to specify a
measurement model for the individual items. Furthermore, item parceling has
several advantages, including better variable to sample size ratios, improved distri-
butional properties and reliability of the parceled indicators, and more stable param-
eter estimates (Bandalos and Finney 2001). Usually, items are allocated to parcels in
a (quasi-)random fashion, but there are situations in which strategic parceling is
preferable (Weijters and Baumgartner, forthcoming). One complication that arises
when using parceling is that, depending on how the parcels are formed (i.e., which
specific items are allocated to a given parcel), the results may differ, and research has
shown that the resulting parcel allocation variability can be non-negligible (Sterba
2011; Sterba and Pek 2012; Sterba and Rights 2017). It is therefore necessary to
investigate parcel allocation variability, for example, by computing the average
goodness-of-fit and the average parameter estimates across many different parcel
allocations. The semTools package in R can be used for this purpose.

In the congeneric factor model, each indicator is allowed to load on a single
construct and nontarget loadings are restricted to zero. This is a rather strong
assumption that is frequently violated. Two extensions weaken this assumption.
One is exploratory structural equation modeling (ESEM), where the usual confir-
matory (congeneric) factor (measurement) model is replaced with an exploratory
factor model (see Marsh et al. 2014). The other is Bayesian structural equation
modeling (BSEM), where nontarget loadings are freely estimated but informative
priors with a mean of zero and small variance are specified for the nontarget loadings
to identify the model (see Muthén and Asparouhov 2012). Readers are referred to
Baumgartner and Weijters (2019) and the original sources for more detail.

A final extension of the measurement model relates to situations in which
substantive factors are not the only source of covariation between the indicators.
Frequently, there are systematic, non-substantive influences on observed measures
that are due to the method of measurement, which can cause dependencies between
the items. Collectively, these are called method effects (MacKenzie and Podsakoff
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2012; Podsakoff et al. 2003; Podsakoff et al. 2012), and the concern is that shared
method variance may distort substantive relationships (i.e., common method bias).
For example, some respondents may have a tendency to use certain response
categories (e.g., the extremes, the positive or negative side, or the midpoint of the
response scale), regardless of what they are being asked; shared characteristics of
items, such as their keying direction (i.e., whether the item is a regular or reversed
item), may lead to variance overlap; and common features of the measurement
instrument or the context in which an instrument is administered may induce
correlations between (some of) the items (see Podsakoff et al. 2003). To avoid
common method bias, method factors or correlated uniquenesses can be included
in the measurement model; method effects can be explicitly measured and accounted
for in the measurement model or modeled implicitly via method factors or correlated
uniquenesses; and method effects can be considered at the factor level or the level of
individual items (see Baumgartner and Weijters 2019; Baumgartner and Weijters
forthcoming; and Podsakoff et al. 2003 for details, as well as chapter ▶ “Crafting
Survey Research: A Systematic Process for Conducting Survey Research” by
Vomberg and Klarmann, this volume, for a discussion of survey research more
generally).

Latent Variable Model Extensions

So far we have assumed that the relationships in the latent variable model are linear.
This limits the applicability of SEM because theoretical frameworks sometimes
specify nonlinear relationships between constructs. Here we will briefly discuss
one type of nonlinear relationship in the latent variable model, namely, interactions
between the exogenous latent variables (although quadratic effects could be consid-
ered as well). For concreteness, assume that instead of hypothesizing that PU
partially mediates the effect of PEOU on BI, a researcher instead wants to test
whether PEOU and PU have a multiplicative effect on BI, that is,

BI ¼ γ0 þ γ1PUþ γ2PEOUþ γ3PEOU � PUþ ς1 ð7Þ
The problem that arises in this type of model is that products of normally

distributed variables do not have a normal distribution, which implies that BI and
the indicators of BI are also non-normal. Starting with the work of Kenny and Judd
(1984), many different approaches for modeling latent interaction effects have been
considered (see Cortina et al. 2021 for a recent review). The most promising
approach appears to be one suggested by Klein and Moosbrugger (2000), which
has been implemented in Mplus and is also available in the nlsem package in R
(Umbach et al. 2017). Basically, Klein and Moosbrugger (2000) show that the
density of the observed variables can be expressed as a continuous mixture of normal
densities and that this density can be approximated by a finite mixture of normal
densities. The parameters can then be estimated with the EM algorithm. In contrast
to other methods, this approach does not require that products of observed variables
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be used as indicators of the latent interaction term, and it has performed well in
simulation studies (maybe partly because it minimizes non-normality since products
of observed variables are not used as indicators).

Models That Incorporate Population Heterogeneity

The single-sample structural equation model assumes that the observations are
sampled from a single homogeneous population. One way the core model can be
extended to multiple populations is to assume that there are G populations, and even
though the same measurement and latent variable model applies to each of the G
populations, the values of the model parameters may differ across populations. The
model can be written as follows:

ηg5αg þ Bgηg þ Γgξg þ ςg ð8Þ
yg5τyg þ Λygηg þ «g ð9Þ
xg5τxg þ Λxgξg þ δg ð10Þ

where the superscript g refers to the gth population (g ¼ 1, . . ., G). This is the multi-
sample analogue of the model in Eqs. (1)–(3), except that the model includes a latent
variable model intercept term αg (alpha) and measurement intercept terms τyg and τyg

(tau). In single-sample models, the latent and observed variables are assumed to be
mean-centered, but in multi-sample models, it is possible to specify a mean structure,
which expresses the means of the observed variables as a function of the latent
means of ξg (denoted by κg) and which requires the inclusion of intercepts in the
three equations. For identification, the measurement intercept of the indicator whose
loading on the target construct is set to one is restricted to zero (although other
identification constraints are possible).

There are two primary uses for this model. One is to assess the invariance of
parameters across groups. This is particularly important for multi-sample measure-
ment models, because comparing construct means and relationships between con-
structs across groups is only meaningful if the measurements are comparable across
groups. The details are spelled out in Steenkamp and Baumgartner (1998) and
Vandenberg and Lance (2000), as well as other sources, but stated briefly: (a) if
relationships between constructs are to be compared across groups, at least two
loadings per construct have to be invariant and (b) if latent means are to be compared
across groups, at least two loadings and two intercepts per construct have to be
invariant. Chi-square difference tests can be used to check whether the loadings and
intercepts are invariant. For example, for invariance of the loadings, the model in
which all loadings are freely estimated is compared with the model in which the
loadings are constrained to be equal across groups. If the first model fits significantly
better than the second model, the hypothesis of invariance of all loadings has to be
rejected, and modification indices can be used to free the loadings that are not
invariant. When the sample sizes are rather large, it may be more meaningful to
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base model comparisons on alternative fit indices; information criteria such as BIC
can be especially useful for this purpose.

The second use of multi-sample models, already hinted at in the previous
paragraph, is to test substantive hypotheses about differences in latent means and
structural relationships between different groups. For example, a researcher may
want to test whether US respondents are more individualistic (less collectivistic) than
Chinese respondents, or whether attitudes are a stronger influence on behavioral
intentions than social norms for US respondents, whereas the opposite is the case for
Chinese respondents. Multi-sample analysis thus enables the testing of moderator
effects as long as the moderator is discrete (see also chapter ▶ “Challenges in
Conducting International Market Research” by Engelen, Engelen, and Craig, this
volume, for further details about international marketing research).

In multi-sample structural equation models, the model parameters are treated
as fixed effects. A second way in which population heterogeneity can be modeled
is to assume that the groups for which data are available are randomly sampled
from a larger number of populations and that the parameters in a particular
population are specific realizations of a parameter distribution with a certain
mean and variance (see chapter ▶ “Multilevel Modeling” by Haumann,
Kassemeier, and Wieseke, this volume). Such hierarchical (or multilevel) random
effect models, in which the individual observations are nested within higher-level
groups, are usually used when the number of groups is relatively large, because
they only require the estimation of the means and (co)variances of the parameters
and are thus more parsimonious than fixed-effect models, in which separate
parameters have to be estimated for all groups (see Muthén and Asparouhov
2011 for details).

Several special cases of hierarchical models deserve mention. When repeated
observations for the same units are available over time, where the number of units is
relatively large and the number of time periods is limited (e.g., respondents’ mate-
rialism is measured on several occasions, or sales data are recorded across a large
cross-section of brands for several years), a latent (growth) curve model can be
specified. In this case, the repeated observations over time are nested within some
higher-level unit (e.g., respondents, brands). Latent curve models simultaneously
model both the aggregate change trajectory across all units and individual differ-
ences in this average trajectory across entities. The factors representing the individ-
ual curve parameters can also be related to other variables of interest so that it
becomes possible to investigate hypotheses about systematic influences on individ-
ual change processes and to specify individual differences in change as antecedents
of other constructs. For example, latent curve models provide answers to the
following types of research questions: What is the average trajectory of materialism
over time for a sample of respondents (where different functional forms can be
specified for this average trajectory)? How much individual variation is there about
this average trajectory? Do the trajectories of different variables covary (e.g., does
increasing loneliness over time lead to an increase in materialism)? Which unit-level
covariates (e.g., gender, social class) can explain different trajectories over time? See
Bollen and Curran (2006) for further details.
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Hierarchical models are also useful in a cross-sectional context when respondents
provide ratings of multiple stimuli. An application that is particularly relevant for
marketers is conjoint analysis (see chapter ▶ “Choice-Based Conjoint Analysis” by
Eggers et al., this volume). In a typical conjoint study, respondents’ rate (or choose
from) multiple product profiles, where the product profiles (orthogonally) vary
attributes such as price, brand name, or quality. In this case, the multiple ratings
per respondent are nested within respondent, and a hierarchical model produces the
distribution (means, variances, and covariances) of the part-worth utilities
expressing the influence of the different levels of the design attributes on respon-
dents’ overall ratings (or choices). The individual-level part-worth utilities can also
be related to various antecedents and consequences. See Weijters and Baumgartner
(2019) for details.

Multi-sample analysis and hierarchical modeling represent situations in which the
group membership of different observations is known a priori. This is called
observed population heterogeneity. In models for unobserved population heteroge-
neity, the goal of the analysis is to uncover the number of populations from which the
observations are sampled and to determine the likely membership of observations in
each group. Such models may be valuable in areas such as segmentation analysis,
although they are not used much in theory-guided research. See Muthén (2001) for
details.

Empirical Illustration of Structural Equation Modeling

In this section, the concepts and procedures described above are illustrated with an
empirical example. The example uses publicly available data from a study by Diop et
al. (2019), who surveyed 762 Chinese respondents (i.e., drivers who held a valid
driver license at the time the study was conducted) about various issues related to
road guidance through Variable Message Sign (VMS) information. The R code for
all analyses reported below (which also includes access to the data file directly from
the PLOS ONE website) is available at https://github.com/HansBaum129/SEM.

Conceptual Model

A VMS system uses electronic traffic signs that can be dynamically updated to
provide travelers with information about such things as road blockages, congestion,
and alternative routes to get to a destination. In line with the Technology Acceptance
Model or TAM (Davis 1989), a driver’s behavioral intention (BI) to use electronic
message signs can be explained by the perceived usefulness (PU) and perceived ease
of use (PEOU) of VMS information, with PU additionally acting as a partial
mediator of the effect of PEOU on BI. Figure 1 shows a graphical representation
of this conceptual model. In the paper by Diop et al. (2019), the conceptual model
contains additional variables specific to the VMS context (familiarity with the road
network, information quality, and attitude toward route diversion), but we will focus

574 H. Baumgartner and B. Weijters

https://github.com/HansBaum129/SEM


on the core TAM constructs because the simpler model suffices to illustrate the
process of structural equation modeling.

Measurement Model

The constructs PEOU, PU, and BI were measured with multiple items (four items
each for PEOU and PU, and three items for BI) using five-point Likert scales ranging
from “extremely disagree” to “extremely agree,” with “neutral” as the mid-point
anchor. The individual items are reported in Table 2. Several comments can be
offered about them. The PEOU items are clearly reflective measures of the under-
lying construct. However, the first three PU items are probably formative indicators,
because avoiding congestion, arriving at the destination on time, and making better
routing and departure time choices (which is a double-barreled question) are prob-
ably contributing factors to PU. In contrast, the fourth PU item is clearly a reflective
measure of the underlying construct. For both PEOU and PU, the fourth indicator is
an overall assessment of perceived ease of use or perceived usefulness, respectively,
whereas the other indicators refer to more specific aspects of each construct (esp. for
PU). Finally, although the three measures of BI may be treated as reflective indica-
tors, the third indicator does not measure behavioral intentions to use VMS infor-
mation, but intentions to recommend the VMS system. These are different
constructs. All these issues may create problems for model fit and may require an
alternative measurement model specification, as discussed below.

Figure 2 displays the measurement model used for the confirmatory factor
analysis (CFA), which is the model assumed by Diop et al. (2019). For identification,

Table 2 Items used to measure PEOU, PU, and BI

Construct Item Wording

Perceived ease
of use

PEOU1 Using VMS information does not require a lot of mental effort.

PEOU2 It is easy to learn how to use VMS information.

PEOU3 VMS information is easy to understand.

PEOU4 Overall, I find VMS information easy to use.

Perceived
usefulness

PU1 Using VMS information helps me in avoiding congestion.

PU2 Using VMS information helps me in arriving to my destination on
time.

PU3 Using VMS information helps me make better routing and
departure time choices.

PU4 Overall, I find VMS information useful.

Behavioral
intention

BI1 I would consider using VMS information as long as it is available.

BI2 I will very likely use VMS information if it is available.

BI3 I would recommend others to use VMS information for their trips.

Source: Diop et al. (2019)
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either one factor loading per factor needs to be fixed to one (e.g., λx11 ¼ 1, λx52 ¼ 1,
λx93 ¼ 1) or the factor variances have to be fixed to one (ϕ11 ¼ 1, ϕ22 ¼ 1, ϕ33 ¼ 1);
as explained earlier, the latter is preferable in measurement models, as shown in Fig.
2. The null hypothesis that the model fits the data perfectly must be rejected since
TML exceeds the critical value of the chi-square distribution; in particular, TML with
41 degrees of freedom is 265.25, p < 0.0001. The alternative fit indices are:
RMSEA ¼ 0.085 (90% CI ¼ [0.075,0.095]); SRMR ¼ 0.047; CFI ¼ 0.960; and
TLI ¼ 0.947. Using conventional cutoff criteria (e.g., Hu and Bentler 1999), these
indices suggest that the model shows acceptable fit (especially in terms of CFI
and SRMR) or nearly acceptable fit (in terms of RMSEA and TLI) to the data.
On the other hand, none of the indices meet the cutoffs suggested by
www.flexiblecutoffs.org (assuming non-normality): RMSEA <0.023; SRMR
<0.03; CFI > 0.982; and TLI > 0.977.

It is common in marketing research to treat five-point Likert-type item
responses as continuous, interval-scaled, and normally distributed variables.
Strictly speaking, this is incorrect and it may be useful to consider using an
estimation and testing approach that accounts for the non-normality of the data.
Using the Satorra-Bentler correction for non-normality (i.e., the MLM estimator in

Fig. 2 Confirmatory factor analysis (measurement) model for the TAM constructs. Note: Item BI3
was eventually dropped from the model based on the measurement analysis
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lavaan) gives slightly better fit results: TMLM ¼ 187.448 with 41 degrees of
freedom, p < 0.001; Robust RMSEA ¼ 0.081 (90% CI ¼ [0.070,0.093]),
SRMR ¼ 0.047; Robust CFI ¼ 0.963; and Robust TLI ¼ 0.951. However, the fit
is far from perfect. Since the sample size is fairly large, the small-sample correction
due to Bartlett should not have a strong effect on the result, which was indeed the
case; the Bartlett correction applied to the regular chi-square statistic yielded
TBm
ML ¼ 262:64 and the Bartlett correction applied to the Satorra-Bentler chi-square

statistic yielded TBm
MLM ¼ 185:85. The small-sample correction procedure based on

the F-distribution suggested by McNeish (2020) also leads to the decision that the
model does not fit the data well (i.e., the p-values based on the F-distribution using
either TML or TMLM are essentially zero).

To diagnose the sources of misfit, one can look at the (asymptotically) standard-
ized residuals and/or modification indices. A total of 19 residuals are significantly
different from 0 at a Bonferroni-adjusted p-value of 0.0009 (the nominal alpha of
0.05 divided by the number of off-diagonal elements of 55). The four largest
residuals are for PU1-PU2, PEOU2-PU1, BI1-BI2, and PEOU2-PU2. There is one
very large modification index for the error covariance between PU1 and PU2
(MI ¼ 70.88, EPC ¼ 0.064) and three additional large modification indices for the
nontarget loading of BI3 on PEOU (MI ¼ 40.87, EPC ¼ 0.284) and the error
covariances of BI1-BI2 and PU3-PU4 (MI’s of 36.93 and 33.15 and EPCs of
0.085 and 0.040, respectively).

These results suggest the following. First, the positive residual for PU1 and PU2
and the corresponding large MI show that these measures share variance that is not
fully captured by the model. This is likely due to the fact that the items refer to
avoiding congestion and arriving at the destination on time (which are very
similar), whereas the remaining PU items are more general measures of perceived
usefulness. The large residuals for PU1 and PU2 on the one hand and PEOU2 on
the other hand may indicate the same problem (i.e., the closer correspondence of
PU1 and PU2 relative to the other PU items). A researcher wanting to correct this
problem could add a residual covariance term between PU1 and PU2, drop one of
the two items (probably the item with the lower loading), or combine the two items.
Alternatively, since this source of misfit is unlikely to affect the substantive
findings, the problem may be ignored, which avoids overfitting and aids parsi-
mony. After all, the items are not flagged as invalid or unreliable indicators of the
construct; they merely correlate more strongly with each other than with other
items measuring the same construct.

Second, the significant positive residual between BI1 and BI2 and the MI for
the residual covariance between BI1 and BI2 indicate that BI1 and BI2 correlate
more strongly with each other than they do with BI3. As pointed out earlier, BI3
is not a valid measure of intention to use VMS technology because it refers to
intending to recommend the use of this technology to others. It may therefore be
advisable to drop this item from the model, or to specify two different intention
constructs, intention to use and intention to recommend the technology. The
problem with the latter approach is that only a single measure of intention to
recommend is available. The significant MI for the nontarget loading of BI3 on
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PEOU may also hint at the fact that BI3 does not measure the same construct as
BI1 and BI2.

For illustrative purposes, and because a construct that confounds intention to use
and intention to recommend lacks conceptual appeal, we respecified the original
model by dropping BI3 as an indicator of behavioral intention to use the VMS
technology. The revised model still shows significant misfit (TML ¼ 201.908 with 32
degrees of freedom, p < 0.001), but this should not come as a surprise since the
major misspecification in the previous model (the stronger correlation between PU1
and PU2 compared to the other indicators of PU) was not corrected. The alternative
fit indices show that the fit of the model has improved somewhat (RMSEA ¼ 0.083;
90% CI ¼ [0.073,0.095]); SRMR ¼ 0.038; CFI ¼ 0.967; TLI ¼ 0.954, but
particularly the RMSEA is still rather high.

In the revised CFA model, all (completely standardized) factor loadings are large
(greater than 0.74) and statistically significant (p < 0.001). Table 3 displays the
average variance extracted (AVE) and composite reliability (CR) for each of the
three constructs as well as the shared variance (SV) and factor correlations between
each pair of constructs. The AVE’s are at least 0.67, so the indicators are quite
reliable on average; the CR’s are around 0.9, which indicates high internal consis-
tency of the indicators of each construct; and the SV is well below 1 and smaller than
the AVE for each pair of factors, which supports discriminant validity.

There is another measurement model specification that may be appropriate for
these data. As already mentioned, the last indicator of both PEOU and PU is a global
measure of each construct while the first three indicators tap into more specific
aspects of ease of use and usefulness. Since all indicators are strongly related to the
underlying construct, one may consider forming parceled indicators for PEOU and
PU that consist of averages of the first three items. This model (see the R code for
details) fits the data quite well, even though the chi-square statistic is still significant:
TML ¼ 25.63 with 6 degrees of freedom, p < 0.001; RMSEA ¼ 0.066 (90%
CI ¼ [0.041, 0.093]); SRMR ¼ 0.012; CFI ¼ 0.993; and TLI ¼ 0.983.

It is likely that many researchers would ignore the lack of fit indicated by the
significant chi-square statistic in the original model (as did Diop et al.), and in some
cases, this will probably not materially affect the substantive conclusions. However,
the example illustrates that a detailed investigation of the sources of misfit can yield
important insights into the measurement quality of different indicators, which should
prove valuable in future research. The previous analysis also shows that while some

Table 3 Composite
reliability, shared variance,
average variance extracted
and factor correlations

SV/AVE/CORR

CR PEOU PU BI

PEOU 0.89 0.67 0.47 0.58

PU 0.90 0.22 0.70 0.59

BI 0.90 0.33 0.35 0.81

Note: CR Composite reliability, SV Shared variance (below diagonal,
underlined); AVE Average variance extracted (diagonal, in bold),
CORR factor correlation (above diagonal), PEOU Perceived ease
of use, PU Perceived usefulness, BI Behavioral intention
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misspecifications can be corrected and justified based on conceptual considerations,
others defy simple correction and ready explanation. Although a researcher should
make every effort to find a model that approximates the observed covariances as well
as possible, there are other considerations (e.g., the attempt to capture the full
breadth of a construct) that place limits on the degree of fit that can be achieved in
practice, because SEM imposes very stringent standards on model-data fit. We do
not believe that researchers should restrict the domain of a construct to a single
question (even if it is asked repeatedly in more or less the same way) simply to attain
a good model fit.

Latent Variable Model

Since the measurement model in Fig. 2 (not including BI3 as an indicator of BI)
seems reasonable, we can now consider a structural model specifying directed
relationships (rather than correlations) between the constructs. As shown in Fig. 1
and Table 1, we used the fourth indicators of PEOU and PU as marker variables
whose loadings were fixed to one since they are both overall measures of perceived
ease of use and perceived usefulness. The structural model is saturated (i.e., there are
as many path coefficients between the factors as there are factor correlations in the
CFA model), so the fit of the structural equation model is identical to that of the
revised CFA model. If this were not the case (i.e., if the latent variable model
contained overidentifying restrictions), the fit of the structural equation model
would have to be evaluated relative to the fit of the CFA model (e.g., by using a
chi-square difference test). If the structural equation model were to fit the data
significantly more poorly than the CFA model, the structural model would have to
be revised (e.g., by relying on the modification indices for the structural paths that
are fixed to zero).

Figure 3 reports standardized path coefficients (as well as estimates of indirect
and total effects) with bootstrapped confidence intervals. Bootstrapped confidence
intervals are preferred to assess the significance of the indirect (and total) effects,
but in the present case, the confidence intervals based on MLM estimation are

Fig. 3 Standardized estimates (with 95% confidence intervals) and R2 values for the latent variable
model
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very similar to the bootstrapped confidence intervals for all parameters (the
regular ML-based confidence intervals are somewhat too narrow). In line with
the Technology Acceptance Model, BI is significantly and positively related to
both PU and PEOU. In addition, PEOU has an indirect effect on BI, mediated by
PU. The model explains 46% of the variance in BI and 22% of the variance in PU
(the R2 values are computed by subtracting the standardized structural residual
variance of a factor from 1). One caveat should be kept in mind, however. All
constructs were measured at the same time using the same questionnaire, so it is
difficult to draw strong causal inferences from these results. Although it is
intuitively plausible that perceived ease of use and perceived usefulness deter-
mine a driver’s intention to use VMS technology, and the Technology Acceptance
Model strongly supports these relationships, panel data in which PEOU and PU
are measured prior to BI would provide stronger support for the predicted cause-
effect relationships. The hypothesized causal effect from PEOU to PU is on
particularly shaky grounds because one could certainly imagine that the two
constructs simply covary or that PU affects PEOU. Moreover, the relations
between the factors in the model may show upward bias due to common method
variance (Baumgartner et al. 2021). Ideally, common method variance should be
countered by using different methods for measuring different constructs (e.g.,
different types of questions, different response scales) or, if that is not possible,
controlling for the presence of common method variance post hoc (e.g., by
measuring potential sources of common method bias directly and including
these measures as control variables; see Baumgartner and Weijters forthcoming).
Finally, it should be noted that the only (substantive) sources of covariation
between PEOU, PU, and BI are the direct and indirect effects of PEOU and PU
on BI. It is quite unlikely that there are no other influences on the covariation
between the three constructs, but since the model is saturated, it is impossible to
include additional sources of covariation. Diop et al. (2019) consider other vari-
ables in their model (e.g., attitude toward route diversion is specified as an
antecedent of, and thus confounding influence on the relationship between,
perceived usefulness and behavior intention), but it is debatable whether the
inclusion of these variables is an effective control of potential confounds.

To investigate potential endogeneity problems, we used the MIIVsem package in
R to identify model-implied instrumental variables for all measurement and latent
variable model equations and estimated the coefficients using 2SLS. The differences
in the two types of estimates were generally small, except for the effect of PEOU on
PU (the ML estimate was 0.39 whereas the 2SLS estimate was 0.45). Substantively,
the results were the same. However, based on the Sargan test (even when adjusted for
multiple comparisons), the null hypothesis that the model-implied instruments are
uncorrelated with the equation error was rejected for every single measurement and
latent variable model equation. This result is probably not too surprising since the
chi-square test of model fit indicated that the model was inconsistent with the data
and several large MIs suggested that some of the error correlations were highly
significant. Thus, not all model-implied instruments are suitable instruments in the
present case.
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As an alternative to the mediation model in Fig. 1, we also estimated the
interaction model in Eq. (5). The interaction was not significant, so the data provide
no evidence that PEOU and PU have a multiplicative effect on BI (see the files on
Github for details).

Multi-Sample Analysis

The structural model can be estimated simultaneously for multiple groups of respon-
dents. To illustrate such an analysis, imagine that a researcher is interested in
investigating the moderating effect of a driver’s gender on the relations between
PEOU, PU, and BI. To be able to meaningfully compare structural relationships
across men and women, metric invariance has to be established first (Steenkamp and
Baumgartner 1998). This requires the estimation and comparison of two two-group
CFA models: a model in which the factor loadings are freely estimated in both
gender groups, and a model in which corresponding factor loadings are constrained
to be equal in the male versus female subsamples. The fit indices are: (a)
TML ¼ 312.74 with 64 degrees of freedom, RMSEA ¼ 0.101, SRMR ¼ 0.040,
CFI ¼ 0.953, and TLI ¼ 0.934 for the unconstrained model, and (b) TML ¼ 330.66
with 71 degrees of freedom, RMSEA ¼ 0.098, SRMR ¼ 0.046, CFI ¼ 0.951, and
TLI ¼ 0.938 for the model of metric invariance. The fit of the baseline model (i.e.,
the unconstrained model) is marginal at best, so the results need to be interpreted
with caution. The chi-square difference test comparing the unconstrained model to
the metric invariance model is significant (ΔTML (7) ¼ 17.927, p ¼ 0.0123), which
implies that the model of full metric invariance fits the data significantly worse than
the unconstrained model (the alternative fit indices RMSEA and TLI, which penalize
less parsimonious models, actually show a slight improvement, while CFI and
SRMR show a slight deterioration when metric invariance is imposed). The lack
of invariance is primarily due to the loading of PEOU3 on PEOU, which has a large
MI. Freeing this loading results in TML ¼ 316.02 with 70 degrees of freedom,
RMSEA ¼ 0.096, SRMR ¼ 0.041, CFI ¼ 0.953, and TLI ¼ 0.940. Table 4 reports
the standardized structural parameter estimates for the male versus female subsam-
ples. The results show that gender significantly moderates the effects of PEOU on
PU, such that the effect is stronger for men (as compared to women). The effect of
PU on BI is marginally stronger for men than women.

Concluding Comments

Structural equation modeling is used primarily in survey-based research and, partic-
ularly when applied to cross-sectional self-report data, it has encountered a fair
amount of criticism because some researchers believe that it is difficult or even
impossible to derive causal conclusions from structural equation models. In the early
days, SEM was sometimes billed (or oversold) as causal modeling, and in complex
models consisting of many exogenous and endogenous constructs, the final
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specification from which the substantive conclusions were derived often came across
as ad hoc. The ambiguities associated with global goodness-of-fit tests, the problem
of equivalent models (i.e., the fact that different models with very different substan-
tive implications may fit the data equally well), the stringent assumptions imposed
by multi-indicator measurement models (which have stimulated the development of
very narrow measures of sometimes complex concepts), and a host of other problems
have led to disillusionment about the value of SEM among (some) researchers.
However, some of these issues are not unique to SEM (e.g., regression analysis faces
similar problems of causality), and the ability to (a) represent the correspondence
between observed measures and their presumed underlying constructs more explic-
itly and (b) model the relationships between constructs in a more integrative fashion
are important advantages of SEM. Structural equation models can also be used in
experimental contexts, in which the exogenous variables are manipulated, and
particularly when the processes underlying hypothesized effects are investigated,
SEM offers many benefits over regression analysis that have not been exploited by
researchers. Finally, when moderators are discrete, multi-sample SEM is superior to
regression-based methods, particularly when moderated mediation hypotheses are to
be tested, and other approaches to modeling population heterogeneity may also be
valuable.

Our discussion has focused on covariance-based SEM, but a prominent alterna-
tive (particularly in the marketing strategy and information systems literatures) is
variance-based partial least squares (PLS) path modeling. Similar to Rönkko et al.
(2016), we believe that PLS is mainly relevant when the emphasis is on predictive
rather than explanatory modeling (see Reinartz et al. 2009). The reader is referred to
Hair et al. (2017) for an introduction to PLS-SEM (see also chapter ▶ “Partial Least
Squares Structural Equation Modeling” by Sarstedt, Ringle, and Hair, this volume).

Cross-References
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▶Choice-Based Conjoint Analysis
▶Crafting Survey Research: A Systematic Process for Conducting Survey Research
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▶ Partial Least Squares Structural Equation Modeling
▶Regression Analysis
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Abstract

Partial least squares structural equation modeling (PLS-SEM) has become a
popular method for estimating path models with latent variables and their rela-
tionships. A common goal of PLS-SEM analyses is to identify key success factors
and sources of competitive advantage for important target constructs such as
customer satisfaction, customer loyalty, behavioral intentions, and user behavior.
Building on an introduction of the fundamentals of measurement and structural
theory, this chapter explains how to specify and estimate path models using
PLS-SEM. Complementing the introduction of the PLS-SEM method and the
description of how to evaluate analysis results, the chapter also offers an overview
of complementary analytical techniques. A PLS-SEM application of the widely
recognized corporate reputation model illustrates the method.

Keywords

Partial least squares structural equation modeling · PLS-SEM · Path model
analysis · Composite modeling · Results evaluation

Introduction

In the 1970s and 1980s, the Swedish econometrician Herman Wold (1975, 1982,
1985) “vigorously pursued the creation and construction of models and methods for
the social sciences, where ‘soft models and soft data’ were the rule rather than the
exception, and where approaches strongly oriented at prediction would be of great
value” (Dijkstra 2010, p. 24). One method that emerged from Wold’s efforts was
partial least squares path modeling, which later evolved to partial least squares
structural equation modeling (PLS-SEM; Hair et al. 2011). PLS-SEM estimates
the parameters of a set of equations in a structural equation model by combining
principal component analysis with regression-based path analysis (Mateos-Aparicio
2011). Wold (1982) proposed his “soft model basic design” underlying PLS-SEM as
an alternative to Jöreskog’s (1973) covariance-based SEM (chapter ▶ “Structural
Equation Modeling”), also referred to as factor-based SEM. Covariance-based SEM
has been labeled as hard modeling because of its comparably restrictive assumptions
in terms of data distribution and sample size. Importantly, “it is not the concepts nor
the models nor the estimation techniques which are ‘soft‘, only the distributional
assumptions” (Lohmöller 1989, p. 64).

A common goal of PLS-SEM analyses is to identify key success factors and
sources of competitive advantage (Albers 2010; Hair et al. 2012a) for important
target constructs such as customer satisfaction and customer loyalty (e.g., Fornell
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et al. 1996) or behavioral intentions and user behavior (Venkatesh et al. 2003). For
creating and estimating complex path models with latent variables and their relation-
ships, PLS-SEM has achieved widespread popularity in the social sciences. Indeed,
as evidenced in numerous studies that have reviewed PLS-SEM publications in a
variety of disciplines, applications have increased substantially in recent years
(Table 1). PLS-SEM applications have also gained prominence in other fields of
scientific inquiry, such as agriculture, engineering, environmental sciences, geogra-
phy, and medicine (Sarstedt 2019).

In light of the increasing maturation of the field, researchers have also started
exploring the knowledge infrastructure of methodological research on PLS-SEM by
analyzing the relationships between authors, countries, and co-citation networks
(Hwang et al. 2020; Khan et al. 2019). As a result of these developments, a growing
number of textbooks (e.g., Garson 2016; Hair et al. 2018b, 2022; Henseler 2021;
Mehmetoglu and Venturini 2021; Ramayah et al. 2016; Wong 2019) and edited
books on the method (e.g., Avkiran and Ringle 2018; Esposito Vinzi et al. 2010;
Latan and Noonan 2017) have been published, further popularizing PLS-SEM
(Ringle 2019).

A key methodological reason for PLS-SEM’s attractiveness is that the approach
follows a causal-predictive paradigm, in which the aim is to test the predictive power
of a model carefully developed on the grounds of theory and logic (Chin et al. 2020).

Table 1 Review articles on the use of PLS-SEM in different disciplines (Hair et al. 2022).
(Reprinted by permission of the publisher (SAGE Publications))

Discipline References

Accounting Lee et al. (2011)
Nitzl (2016)

Construction management Zeng et al. (2021)

Entrepreneurship Manley et al. (2020)

Family business Sarstedt et al. (2014)

Higher education Ghasemy et al. (2020)

Hospitality and tourism Ali et al. (2018)
do Valle and Assaker (2016)
Usakli and Kucukergin (2018)

Human resource management Ringle et al. (2020)

International business research Richter et al. (2016)

Knowledge management Cepeda-Carrión et al. (2019)

Management Hair et al. (2012a)

Management information systems Hair et al. (2017a)
Ringle et al. (2012)

Marketing Hair et al. (2012b)

Operations management Bayonne et al. (2020)
Peng and Lai (2012)

Psychology Willaby et al. (2015)

Software engineering Russo and Stol (2021)

Supply chain management Kaufmann and Gaeckler (2015)

Partial Least Squares Structural Equation Modeling 589



In addition, PLS-SEM enables researchers to estimate very complex models with
many constructs and indicator variables, with considerably smaller sample size
requirements compared to factor-based SEM methods. PLS-SEM also offers much
flexibility in estimating multifaceted model relationships such as in conditional
process models (Sarstedt et al. 2020a) or higher-order models (Sarstedt et al.
2019). A final reason is the accessibility of user-friendly software with a graphical
interface such as ADANCO, PLS-Graph, SmartPLS, and XLSTAT, as well as the
statistical computing software environment R that includes cSEM, matrixpls,
SEMinR, and semPLS as complements to other programs.

The objective of this chapter is to explain the fundamentals of PLS-SEM.
Building on Hair et al. (2022), this chapter first provides an introduction to the
fundamentals of measurement and structural model specification as a basis for the
use of the the PLS-SEM method. Next, we discuss the evaluation of results, provide
an overview of complementary analytical techniques, and conclude by describing an
application of the PLS-SEM method to a well-known corporate reputation model
using SmartPLS 3 (Ringle et al. 2015), the most comprehensive and up-to-date
software for conducting PLS-SEM analyses (Sarstedt and Cheah 2019).

Principles of Structural Equation Modeling

Path Models with Latent Variables

A path model is a diagram that displays the hypotheses and variable relationships to
be estimated in a structural equation modeling analysis (Bollen 2002). Figure 1
shows an example of a path model with three latent variables (Y1, Y2, and Y3) and
their indicators.

Latent variables, also referred to as constructs, are elements in statistical models
that represent conceptual variables that researchers define in their theoretical models.
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Fig. 1 Path model with latent variables
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Examples of typical social sciences constructs include job satisfaction, organiza-
tional commitment, trust, and customer loyalty. Constructs are visualized as circles
or ovals (Y1 to Y3) in path models, linked via single-headed arrows that represent
causal-predictive relationships. The indicators, often also named manifest variables
or items, are directly measured or observed variables that represent the raw data (e.g.,
respondents’ answers to a questionnaire). They are represented as rectangles (x1 to
x9) in path models and are linked to their corresponding constructs through arrows.
Constructs in most instances are represented by a minimum of three or more
indicators to ensure they are valid measures of the concept. Researchers sometimes
include single-item constructs in their models. As construct and indicator are
equivalent in this case, the relationship between construct and indicator is typically
represented by a line rather than an arrow.

A path model consists of two elements. The structural model represents the
causal-predictive relationships between the constructs, whereas the measurement
models represent the relationships between each construct and its associated indica-
tors. In PLS-SEM, the structural model is sometimes referred to as the inner model
and the measurement models are sometimes referred to as outer models. To develop
path models, researchers need to draw on both structural theory and measurement
theory, which indicate the relationships between the elements of a path model.

Structural Theory

Structural theory specifies the latent variables to be considered in the analysis of a
certain phenomenon and their relationships. The location and sequence of the
constructs are based on theory and on the researcher’s experience and accumulated
knowledge (Falk and Miller 1992). When researchers develop path models, the
sequence is typically from left to right. The latent variables on the left side of the
path model are independent variables, and any latent variable on the right-hand side
is the dependent variable (Fig. 1). However, latent variables can also serve as both
independent and dependent variables in the model (Haenlein and Kaplan 2004).

When a latent variable only serves as an independent variable, it is called an
exogenous latent variable (Y1 in Fig. 1). When a latent variable only serves as a
dependent variable (Y3 in Fig. 1), or as both an independent and a dependent variable
(Y2 in Fig. 1), it is called an endogenous latent variable. Endogenous latent variables
always have error terms associated with them. In Fig. 1, the endogenous latent
variables Y2 and Y3 have one error term each (z2 and z3), which reflect the sources
of variance not predicted by the respective antecedent construct(s) in the structural
model. The exogenous latent variable Y1 also has an error term (z1) but in PLS-SEM,
this error term is constrained to zero because of the way the method treats the
(formative; i.e., arrows point from indicators to construct) measurement model of
this particular construct (Diamantopoulos 2011). Therefore, this error term is typi-
cally omitted in the display of a PLS path model. In case an exogenous latent
variable draws on a reflective measurement model theory (arrows point from con-
struct to indicator), there is no error term attached to this particular construct.
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The strength of the relationships between latent variables is represented by path
coefficients (i.e., b1, b2, and b3), and the coefficients are the result of regressions of
each endogenous latent variable on their direct antecedent constructs. For example,
b1 and b3 result from the regression of Y3 on Y1 and Y2.

Measurement Theory

Measurement theory specifies how to measure latent variables. Researchers can
generally choose between two different types of measurement models
(Diamantopoulos and Winklhofer 2001; Sarstedt et al. 2016): reflective measure-
ment models and formative measurement models.

Reflective measurement models have direct relationships from the construct to
the indicators and treat the indicators as error-prone manifestations of the underlying
construct (Bollen 1989). The following equation formally illustrates the relationship
between a latent variable and its observed indicators:

x ¼ l � Y þ e, ð1Þ
where x is the observed indicator variable, Y is the latent variable, the loading l is a
regression coefficient quantifying the strength of the relationship between x and Y,
and e represents the random measurement error. This equation is a bivariate regres-
sion with x being the dependent variable and Y being the independent variable. The
latent variables Y2 and Y3 in the path model shown in Fig. 1 have reflective
measurement models with three indicators each. When using reflective indicators
(also called effect indicators), the items should be a representative sample of all items
of the construct’s conceptual domain (Nunnally and Bernstein 1994). If the items
stem from the same domain, they capture the same concept and, hence, should be
highly correlated (Edwards and Bagozzi 2000).

In contrast, in a formative measurement model, a linear combination of a set of
indicators forms the construct (i.e., the relationship is from the indicators to the
construct). Hence, “variation in the indicators precedes variation in the latent
variable” (Borsboom et al. 2003, p. 208). Indicators of formatively measured
constructs do not necessarily have to correlate strongly as is the case with reflective
indicators. Note, however, that strong indicator correlations can also occur in
formative measurement models and do not necessarily imply that the measurement
model is reflective in nature (Nitzl and Chin 2017).

When referring to formative measurement models, researchers need to distinguish
two types of indicators: causal indicators and composite indicators (Bollen 2011).
Constructs measured with causal indicators have an error term, which implies that
the construct has not been perfectly measured by its indicators (Bollen and Bauldry
2011). More precisely, causal indicators show conceptual unity in that they corre-
spond to the researcher’s definition of the concept (Bollen and Diamantopoulos
2017). But researchers will hardly ever be able to identify all indicators relevant for
adequately capturing the construct’s domain (e.g., Bollen and Lennox 1991). The
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error term captures all the other “causes” or explanations of the construct that the set
of causal indicators do not capture (Diamantopoulos 2006). The existence of a
construct’s error term in causal indicator models suggests that the construct can, in
principle, be equivalent to the conceptual variable of interest, provided that the
model has perfect fit (e.g., Grace and Bollen 2008). If the indicators x1, x2, and x3
represent causal indicators, Y1’s error term z1 would capture these other “causes”
(Fig. 1). A measurement model with causal indicators can formally be described as.

Y ¼
XK
k¼1

wk∙xk þ z, ð2Þ

where wk indicates the contribution of xk (k ¼ 1,. . ., K ) to Y, and z is an error term
associated with Y.

Composite indicators constitute the second type of indicators associated with
formative measurement models. When measurement models are specified with
composite indicators, researchers assume that the indicators define the construct in
full (Sarstedt et al. 2016). Hence, the error term, which in causal indicator models
represents “omitted causes,” is set to zero in formative measurement models with
composite indicators (z1 ¼ 0 in Fig. 1). A measurement model with composite
indicators takes the following form, where Y is a linear combination of indicators
xk (k¼ 1, . . ., K ), each weighted by an indicator weight wk (Bollen 2011; McDonald
1996):

Y ¼
XK
k¼1

wk∙xk: ð3Þ

According to Henseler (2017, p. 180), measurement models with composite
indicators “are a prescription of how the ingredients should be arranged to form a
new entity,” which he refers to as artifacts or emergent variables (Henseler 2021).
That is, composite indicators define the construct’s empirical meaning. Henseler
(2017) identifies Aaker’s (1991) conceptualization of brand equity as a typical
conceptual variable with composite indicators (i.e., an artifact) in advertising
research, comprising the elements brand awareness, brand associations, brand qual-
ity, brand loyalty, and other proprietary assets. The use of artifacts is especially
prevalent in the analysis of secondary and archival data, which typically lack a
comprehensive substantiation on the grounds of measurement theory (Hair et al.
2019a; Rigdon 2013). For example, a researcher may use secondary data to form an
index of a company’s communication activities, covering aspects such as online
advertising, sponsoring, or product placement. Alternatively, composite indicator
models can be thought of as a means to capture the essence of a conceptual variable
using of a limited number of indicators (Sarstedt et al. 2016). For example, a
researcher may be interested in measuring the salient aspects of a company’s
corporate social responsibility using a set of five (composite) indicators that capture
important features relevant to the particular study.
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More recent research contends that composite indicators can be used to measure
any concept including attitudes, perceptions, and behavioral intentions (Nitzl and
Chin 2017), as long as they operationally define the concept. But composite indica-
tors are not a free ride for careless measurement. Instead, “as with any type of
measurement conceptualization, researchers need to offer a clear construct definition
and specify items that closely match this definition – that is, they must share
conceptual unity” (Sarstedt et al. 2016, p. 4002). Thus, composite indicator models
view construct measurement as approximation of conceptual variables, acknowl-
edging the practical problems which arise with measuring unobservable conceptual
variables that populate theoretical models (Rigdon et al. 2017, 2019).

Path Model Estimation with PLS-SEM

Background

Different from factor-based SEM (chapter ▶ “Structural Equation Modeling”),
PLS-SEM explicitly calculates case values (construct scores) for the latent variables
as part of the algorithm. For this purpose, the “unobservable variables are estimated
as exact linear combinations of their empirical indicators” (Fornell and Bookstein
1982, p. 441) such that the resulting composites capture most of the variance of the
exogenous constructs’ indicators that is useful for predicting the endogenous
constructs’ indicators (e.g., McDonald 1996). PLS-SEM uses these composites to
represent the constructs in a PLS path model, considering them as approximations
of the conceptual variables under consideration (e.g., Hair and Sarstedt 2019;
Rigdon 2012; Rigdon et al. 2017).

Since PLS-SEM-based model estimation always relies on composites, regardless
of the measurement model specification, the method can process reflectively and
formatively specified measurement models without identification issues (Hair et al.
2011). Identification of PLS path models only requires that each construct is linked
to the nomological net of constructs (Henseler et al. 2016a). This characteristic also
applies to model settings in which endogenous constructs are specified formatively
as PLS-SEM relies on a multistage estimation process, which separates measurement
from structural model estimation (Rigdon et al. 2014).

Three aspects are important for understanding the interplay between data, mea-
surement, and model estimation in PLS-SEM. First, PLS-SEM handles all indicators
of formative measurement models as composite indicators. Hence, a formatively
specified construct in PLS-SEM does not have an error term as is the case with causal
indicators in factor-based SEM (Diamantopoulos 2011).

Second, when the data stem from a common factor model population (i.e., the
indicator covariances define the data’s nature), PLS-SEM’s parameter estimates
deviate from the prespecified values. This characteristic, often incorrectly referred
to as PLS-SEM bias, suggests the method overestimates the measurement model
parameters and underestimates the structural model parameters (e.g., Chin et al.
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2003). The degree of over- and underestimation decreases when both the number of
indicators per construct and sample size increase (consistency at large; Hui and Wold
1982). The term PLS-SEM bias is a misnomer, however, as it implies that the data
stem from a factor model population in which the indicator covariances define the
nature of the data (e.g., Marcoulides et al. 2012; Rigdon 2016; Sarstedt et al. 2016).
Numerous studies have shown that when the data stem from a composite model
population where linear combinations of the indicators define the data’s nature,
PLS-SEM estimates are unbiased and consistent (Cho and Choi 2020; Hair et al.
2017b; Sarstedt et al. 2016). Apart from that, research has shown that the bias
produced by PLS-SEM when estimating data from common factor model
populations is low in absolute terms (e.g., Reinartz et al. 2009), particularly com-
pared to the bias that common factor-based SEM produces when estimating data
from composite model populations. Specifically, Sarstedt et al. (2016) find that the
bias produced by factor-based SEM is, on average, 11 times higher than the bias
produced by PLS-SEM when using each method on models inconsistent with what
the methods assume (i.e., factor-based SEM on composite models and PLS-SEM on
common factor models).

Third, PLS-SEM’s use of composites not only has implications for the method’s
philosophy of measurement but also for its area of application. In PLS-SEM, once
the weights are derived, the method always produces a single specific (i.e., determi-
nate) score for each case per construct. This characteristic sets PLS-SEM apart from
factor-based SEM, where construct scores are indeterminate, which can have con-
siderable negative consequences for the validity of the results (Rigdon et al. 2019).
Using these determinate scores as input, PLS-SEM applies a series of ordinary least
squares regressions, which estimate the model parameters so they maximize the
endogenous constructs’ explained variance (i.e., their R2 values). While this estima-
tion process maximizes explanatory power, the computation of determinate con-
struct scores makes PLS-SEM particularly well-suited for prediction where the aim
is to apply model parameters estimated from a training sample to generate falsifiable
predictions for other observations (hold out cases) not used in the model estimation
(Hwang et al. 2020). Several studies have offered evidence of PLS-SEM’s efficacy
for prediction (Becker et al. 2013a; Evermann and Tate 2016; Cho et al. 2021).
Hence, by using PLS-SEM, researchers simultaneously gain an understanding of the
causal relationships derived from theory and logic (explanation) and also the model’s
predictive power, which is fundamental for establishing its practical relevance (Hair
and Sarstedt 2021b; Shugan 2009).

The PLS-SEM Algorithm

Model estimation in PLS-SEM draws on a three-stage approach that belongs to the
family of (alternating) least squares algorithms (Mateos-Aparicio 2011). Figure 2
illustrates the PLS-SEM algorithm as presented by Lohmöller (1989). Henseler et al.
(2012) offer a graphical illustration of the SEM algorithm’s stages.
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The algorithm starts with an initialization stage in which it establishes preliminary
latent variable scores. To compute these scores, the algorithm typically uses unit
weights (i.e., 1) for all indicators in the measurement models (Hair et al. 2022).

Stage 1 of the PLS-SEM algorithm iteratively determines the inner weights (i.e.,
the path coefficients) and latent variable scores by means of a four-step procedure.
Step #1 uses the initial latent variable scores from the initialization of the algorithm
to determine the inner weights bji between the adjacent latent variables Yj (i.e., the
dependent one) and Yi (i.e., the independent one) in the structural model. Literature
suggests three approaches to determine the inner weights (Chin 1998; Lohmöller
1989; Tenenhaus et al. 2005). In the centroid scheme, the inner weights are set to +1
if the covariance between Yj and Yi is positive and � 1 if this covariance is negative.
In case two latent variables are unconnected, the weight is set to 0. In the factor
weighting scheme, the inner weight corresponds to the covariance between Yj and Yi
and is set to zero in case the latent variables are unconnected. Finally, the path
weighting scheme takes into account the direction of the inner model relationships

Initialization

Stage 1: Iterative estimation of weights and latent variable scores

Starting at step #4, repeat steps #1 to #4 until convergence is obtained.

#1 Inner weights (here obtained by using the factor weighting scheme)
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Fig. 2 The basic PLS-SEM algorithm. (Adapted from Lohmöller 1989, p. 29)
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(Lohmöller 1989). Chin (1998, p. 309) notes that the path weighting scheme
“attempts to produce a component that can both ideally be predicted (as a predictand)
and at the same time be a good predictor for subsequent dependent variables.” As a
result, the path weighting scheme leads to slightly higher R2 values in the endoge-
nous latent variables compared to the other schemes and should therefore be
preferred. In most instances, however, the choice of the inner weighting scheme
has very little bearing on the results (Lohmöller 1989; Noonan and Wold 1982).

Step #2, the inside approximation, computes proxies for all latent variables eY j by
using the weighted sum of its adjacent latent variables scores Yi. Then, for all the
indicators in the measurement models, Step #3 computes new outer weights, which
indicate the strength of the relationship between each latent variable eY j and its
corresponding indicators. To do so, the PLS-SEM algorithm uses two different
estimation modes. When using Mode A (i.e., correlation weights), the bivariate
correlation between each indicator and the construct determine the outer weights.
In contrast, Mode B (i.e., regression weights) computes indicator weights by
regressing each construct on its associated indicators.

By default, estimation of reflectively specified constructs draws on Mode A,
whereas PLS-SEM uses Mode B for formatively specified constructs. However,
Cho et al. (2021) show that this reflex-like use of Mode A and Mode B is not optimal
when using PLS-SEM for prediction purposes. Their simulation study shows that
Mode A provides higher degrees of out-of-sample prediction in situations commonly
encountered in empirical research (see also Becker et al. 2013a).

Figure 2 shows the formal representation of these two modes, where xk jn

represents the raw data for indicator k (k ¼ 1,. . .,K ) of latent variable j ( j ¼ 1,. . .,
J ) and observations n (n ¼ 1,. . .,N ); eYjn are the latent variable scores from the inside
approximation in Step #2, ewk j

are the outer weights from Step #3, djn is the error
term from a bivariate regression, and ek jn is the error term from a multiple regression.
The updated weights from Step #3 (i.e., ewk j

) and the indicators (i.e., xk jn) are linearly
combined to update the latent variables scores (i.e., Yjn) in Step #4 (outside approx-
imation). Note that the PLS-SEM algorithm uses standardized data as input and
always standardizes the generated latent variable scores in Step #2 and Step #4. After
Step #4, a new iteration starts. The algorithm terminates when the weights obtained
from Step #3 change marginally from one iteration to the next (typically 1�10�7), or
when the maximum number of iterations is achieved (typically 300).

Stages 2 and 3 use the final latent variable scores from Stage 1 as input for a series
of ordinary least squares regressions. These regressions compute the final outer
loadings, outer weights, and path coefficients as well as related elements such as
indirect, and total effects, R2 values of the endogenous latent variables, and the
indicator and latent variable correlations (Lohmöller 1989).

Research has proposed several variations of the original PLS-SEM algorithm.
Lohmöller’s (1989) extended PLS-SEM algorithm, for example, allows assigning
more than one latent variable to a block of indicators and imposing orthogonality
restrictions among constructs in the structural model. Becker and Ismail (2016)
developed a modified version of the original PLS-SEM algorithm that uses sampling
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(post-stratification) weights to correct for sampling error. Their weighted PLS-SEM
approach considers a weights vector defined by the researcher in order to ensure
correspondence between sample and population structure (Cheah et al. 2020).
Furthermore, Bentler and Huang’s (2014) PLSe algorithm as well as Dijkstra and
Henseler’s (2015a, b) consistent PLS (PLSc) approach both represent modified
versions of Lohmöller’s (1989) original PLS-SEM algorithm that produce unbiased
and consistent estimates of common factor models. That is, PLSe and PLSc both
follow a composite modeling logic, but introduce a correction factor to produce
results that mimic those of factor-based SEM. That is, PLSe and PLSc assume the
data stem from common factor model population. But in fact, PLS-SEM does not
produce biased estimates per se; the only exception is when the method is used to
estimate common factor models, similar to when factor-based SEM produces biased
estimates when used to estimate composite models (Sarstedt et al. 2016). In light of
this concern, Hair et al. (2017a, p. 443) note: “It is unclear why researchers would
use these alternative approaches to PLS-SEMwhen they could easily apply the much
more widely recognized and validated CB-SEM [i.e., factor-based SEM] method.”

Additional Considerations when Using PLS-SEM

Research has witnessed a considerable debate about situations that favor or hinder
the use of PLS-SEM (e.g., Goodhue et al. 2012; Hair et al. 2019b; Marcoulides et al.
2012; Marcoulides and Saunders 2006; Henseler et al. 2014). In the following
sections, we complement our previous discussion of the method’s treatment of latent
variables and the consequences for measurement model specification and estimation
by introducing further relevant aspects to consider when using PLS-SEM, which
have been discussed in the literature (e.g., Hair et al. 2013, 2019a). Where necessary,
we refer to differences between factor-based SEM and PLS-SEM even though such
comparisons should not be made indiscriminately (e.g., Marcoulides and Chin 2013;
Rigdon 2016; Rigdon et al. 2017; Hair et al. 2017b).

Distributional Assumptions
Many researchers indicate they prefer the non-parametric PLS-SEM approach
because their data’s distribution does not meet the rigorous requirements of the
parametric factor-based SEM approach (e.g., Hair et al. 2012b; Nitzl 2016; do Valle
and Assaker 2016). However, this line of reasoning does not consider that maximum
likelihood estimation in factor-based SEM is fairly robust against violations of
normality (e.g., Chou et al. 1991; Olsson et al. 2000) and comes with a variety of
estimators that are robust against nonnormality (Lei and Wu 2012). Thus, justifying
the use of PLS-SEM solely on the grounds of data distribution is not sufficient.

Statistical Power
When using PLS-SEM, researchers benefit from the method’s greater statistical
power compared to factor-based SEM, even when estimating data generated from
a common factor model population. Because of its greater statistical power, the
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PLS-SEM method is more likely to identify an effect as significant when it is indeed
present in the population.

The characteristic of higher statistical power makes PLS-SEM particularly suit-
able for exploratory research settings where theory is less developed. As Wold
(1980, p. 70) notes, “the arrow scheme is usually tentative since the model con-
struction is an evolutionary process. The empirical content of the model is extracted
from the data, and the model is improved by interactions through the estimation
procedure between the model and the data and the reactions of the researcher.”

Model Complexity and Sample Size
PLS-SEM works efficiently with small sample sizes when models are complex (e.g.,
Hair et al. 2017b; Sarstedt et al. 2016; Willaby et al. 2015). Prior reviews of SEM
applications show that the average number of constructs per model is clearly higher
in PLS-SEM (approximately eight constructs; e.g., Hair et al. 2017a; Kaufmann and
Gaeckler 2015; Ringle et al. 2012) compared to factor-based SEM (approximately
five constructs; e.g., Shah and Goldstein 2006; Baumgartner and Homburg 1996).
Similarly, the number of indicators per construct is typically higher in PLS-SEM
compared to factor-based SEM, which is not surprising considering the negative
effect of more indicators on χ2-based fit measures in factor-based SEM. Different
from factor-based SEM, the PLS-SEM algorithm does not simultaneously compute
all the model relationships, but instead uses separate ordinary least squares regres-
sions to estimate the model’s partial regression relationships – as implied by its
name. As a result, the overall number of model parameters can be extremely high in
relation to the sample size as long as each partial regression relationship draws on a
sufficient number of observations. Reinartz et al. (2009), Henseler et al. (2014), and
Sarstedt et al. (2016) show that PLS-SEM provides solutions when other methods do
not converge, or develop inadmissible solutions, regardless of whether using com-
mon factor or composite model data. However, as Hair et al. (2013, p. 2) note, “some
researchers abuse this advantage by relying on extremely small samples relative to
the underlying population” and that “PLS-SEM has an erroneous reputation for
offering special sampling capabilities that no other multivariate analysis tool has.”
PLS-SEM can be applied with smaller samples in many instances when other
methods fail, but the legitimacy of such analyses depends on the size and the nature
of the population (e.g., in terms of its heterogeneity). No statistical method –
including PLS-SEM – can offset a badly designed sample. To determine the neces-
sary sample size, researchers should run power analyses that take into account the
model structure expected effect sizes and the significance level (e.g., Marcoulides
and Chin 2013) and provide power tables for a range of path model constellations. In
addition, Kock and Hadaya (2018) proposed the inverse square root method, which
considers the probability that the ratio of a path coefficient and its standard error will
be greater than the critical value of a test statistic for a specific significance level –
see Hair et al. (2022) for illustrations of the method.

While much focus has been devoted to PLS-SEM’s small sample size capabilities
(e.g., Goodhue et al. 2012), discussions often overlook the method’s suitability for
analyzing large datasets, such as those generated by Internet research, social media,
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and social networks (e.g., Akter et al. 2017; Hair and Sarstedt 2021a). Analyses of
social media data typically focus on prediction, rely on complex models with little
theoretical substantiation (Stieglitz et al. 2014), and often lack a comprehensive
substantiation on the grounds of measurement theory (Hair et al. 2019a; Rigdon
2013). PLS-SEM’s non-parametric nature, its ability to handle complex models with
many (e.g., say eight or considerably more) constructs and indicators along with its
high statistical power, make it a valuable method for social media analytics and the
analysis of other types of large-scale data.

Goodness-of-Fit and Prediction
PLS-SEM does not have an established goodness-of-fit measure. As a consequence,
some researchers conclude that PLS-SEM’s use for theory testing and confirmation
is limited (e.g., Westland 2019). Recent research has, however, started reexamining
goodness-of-fit measures proposed in the early days of PLS-SEM (Lohmöller 1989)
or suggesting new ones, thereby broadening the method’s applicability (e.g., Dijkstra
and Henseler 2015a). One of the earliest proposed measures is the goodness-of-fit
index (GoF), proposed by Tenenhaus et al. (2005, p. 173) as “an operational solution
to this problem as it may be meant as an index for validating the PLS model
globally.” Henseler and Sarstedt (2013) challenged the usefulness of the GoF both
conceptually and empirically, showing that the metric does not represent a goodness-
of-fit criterion for PLS-SEM. Other measures include the standardized root mean
square residual (SRMR), the root mean square residual covariance (RMStheta), and
the exact fit test (Dijkstra and Henseler 2015a; Lohmöller 1989; Henseler et al.
2014). But, while simulation studies sought to demonstrate their efficacy for PLS-
SEM-based model fit testing (Schuberth et al. 2018), Hair et al. (2022) note that these
measures have proven ineffective in detecting model misspecifications in settings
commonly encountered in applied research.

In addition, literature casts doubt on whether measured fit – as understood in a
factor-based SEM context – is a relevant concept for PLS-SEM (Hair et al. 2022;
Lohmöller 1989; Rigdon 2012). Factor-based SEM follows an explanatory modeling
perspective in that the algorithm estimates all the model parameters based on the
objective of minimzing the divergence between the empirical covariance matrix and
the model-implied covariance matrix. In contrast, the PLS-SEM algorithm follows a
causal-prediction modeling perspective in that the method aims to maximize the
amount of explained variance of the endogenous latent variables. Explanation and
prediction are two distinct concepts of statistical modeling and estimation (e.g., Hair
et al. 2019b). “In explanatory modeling the focus is on minimizing bias to obtain the
most accurate representation of the underlying theory. In contrast, predictive model-
ing seeks to minimize the combination of bias and estimation variance, occasionally
sacrificing theoretical accuracy for improved empirical precision” (Shmueli 2010,
p. 293). Correspondingly, a grossly misspecified model can yield superior predic-
tions whereas a correctly specified model can perform extremely poor in terms of
prediction – see the Appendix in Shmueli (2010) for an illustration.

Researchers using PLS-SEM overcome this seeming dichotomy between explan-
atory and predictive modeling since they expect their model to have high predictive
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accuracy, while also being grounded in well-developed causal explanations. Gregor
(2006, p. 626) refers to this interplay as explanation and prediction theory, noting
that this approach “implies both understanding of underlying causes and prediction,
as well as description of theoretical constructs and the relationships among them.”
This perspective corresponds to Jöreskog and Wold’s (1982, p. 270) understanding
of PLS-SEM in which they labeled the method as a “causal-predictive” technique,
meaning that when structural theory is strong, path relationships can be interpreted
as causal. Hence, validation using goodness-of-fit measures is also relevant in a
PLS-SEM context but less so compared to factor-based SEM. Instead, researchers
should primarily focus on the assessment of their model’s predictive performance
(e.g., Rigdon 2012), for example, on the grounds of Shmueli et al.’s (2016) PLSpredict
procedure and Liengaard et al.’s (2021) cross-validated predictive ability test
(CVPAT).

Table 2 summarizes the rules of thumb researchers should consider when deter-
mining whether PLS-SEM is the appropriate statistical tool for their research.

Evaluation of PLS-SEM Results

Procedure

Evaluating PLS-SEM results involves completing two stages, as illustrated in
Fig. 3. Stage 1 addresses the examination of reflective measurement models
(Stage 1.1), formative measurement models (Stage 1.2), or both. If the evaluation
provides support for the measurement quality, the researcher continues with the
structural model evaluation in Stage 2 (Hair et al. 2022). In brief, Stage 1 exam-
ines the measurement theory, while Stage 2 covers the structural theory that
addresses the relationships among the latent variables, representing the proposed
hypotheses.

Researchers have developed numerous guidelines for assessing PLS-SEM results
(Chin 2010; Hair et al. 2019a, 2022; Roldán and Sánchez-Franco 2012), which may
be summarized under the general term confirmatory composite analysis (CCA; Hair
et al. 2018a, 2020). While the following illustrations draw on Hair et al. (2020), there

Table 2 Reasons for using PLS-SEM

Reasons for using PLS-SEM

• The goal is to predict and explain a key target construct and/or to identify its relevant antecedent
constructs.
• T5he path model is relatively complex as evidenced in many constructs per model (six or more)
and indicators per construct (more than four indicators),
• The path model includes formatively measured constructs.
• The sample size is limited (e.g., in business-to-business research) and also when it is large.
• The research is based on secondary or archival data, which lack a comprehensive substantiation
on the grounds of measurement theory.
• The objective is to use latent variable scores in subsequent analyses..
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is disagreement as to which analysis steps define a confirmatory composite analysis
(Henseler 2021; Henseler and Schuberth 2020; Schuberth et al. 2018). Hair et al.’s
(2020) approach does not emphasize fit, but focuses on the assessment of the
model’s predictive power using Shmueli et al.’s (2016) PLSpredict procedure. In
contrast, Schuberth et al.’s (2018) approach requires fit but does not refer to out-
of-sample prediction – see also Henseler (2021) and Henseler and Schuberth (2020).
In this chapter, we follow the CCA steps recommended by Hair et al. (2020).

Starting with the measurement model assessment and continuing with the struc-
tural model assessment, the following guidelines offer rules of thumb for interpreting
the adequacy of the results. Note that a rule of thumb is a broadly applicable and
easily applied guideline for decision-making that should not be strictly interpreted
for every situation. Therefore, the threshold for a rule of thumb may vary depending
on the research context.

Yes

Stage 1.1 evaluation criteria
(reflective models)

• Indicator reliability
• Internal consistency 

reliability
• Convergent validity
• Discriminant validity   

No

Stage 1.2 evaluation criteria
(formative models)

• Convergent validity
• Collinearity
• Significance and relevance of 

indicator weights

Does the model 
include reflectively

measured constructs?

Does the model 
include formatively
measured constructs?

Stage 2 evaluation criteria
(structural model)

• Collinearity
• Significance and relevance of 

path coefficients
• Explanatory power 
• Predictive power 
• Model comparisons (optional)

Yes

No

Fig. 3 PLS-SEM model evaluation. (Adapted from Sarstedt et al. 2014)
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Stage 1.1: Reflective Measurement Model Assessment

In the case of reflectively specified constructs, a researcher begins Stage 1 by
examining the indicator loadings. Loadings above 0.708 indicate the construct
explains more than 50% of the indicator’s variance, demonstrating that the indicator
exhibits a satisfactory degree of item reliability.

The next step involves the assessment of the constructs’ internal consistency
reliability. When using PLS-SEM, internal consistency reliability is generally eval-
uated using Jöreskog’s (1971) composite reliability ρc, which is defined as follows
(for standardized data):

ρc ¼
PK
k¼1

lk

� �2

PK
k¼1

lk

� �2

þP
K

k¼1

var ekð Þ
, ð4Þ

where lk symbolizes the standardized outer loading of the indicator variable k of a
specific construct measured with K indicators, ek is the measurement error of
indicator variable k, and var(ek) denotes the variance of the measurement error,
which is defined as 1� l2k .

For the composite reliability criterion, higher values indicate higher levels of
reliability. For instance, researchers can consider values between 0.60 and 0.70 as
acceptable in exploratory research, whereas results between 0.70 and 0.95 represent
satisfactory to good reliability levels (Hair et al. 2022). However, values that are too
high (e.g., higher than 0.95) are problematic, as they suggest that the items are almost
identical and redundant. The reason may be (almost) the same item questions in a
survey or undesirable response patterns such as straight lining (Diamantopoulos
et al. 2012).

Cronbach’s alpha is another measure of internal consistency reliability that assumes
the same thresholds but yields lower values than the composite reliability (ρc). This
statistic is defined in its standardized form as follows, where K represents the con-
struct’s number of indicators and r the average non-redundant indicator correlation
coefficient (i.e., the mean of the lower or upper triangular correlation matrix):

Cronbach0s α ¼ K � r
1þ K � 1ð Þ � r½ � : ð5Þ

Generally, in PLS-SEM Cronbach’s alpha is considered the lower bound, while ρc
defines the upper bound of internal consistency reliability when estimating reflective
measurement models with PLS-SEM. Hence, the actual reliability of a construct
likely falls between Cronbach’s alpha and the composite reliability ρc.

As an alternative and building on Dijkstra (2010), subsequent research has
proposed the exact (or consistent) reliability coefficient ρA (Dijkstra 2014; Dijkstra
and Henseler 2015b), which is defined as
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ρA≔ bw0 bw� �2
∙

bw0 S� diag Sð Þð Þbw
bw0 bwbw0 � diag bwbw0� �� �bw0 ð6Þ

where bw represents the indicator weights estimates, diag indicates the diagonal of the
corresponding matrix, and S the sample covariance matrix. The ρA reliability metric
usually lies between Cronbach’s α and the composite reliability ρc, and is therefore
considered a good compromise between these other two measures (Hair et al.
2019a).

The next step in assessing reflective measurement models addresses convergent
validity, which is the extent to which a construct converges in its indicators by
explaining the items’ variance. Convergent validity is assessed by the average
variance extracted (AVE) across all items associated with a particular reflectively
measured construct and is also referred to as communality. The AVE is calculated as
the mean of the squared loadings of each indicator associated with a construct (for
standardized data):

AVE ¼
PK
k¼1

l2k

� �

K
, ð7Þ

where lk and K are defined as explained above. An acceptable threshold for AVE is
0.50 or higher. This level or higher indicates that, on average, the construct explains
(more than) 50% of the variance of its items.

Once the reliability and the convergent validity of reflectively measured con-
structs have been successfully established, the final step is to assess their discrimi-
nant validity. This analysis reveals to which extent a construct is empirically distinct
from other constructs both in terms of how much it correlates with other constructs
and how distinctly the indicators represent only this single construct. Discriminant
validity assessment in PLS-SEM involves analyzing Henseler et al.’s (2015) hetero-
trait-monotrait ratio (HTMT) of correlations. The HTMT criterion is defined as the
mean value of the indicator correlations across constructs relative to the (geometric)
mean of the average correlations of indicators measuring the same construct. The
HTMTof the constructs Yi and Yjwith, respectively, Ki and Kj indicators is defined as
follows:

HTMTij ¼ 1

KiKj

XKi

g¼1

XKj

h¼1

rig,jh

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

average

heterotrait�
heteromethod

correlation

� 2

Ki Ki � 1ð Þ �
XKi�1

g¼1

XKi

h¼gþ1

rig,ih � 2

K j Kj � 1
� � �

XKj�1

g¼1

XKj

h¼gþ1

rjg,jh

 !1
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

geometric mean of the average monotrait-heteromethod

correlation of construct Yi and the average

monotrait-heteromethod correlation of construct Y j

,

ð8Þ
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where rig, jh represents the correlations of the indicators (i.e., within and across the
measurement models of latent variables Yi and Yj). Figure 4 shows the correlation
matrix of the six indicators used in the reflective measurement models of constructs
Y2 and Y3 from Fig. 1.

Therefore, high HTMT values indicate discriminant validity problems. Based on
prior research and their simulation study results, Henseler et al. (2015) suggest a
threshold value of 0.90 if the path model includes constructs that are conceptually
very similar (e.g., affective satisfaction, cognitive satisfaction, and loyalty); that is,
an HTMT value above 0.90 depicts a lack of discriminant validity. However, when
the constructs in the path model are conceptually more distinct, researchers should
consider 0.85 as threshold for HTMT (Henseler et al. 2015).

In addition, researchers can (and should) use bootstrap confidence intervals (see
next section for a discussion of the bootstrapping concept) to test if the HTMT is
significantly lower than 1.00 (Henseler et al. 2015) or another threshold value such
as 0.90 or 0.85. The concrete thershold should be defined based on the study context
(Franke and Sarstedt 2019). For example, assuming a threshold of 0.85 and assum-
ing a significance level of 5%, researchers need to assess whether the upper bound-
ary of the one-sided 95% bootstrap confidence interval (i.e., UB95) is lower than
0.85. This upper boundary can also be inferred from a two-sided 90% bootstrap
confidence interval. In order to obtain the bootstrap confidence intervals, in line with
Aguirre-Urreta and Rönkkö (2018), researchers should generally use the percentile
method. However, when the reliability coefficient’s bootstrap distribution is skewed,
the bias-corrected and accelerated (BCa) method should be preferred to obtain
bootstrap confidence intervals. The recommended number of bootstrap samples
researchers should use is 10,000 (Streukens and Leroi-Werelds 2016). We discuss
the different bootstrap confidence interval types and parameter settings in greater
detail in the next section.

Trait Y2 Y3

Trait Method x4 x5 x6 x7 x8 x9

Y2

x4 1

x5 r4,5 1

x6 r4,6 r5,6 1

Y3

x7 r4,7 r5,7 r6,7 1

x8 r4,8 r5,8 r6,8 r7,8 1

x9 r4,9 r5,9 r6,9 r7,9 r8,9 1

monotrait-
heteromethod 
correlations

monotrait-
heteromethod 
correlations

heterotrait-
heteromethod 
correlations

Fig. 4 Correlation matrix example
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Stage 1.2: Formative Measurement Model Assessment

Formatively specified constructs are evaluated differently from reflectively mea-
sured constructs. Their evaluation involves the examination of (1) the convergent
validity, (2) indicator collinearity, and (3) statistical significance and relevance of the
indicator weights – see Fig. 3.

In formative measurement model evaluation, convergent validity refers to the
degree to which the formatively specified construct correlates with an alternative
measure of the same concept. Originally proposed by Chin (1998), the procedure is
referred to as redundancy analysis. To execute this procedure for determining
convergent validity, researchers must plan ahead in the research design stage by
including an alternative measure of the formatively measured construct in their
questionnaire. Cheah et al. (2018) show that a single item, which captures the
essence of the construct under consideration, is generally sufficient as an alternative
measure – despite limitations with regard to criterion validity (Diamantopoulos et al.
2012). When the model is based on secondary data, an available variable measuring
a similar concept would be used (Houston 2004). Hair et al. (2022) suggest the
correlation of the formatively measured construct with the reflectively measured
item(s) should be 0.708 or higher, which implies that the construct explains (more
than) 50% of the alternative measure’s variance (Carlson and Herdman 2012).

Collinearity assessment involves computing each item’s variance inflation factor
(VIF) by running a multiple regression of each indicator in the measurement model
of the formatively measured construct on all the other items of the same construct.
The R2 values of the k-th regression facilitates the computation of the VIF for the k-th
indicator, using the following formula:

VIFk ¼ 1

1� R2
k

ð9Þ

Higher R2 values in the k-th regression imply that the variance of the k-th item can
be explained by the other items in the same measurement model, which indicates
collinearity issues. Likewise, the higher the VIF, the greater the level of collinearity.
As a rule of thumb, VIF values above 3 are indicative of collinearity among the
indicators. However, collinearity issues can also occur at lower VIF values of 3 (e.g.,
Mason and Perreault 1991). Hence, when the analysis produces unexpected sign
changes in the indicator weights, researchers should reconsider the model set-up in
an effort to reduce the collinearity.

The third step in assessing formatively measured constructs is examining the
statistical significance and relevance (i.e., the size) of the indicator weights. In
contrast to regression analysis, PLS-SEM does not make any distributional assump-
tions regarding the error terms that would facilitate the immediate testing of the
weights’ significance based on the normal distribution. Instead, the researcher must
run bootstrapping, a procedure that draws a large number of subsamples (typically
10,000) from the original data. The model is then estimated for each of the sub-
samples, yielding a high number of estimates for each model parameter.
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Using the subsamples from bootstrapping, the researcher can construct a distri-
bution of the parameter under consideration and compute bootstrap standard errors,
which allow for determining the statistical significance of the original indicator
weights. More precisely, bootstrap standard errors allow for computing t-values
(and corresponding p-values). When interpreting the results, reviewers and editors
should be aware that bootstrapping is a random process, which yields different
results every time it is initiated. While the results from one bootstrapping run to
the next generally do not differ fundamentally when using a large number of
bootstrap samples such as 10,000 (Streukens and Leroi-Werelds 2016),
bootstrapping-based p-values slightly lower than a predefined cut-off level should
give rise to concern. In such a case, researchers may have repeatedly applied
bootstrapping until a certain parameter has become significant, a practice referred
to as p-hacking.

As an alternative, researchers can use the bootstrapping results to construct
different types of confidence intervals. Aguirre-Urreta and Rönkkö (2018) show
that the percentile method performs very well in a PLS-SEM context in terms of
coverage (i.e., the proportion of times the population value of the parameter is
included in the 1-α% confidence interval in repeated samples) and balance (i.e.,
how α% of cases fall to the right or to the left of the interval). If a weight’s confidence
interval includes zero, this provides evidence that the weight is not statistically
significant, making the indicator a candidate for removal from the measurement
model. However, instead of mechanically deleting the indicator, researchers should
first consider its loading, which represents the indicator’s absolute contribution to the
construct. While an indicator might not have a strong relative contribution (e.g.,
because of the large number of indicators in the formative measurement model), its
absolute contribution can still be substantial and meaningful (Cenfetelli and
Bassellier 2009). Based on these considerations, the following rules of thumb
apply (Hair et al. 2022):

• If the weight is statistically significant, the indicator is retained.
• If the weight is nonsignificant, but the indicator’s loading is 0.50 or higher, the

indicator is still retained if theory and expert judgment support its inclusion.
• If the weight is nonsignificant and the loading is low (i.e., below 0.50), the

indicator should be deleted from the measurement model.

Researchers must be cautious when deleting formative indicators based on
statistical outcomes for at least the following two reasons. First, the indicator weight
is a function of the number of indicators used to measure a construct: The higher the
number of indicators, the lower their average weight. In other words, formative
measurement models have an inherent limit to the number of indicators that can
retain a statistically significant weight (e.g., Cenfetelli and Bassellier 2009). Second,
as formative indicators define the construct’s empirical meaning, indicator deletion
should be considered with caution and should generally be the exception. Content
validity considerations are imperative before deleting formative indicators (e.g.,
Diamantopoulos and Winklhofer 2001).
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Having assessed the formative indicator weights’ statistical significance, the final
step is to examine each indicator’s relevance for shaping the construct. In terms of
relevance, indicator weights are standardized to values that are usually between �1
and +1, with weights closer to +1 (or �1) representing strong positive (or negative)
relationships, and weights closer to 0 indicating weak relationships. Note that values
below �1 and above +1 may technically occur, for instance, when collinearity is at
critical levels.

Stage 2: Structural Model Assessment

Provided the measurement model assessment indicates satisfactory quality, the
researcher moves to the assessment of the structural model in Stage 2 of the
PLS-SEM evaluation process (Fig. 3). After checking for potential collinearity
issues among the constructs, this stage considers the significance and relevance of
the structural model relationships (i.e., the path coefficients) as well as the model’s
explanatory and predictive power. Some research situations call for the computation
and comparison of alternative models, which can emerge from different theories or
contexts. PLS-SEM facilitates the comparison of alternative models using criteria
that are well known from the regression literature, as well as more recent out-of-
sample prediction metrics. As model comparisons are not relevant for every
PLS-SEM analysis, this assessment is optional.

Computation of the path coefficients linking the constructs is based on a series of
regression analyses. Therefore, the researcher must first ascertain that collinearity
issues do not bias or distort the regression results. This step is analogous to the
formative measurement model assessment, with the difference that the scores of the
exogenous latent variables serve as input for the VIF assessments. VIF values above
3 are indicative of collinearity among sets of predictor constructs. However, as
indicated in the context of formative measurement model assessment, collinearity
can also occur at lower VIF values.

Subsequently, the strength and significance of the path coefficients is evaluated
regarding the relationships (structural paths) hypothesized between the constructs.
Similar to the assessment of formative indicator weights, the significance assessment
builds on bootstrapping standard errors as a basis for calculating t-values and p-
values of path coefficients, or – as recommended in the literature – their percentile
confidence intervals (Aguirre-Urreta and Rönkkö 2018). A path coefficient is sig-
nificant at the 5% probability of error level if zero does not fall into the 95%
percentile confidence interval. For example, a path coefficient of 0.15 with 0.1 and
0.2 as lower and upper bounds of the 95% percentile confidence interval would be
considered significant since zero does not fall into this confidence interval. On the
contrary, with a lower bound of �0.05 and an upper bound of 0.35, we would
consider this coefficient as not significant.

In terms of relevance, path coefficients are usually between �1 and +1, with
coefficients closer to +1 representing strong positive relationships, and those closer to
�1 indicating strong negative relationships (note that values below �1 and above +1

608 M. Sarstedt et al.



may technically occur, for instance, when collinearity is at critical levels). A path
coefficient of say 0.5 implies that if the independent construct increases by one standard
deviation unit, the dependent construct will increase by 0.5 standard deviation units
when keeping all other independent constructs constant. Determining whether the size
of the coefficient is meaningful should be decided within the research context. When
examining the structural model results, researchers should also interpret total effects.
The total effect corresponds to the sum of the direct effect and all the indirect effects
between two constructs in the path model. With regard to the path model shown in
Fig. 1, Y1 has a direct effect (b1) and an indirect effect (b2 � b3) via Y2 on the endogenous
construct Y3. Hence, the total effect of Y1 on Y3 is b1 + b2 � b3. The examination of total
effects between constructs, including all their indirect effects, provides a more com-
prehensive picture of the structural model relationships (Nitzl et al. 2016).

The next step involves reviewing the coefficient of determination (R2). The R2

measures the variance explained in each of the endogenous constructs and is
therefore a measure of the model’s explanatory power (Shmueli and Koppius
2011), also referred to as in-sample predictive power (Rigdon 2012). The R2 ranges
from 0 to 1, with higher levels indicating a higher degree of explanatory power. As a
rough rule of thumb, the R2 values of 0.75, 0.50, and 0.25 can be considered
substantial, moderate, and weak (Henseler et al. 2009; Hair et al. 2011). Acceptable
R2 values are based on the context. In some disciplines an R2 value as low as 0.10 is
considered satisfactory, for example, when predicting stock returns (Raithel et al.
2012). In other contexts, scientists usually expect higher R2 values above 0.65. An
example is the customer satisfaction construct in American Customer Satisfaction
Index model applications (Fornell et al. 1996; chapter ▶ “Measuring Customer
Satisfaction and Customer Loyalty”).

More importantly, the R2 is a function of the number of predictor constructs – the
greater the number of predictor constructs, the higher the R2. Therefore, the R2

should always be interpreted relative to the context of the study based on the R2

values from related studies and models of similar complexity. R2 values can also be
too high when the model overfits the data. Model overfit is present when the partial
regression model is too complex, which results in fitting the random noise inherent in
the sample rather than reflecting the overall population. The same model would
likely not fit as well on another sample drawn from the same population (Sharma
et al. 2018). When measuring a concept that is inherently predictable, such as
physical processes, R2 values of 0.90 might be plausible. Similar R2 value levels
in a model that predicts human attitudes, perceptions and intentions likely indicate
model overfit (Hair et al. 2019a).

In addition to evaluating theR2 values of all endogenous constructs, the change in the
R2 value when a specified exogenous construct is omitted from the model can be used to
evaluate whether the omitted construct has a substantive impact on the endogenous
constructs. This measure is referred to as the f 2 effect size and can be calculated as

f 2 ¼ R2
included � R2

excluded

1� R2
included

ð10Þ
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where R2
included and R

2
excluded are the R

2 values of the endogenous latent variable when
a selected exogenous latent variable is included in or excluded from the model.
Technically, the change in the R2 values is calculated by estimating a specific partial
regression in the structural model twice (i.e., with the same latent variable scores).
First, the model is estimated with all exogenous latent variables included (yielding
R2
included) and, second, with a selected exogenous latent variable excluded (yielding

R2
excluded). As a guideline, f 2 values of 0.02, 0.15, and 0.35, respectively, represent

small, medium, and large effects (Cohen 1988) of an exogenous latent variable.
Effect size values of less than 0.02 indicate that there is no effect.

To assess a PLS path model’s predictive power, also referred to as out-of-sample
predictive power, researchers can draw on Shmueli et al.’s (2016) PLSpredict proce-
dure. PLSpredict executes k-fold cross-validation by randomly partitioning the dataset
into k subsets (folds). In the following, PLSpredict then combines k � 1 subsets into a
single analysis sample that is used to predict the indicator values of a specific target
constructs in the remaining data subset (i.e., the holdout sample). This process is
repeated k times such that each subset serves as holdout sample once. Shmueli et al.
(2019) recommend setting k ¼ 10, but researchers need to make sure the analysis
sample for each subset (fold) meets minimum sample size guidelines. PLSpredict can
also be run repeatedly to alleviate the impact of potentially extreme samples
resulting from the random partitioning of the data into k folds. As a rule of thumb,
researchers should generally run PLSpredict with ten repetitions.

To quantify the degree of prediction error, researchers can draw on several predic-
tion statistics. The default statistic is the root mean squared error (RMSE), which
weights large prediction errors more strongly than small errors. When the prediction
error distribution is highly nonsymmetric, researchers may use the mean absolute error
(MAE), which measures the average magnitude of the errors in a set of predictions
without considering their direction (over or under). Both RMSE and MAE cannot be
interpreted absolutely as their values depend on themeasurement scale of the indicators
under consideration. For example, an indicator measured on a scale from 0 to 100 can
cover a much greater range of prediction errors than a 7-point Likert scale.

Hence, researchers need to compare the RMSE (or MAE) values with a linear
regression model (LM) benchmark to generate predictions for the manifest variables
by running a linear regression of each of the dependent construct’s indicators on the
indicators of the exogenous constructs in the PLS path model (Danks and Ray 2018).
In comparing the RMSE (or MAE) values with the LM values, the following
guidelines apply (Shmueli et al. 2019):

1. If all indicators in the PLS-SEM analysis have lower RMSE (or MAE) values
compared to the naïve LM benchmark, the model has high predictive power.

2. If the majority (or the same number) of indicators in the PLS-SEM analysis yields
smaller prediction errors compared to the LM, this indicates medium predictive
power.

3. If the minority of the dependent construct’s indicators produces lower PLS-SEM
prediction errors compared to the naïve LM benchmark, this indicates that the
model has low predictive power.
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4. If the PLS-SEM analysis (compared to the LM) yields lower prediction errors in
terms of the RMSE (or the MAE) for none of the indicators, this indicates that the
model lacks predictive power.

Researchers can also assess the Q2
predict statistic, which indicates whether the PLS-

SEM-based predictions outperform the most naïve benchmark, defined as the indi-
cator mean from the holdout samples. A Q2

predict larger than zero indicates the PLS

path model outperforms this most naïve benchmark. Importantly, when interpreting
PLSpredict results, researchers should focus on the model’s key endogenous construct
rather than examining the prediction errors for the indicators of all endogenous
constructs. Shmueli et al. (2019) present a systematic application of the PLSpredict
procedure including the Q2

predict criterion and the LM benchmark.

In a final, optional step, researchers may be interested in comparing different
model configurations resulting from different theories or research contexts. Sharma
et al. (2018) and Danks et al. (2020) compared the efficacy of various metrics for
model comparison tasks and found that Schwarz’s (1978) Bayesian information
criterion (BIC) and Geweke and Meese’s (1981) criterion (GM) achieve a sound
tradeoff between model fit and predictive power in the estimation of PLS path
models. These (Information Theoretic) model selection criteria facilitate the com-
parison of models in terms of model fit and predictive power without having to use a
holdout sample, which is particularly useful for PLS-SEM analyses that often draw
on small sample sizes. In applying these metrics, researchers should estimate each
model separately and select the model that minimizes the value in BIC or GM for a
certain target construct. While BIC and GM exhibit practically the same perfor-
mance in model selection tasks, BIC is easier to compute. Hence, focusing on this
criterion is sufficient in most model comparison tasks. The BIC for a certain model
i is defined as follows:

BICi ¼ n½logðSSEi

n
Þ þ p j � logðnÞ

n
�, ð11Þ

where SSEi is the sum of squared errors for the i-th model in a set of alternative
models, n is the sample size, and pj is the number of predictors of the construct of
interest plus 1.

One issue in the application of the BIC is that – in its simple form (i.e., raw
values) – the criterion does not offer any insights regarding the relative weights of
evidence in favor of models under consideration (Burnham and Anderson 2002).
More precisely, while the differences in BIC values are useful in ranking and
selecting models, such differences can often be small in practice, leading to model
selection uncertainty. To resolve this issue, researchers can use the BIC values to
compute Akaike weights, which indicate a model’s relative likelihood, given the data
and a set of competing models (Danks et al. 2020) – see Wagenmakers and Farrell
(2004) for an application.

A further advancement in the field of prediction-oriented model comparisons in
PLS-SEM is Liengaard et al.’s (2021) CVPAT, which proves valuable for developing
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and validating theories from a prediction standpoint (Hair et al. 2022). Future
extensions of CVPAT will allow researchers to test the predictive power of their
models on a standalone basis (Hair et al. 2020).

Research Application

Corporate Reputation Model

The empirical application builds on the corporate reputation model and data that Hair
et al. (2022) use in their book Primer on Partial Least Squares Structural Equation
Modeling (PLS-SEM), and that Hair et al. (2018b) also employ in their Advanced
Issues in Partial Least Squares Structural Equation Modeling book. The PLS path
model creation and estimation was executed using the SmartPLS 3 software (Ringle
et al. 2015). The model files, datasets and software used in this market research
application can be downloaded at https://www.smartpls.com.

Figure 5 shows the corporate reputation model as displayed in SmartPLS 3. Orig-
inally presented by Eberl (2010), the goal of this model is to explain the effects of
corporate reputation on customer satisfaction (CUSA) and, ultimately, customer
loyalty (CUSL). Corporate reputation represents a company’s overall evaluation by
its stakeholder (Helm et al. 2010), which comprises two dimensions (Schwaiger
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Fig. 5 Corporate reputation model in SmartPLS 3
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2004). The first dimension captures cognitive evaluations of the company, and the
construct is the company’s competence (COMP). The second dimension captures
affective judgments, which determine the company’s likeability (LIKE).
This two-dimensional reputation measurement has been validated in different coun-
tries and applied in various research studies (e.g., Eberl and Schwaiger 2005;
Raithel and Schwaiger 2015; Schloderer et al. 2014). Research has shown that the
approach performs favorably (in terms of convergent validity and predictive valid-
ity) compared with alternative reputation measures (e.g., Sarstedt et al. 2013).
Schwaiger (2004) also identified four exogenous constructs that represent the key
sources of the two corporate reputation dimensions: (1) the quality of a company’s
products and services, as well as the quality of its customer orientation (QUAL);
(2) the company’s economic and managerial performance (PERF); (3) the
company’s corporate social responsibility (CSOR); and (4) the company’s attractive-
ness (ATTR).

In terms of construct measurement, COMP, LIKE, and CUSL have reflectively
specified measurement models with three items. CUSA draws – for illustrative
purposes – on a single-item measure. The four exogenous latent variables QUAL,
PERF, CSOR, and ATTR have formative measurement models. Table 3 provides an
overview of all items’ wordings.

Data

The model estimation draws on data from four German mobile telecommunica-
tions providers. A total of 344 respondents rated the questions related to the items
on a 7-point Likert scale, whereby a value of seven always represents the best
possible judgment and a value of one the opposite. The most complex partial
regression in the PLS path model has eight independent variables (i.e., the forma-
tive measurement model of QUAL). Hence, following Cohen’s (1992) recommen-
dations for multiple ordinary least squares regression analysis or running a power
analysis, one would need only 54 observations to detect R2 values of around 0.25,
assuming a significance level of 5% and a statistical power of 80%. When
considering the more conservative inverse square root method suggested by
Kock and Hadaya (2018), the minimum sample size requirement is approximately
275, assuming a minimum path coefficient of 0.15 at a 5% probability of error
level.

The dataset has only 11 missing values, which are coded with the value�99. The
maximum number of missing data points per item is 4 of 334 (1.16%) in cusl_2.
Since the relative number of missing values is very small, we continue the analysis
by using the mean value replacement of missing data option. Box plots diagnostic by
means of IBM SPSS Statistics (Sarstedt and Mooi 2019) reveals influential obser-
vations, but no outliers. Finally, the skewness and excess kurtosis values, as pro-
vided by the SmartPLS 3 data view, show that all the indicators are within the �2
and +2 acceptable range (George and Mallery 2019).
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Table 3 Item wordings (Hair et al. 2022)

Attractiveness (ATTR) - formative

attr_1 [the company] is successful in attracting high-quality employees.

attr_2 I could see myself working at [the company].

attr_3 I like the physical appearance of [the company] (company, buildings, shops, etc.).

Competence (COMP) - reflective

comp_1 [the company] is a top competitor in its market.

comp_2 As far as I know, [the company] is recognized worldwide.

comp_3 I believe that [the company] performs at a premium level.

Corporate Social Responsibility (CSOR) - formative

csor_1 [the company] behaves in a socially conscious way.

csor_2 [the company] is forthright in giving information to the public.

csor_3 [the company] has a fair attitude toward competitors.

csor_4 [the company] is concerned about the preservation of the environment.

csor_5 [the company] is not only concerned about profits.

Customer loyalty (CUSL) - reflective

cusl_1 I would recommend [company] to friends and relatives.

cusl_2 If I had to choose again, I would choose [company] as my mobile phone services
provider.

cusl_3 I will remain a customer of [company] in the future.

Customer satisfaction (CUSA) - single item

Cusa If you consider your experiences with [company], how satisfied are you with
[company]?

Likeability (LIKE) – Reflective

like_1 [the company] is a company that I can better identify with than other companies.

like_2 [the company] is a company that I would regret more not having if it no longer existed
than I would other companies.

like_3 I regard [the company] as a likeable company.

Quality (QUAL) – Formative

qual_1 The products/services offered by [the company] are of high quality.

qual_2 [the company] is an innovator, rather than an imitator with respect to [industry].

qual_3 [the company]‘s products/services offer good value for money.

qual_4 The services [the company] offers are good.

qual_5 Customer concerns are held in high regard at [the company].

qual_6 [the company] is a reliable partner for customers.

qual_7 [the company] is a trustworthy company.

qual_8 I have a lot of respect for [the company].

Performance (PERF) - formative

perf_1 [the company] is a very well-managed company.

perf_2 [the company] is an economically stable company.

perf_3 The business risk for [the company] is modest compared to its competitors.

perf_4 [the company] has growth potential.

perf_5 [the company] has a clear vision about the future of the company.
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Model Estimation

The model estimation uses the basic PLS-SEM algorithm by Lohmöller (1989), the
path weighting scheme, a maximum of 300 iterations, a stop criterion of 0.0000001
(or 1�10�7), and equal indicator weights for the initialization (default settings in the
SmartPLS 3 software). After running the algorithm, it is important to ascertain that
the algorithm converged (i.e., the stop criterion has been reached) and did not reach
the maximum number of iterations. However, with sufficiently high numbers of
maximum iterations (e.g., 300 and higher), the PLS-SEM algorithm practically
always converges in empirical studies, even in very complex market research
applications.

Figure 6 shows the PLS-SEM results. The numbers on the path relationships
represent the standardized regression coefficients while the numbers displayed in the
circles of the endogenous latent variables are the R2 values. An initial assessment
shows that CUSA has the strongest effect (0.505) on CUSL, followed by LIKE
(0.344) and COMP (0.006). These three constructs explain 56.2% (i.e., the R2

value) of the variance of the endogenous construct CUSL. Similarly, we can interpret
the relationships between the exogenous latent variables ATTR, CSOR, PERF, and
QUAL, as well as the two corporate reputation dimensions COMP and LIKE. But
before we address the interpretation of these results, we must assess the constructs’
reflective and formative measurement models.
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Fig. 6 Corporate reputation model and PLS-SEM results
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Results Evaluation

Reflective Measurement Model Assessment
The evaluation of the PLS-SEM results begins with an assessment of the reflective
measurement models (i.e., COMP, CUSL, and LIKE). Table 4 shows the results and
evaluation criteria outcomes. We find that all three reflective measurement models
meet the relevant assessment criteria. More specifically, all the outer loadings are
above 0.708, indicating that all indicators exhibit a sufficient level of reliability.
Furthermore, all AVE values are above 0.50, providing support for the measures’
convergent validity. The composite reliability ρc has values of 0.869 and higher,
which is clearly above the expected minimum level of 0.70. Moreover, the
Cronbach’s alpha values range between 0.776 and 0.831, which is acceptable.
Finally, all composite reliability ρA values meet the 0.70 threshold. These results
suggest that the construct measures of COMP, CUSL, and LIKE exhibit high levels
of internal consistency reliability.

Finally, we assess the discriminant validity by using the HTMT criterion. All the
results are clearly below the conservative threshold of 0.85 (Table 5). Next, we run
the bootstrapping procedure with 10,000 samples with percentile bootstrap confi-
dence intervals, and one-tailed testing at the 0.05 significance level (which corre-
sponds to a two-sided 90% confidence interval). The results provide the HTMT
confidence interval’s upper bounds (i.e., UB95) are below 0.85, suggesting that all
the HTMT values are significantly different from this conservative threshold
(Table 5). This even holds for CUSA and CUSL as well as COMP and LIKE,
which are conceptually similar. We thus conclude that discriminant validity has
been established.

The CUSA construct is not included in the reflective (and subsequent formative)
measurement model assessment, because it is a single-item construct. For this
construct, indicator data and latent variable scores are identical. Consequently,

Table 4 PLS-SEM assessment results of reflective measurement models

Latent
variable Indicators

Convergent validity Internal consistency reliability

Loadings
Indicator
reliability AVE

Cronbach’s
alpha

Reliability
ρA

Composite
reliability ρc

> 0.70 > 0.50
>
0.50 0.70–0.90 > 0.70 > 0.70

COMP comp_1 0.824 0.679 0.688 0.776 0.786 0.869

comp_2 0.821 0.674

comp_3 0.844 0.712

CUSL cusl_1 0.833 0.694 0.748 0.831 0.839 0.899

cusl_2 0.917 0.841

cusl_3 0.843 0.711

LIKE like_1 0.880 0.774 0.747 0.831 0.836 0.899

like_2 0.869 0.755

like_3 0.844 0.712
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CUSA does not have a measurement model, which can be assessed using the
standard evaluation criteria.

Formative Measurement Model Assessment
The formative measurement model assessment initially focuses on the constructs’
convergent validity by conducting a redundancy analysis of each construct (i.e.,
ATTR, CSOR, PERF, and QUAL). The redundancy analysis draws on global single
items, which summarize the essence each formatively measured construct purports
to measure. These single items have been included in the original questionnaire. For
example, respondents had to answer the statement, “Please assess to which degree
[the company] acts in socially conscious ways,” measured on a scale of 1 (not at all)
to 7 (extremely). This question can be used as an endogenous single-item construct
to validate the formative measurement of corporate social responsibility (CSOR). For
this purpose, we need to create a new PLS path model for each formatively measured
construct that explains the global measure as an endogenous single-item construct as
shown in Fig. 7. All the path relationships between the formatively measured
construct and its global single-item measure (i.e., 0.874, 0.857, 0.811, and 0.805)
are above the critical value of 0.70. We thus conclude that convergent validity of the
formatively measured constructs has been established.

Next, we assess whether critical levels of collinearity substantially affect the
formative indicator weight estimates. We find that the highest VIF value (i.e.,
2.269 for the formative indicator qual_3) is clearly below the more conservative
threshold value of 3, suggesting that collinearity is not at a critical level.

Testing the indicator weights’ significance draws on the bootstrapping procedure
(10,000 samples, percentile bootstrap confidence intervals, two-tailed testing at the
0.05 significance level). Table 6 shows the resulting 95% percentile confidence
intervals. The results show that most of the indicator weights are significant, with
the exception of csor_2, csor_4, qual_2, qual_3, and qual_4, whose indicator
weight confidence intervals include the value 0. However, these indicators exhibit
statistically significant loadings above the 0.50 threshold, providing support for their
absolute contribution to the constructs. In addition, prior research has substantiated
the relevance of these indicators for the measurement of the CSOR and QUAL
constructs (Eberl 2010; Sarstedt et al. 2013; Schwaiger 2004). Therefore, we retain
the nonsignificant, but relevant, indicators in the formative measurement models.

To summarize, the results of the reflective and formative measurement model
assessment suggest that all construct measures exhibit satisfactory levels of

Table 5 HTMT values

COMP CUSA CUSL LIKE

COMP

CUSA 0.465 (UB95: 0.552)

CUSL 0.532 (UB95: 0.618) 0.755 (UB95: 0.809)

LIKE 0.780 (UB95: 0.843) 0.577 (UB95: 0.640) 0.737 (UB95: 0.803)

Note: UB95: represents the upper bounds of the 95% confidence interval
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reliability and validity. We can therefore proceed with the assessment of the struc-
tural model.

Structural Model Assessment
Following the structural model assessment procedure (Fig. 3), we first need to check
the structural model for collinearity issues by examining the VIF values of all sets of
predictor constructs in the model. Most VIF values are below the conservative
threshold of 3, except for QUAL in the regressions of COMP and LIKE on the
four formative predictor constructs. However, as the VIF value (3.487) is very close
to 3, we conclude that collinearity among the predictor constructs is not a critical
issue in the structural model.

When analyzing the path coefficient estimates of the structural model (Table 7),
we start with the key target construct CUSL on the right-hand side of the PLS path
model (Fig. 6). The construct CUSA (0.505) has the strongest effect on CUSL,
followed by LIKE (0.344), while the effect of COMP (0.006) is very close to zero.
Bootstrapping results substantiate that the effects of CUSA and LIKE on CUSL are
significant, while COMP does not have a significant effect at the 5% probability of
error level. Moreover, COMP has a significant, but relatively small effect on CUSA
(0.146), while the effect of LIKE is relatively strong (0.436). We further find that the
model explains 56.2% of CUSL’s variance (i.e., R2¼ 0.562), which is relatively high

Table 6 Formative indicator weights and significance testing results

Formative
constructs

Formative
indicators

Outer weights
(outer loadings)

95% confidence
interval

Significant
( p < 0.05)?

ATTR attr_1 0.414 (0.755) [0.273, 0.542] Yes

attr_2 0.201 (0.506) [0.067, 0.320] Yes

attr_3 0.658 (0.891) [0.541, 0.777] Yes

CSOR csor_1 0.306 (0.771) [0.126, 0.461] Yes

csor_2 0.037 (0.571) [�0.094, 0.187] No

csor_3 0.406 (0.838) [0.244, 0.552] Yes

csor_4 0.080 (0.617) [�0.070, 0.225] No

csor_5 0.416 (0.848) [0.222, 0.6583] Yes

PERF perf_1 0.468 (0.846) [0.329, 0.594] Yes

perf_2 0.177 (0.690) [0.036, 0.305] Yes

perf_3 0.194 (0.573) [0.092, 0.299] Yes

perf_4 0.340 (0.717) [0.209, 0.475] Yes

perf_5 0.199 (0.638) [0.075, 0.338] Yes

QUAL qual_1 0.202 (0.741) [0.086, 0.309] Yes

qual_2 0.041 (0.570) [�0.051, 0.143] No

qual_3 0.106 (0.749) [�0.009, 0.217] No

qual_4 �0.005 (0.664) [�0.106, 0.112] No

qual_5 0.160 (0.787) [0.053, 0.270] Yes

qual_6 0.398 (0.856) [0.268, 0.509] Yes

qual_7 0.229 (0.722) [0.111, 0.334] Yes

qual_8 0.190 (0.627) [0.066, 0.304] Yes
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taking into account that the model only considers the effects of customer satisfaction
and the rather abstract concept of corporate reputation as predictors of customer
loyalty. With a value of 0.292, R2 of CUSA is clearly lower but still satisfactory,
considering that only LIKE and COMP explain customer satisfaction in this model.

When analyzing the key predictors of LIKE, which has a substantial R2 value of
0.558, we find that QUAL has the strongest significant effect (0.380), followed by
CSOR (0.178), and ATTR (0.167). PERF (0.117) has the weakest effect on LIKE,
which is not significant at the 5% level (Table 7). Corporate reputation’s cognitive
dimension COMP also has a substantial R2 value of 0.631. Analyzing this construct’s
predictors shows thatQUAL (0.430) and PERF (0.295) have the strongest significant
effects. On the contrary, the effects of ATTR (0.086) and CSOR (0.059) on COMP are
not significant at the 5% level. Analyzing the exogenous constructs’ total effects on
CUSL shows that QUAL has the strongest total effect (0.248), followed by CSOR
(0.105), ATTR (0.101), and PERF (0.089). These results suggest that companies
should focus on marketing activities that positively influence the customers’ percep-
tion of the quality of their products and services.

Table 7 also shows the f 2 effect sizes. Relatively high f 2 effect sizes occur for the
relationships CUSA ➔ CUSA (0.412), LIKE ➔ CUSA (0.159), QUAL ➔ COMP
(0.143) and LIKE ➔ CUSL (0.138). These relationships also have particularly
strong path coefficients of 0.30 and higher. Interestingly, the relationship between
QUAL and LIKE has a strong path coefficient of 0.380, but only a weak f 2 effect size
of 0.094. All the other f 2 effect sizes in the structural model are weak and, if below
0.02, negligible.

The next step is to assess the model’s predictive power by running the PLSpredict
procedure with ten folds and ten repetitions. The focus is on the model’s key target
construct CUSL and its three indicators cusl_1, cusl_2, and cusl_3. The results in
Table 8 show that all three indicators achieve Q2

predict larger than zero, indicating that

Table 7 Path coefficients of the structural model and significance testing results

Path
coefficient

95% confidence
interval

Significant
( p < 0.05)?

f 2 effect
size

ATTR ! COMP 0.086 [�0.015, 0.190] No 0.009

ATTR ! LIKE 0.167 [0.034, 0.297] Yes 0.030

COMP ! CUSA 0.146 [0.008, 0.270] Yes 0.018

COMP ! CUSL 0.006 [�0.104, 0.112] No <0.001

CSOR ! COMP 0.059 [�0.051, 0.169] No 0.005

CSOR ! LIKE 0.178 [0.070, 0.278] Yes 0.035

CUSA ! CUSL 0.505 [0.414, 0.584] Yes 0.412

LIKE ! CUSA 0.436 [0.321, 0.557] Yes 0.159

LIKE ! CUSL 0.344 [0.232, 0.457] Yes 0.138

PERF ! COMP 0.295 [0.167, 0.417] Yes 0.082

PERF ! LIKE 0.117 [�0.027, 0.250] No 0.011

QUAL ! COMP 0.430 [0.291, 0.550] Yes 0.143

QUAL ! LIKE 0.380 [0.272, 0.513] Yes 0.094
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the model outperforms the naïve benchmark (i.e., the training sample means).
Analyzing the prediction errors produced by the PLS path model shows their
distribution is not highly unsymmetric. Hence, the following analyses focus on the
RMSE statistic. The analysis shows thaz the RMSE values produced by the PLS path
model are consistently lower than those of the LM benchmark. For example, while
the PLS-SEM analysis produces an RMSE value of 1.299 for cusl_1, the LM
benchmark’s RMSE value is 1.312.

The final step involves comparing the original reputation model (Fig. 6) with an
alternative, more complex model in which ATTR, CSOR, PERF, and QUAL addi-
tionally relate to CUSA and CUSL. As in the PLSpredict analysis, the focus is on the
key target construct CUSL. Computing the BIC for these two models yields a value
of �261.602 for the original model and �245.038 for the alternative, more complex
model. This result provides empirical support for the original model. Similarly,
Liengaard et al. (2021) support the established corporate reputation model using
CVPAT when compareing it to an alternative version of this model.

Conclusions

Prior research discussing the benefits and limitations of PLS-SEM or analyzing its
performance (e.g., in terms of parameter estimation) has usually not acknowledged
that the method takes on a fundamentally different philosophy of measurement
compared to factor-based SEM (e.g., Rhemtulla et al. 2020). Rather than assuming
a common factor model structure, PLS-SEM draws on composite model logic to
represent reflective and formative measurement models. The method linearly com-
bines sets of indicators to form composites that represent the conceptual variables of
interest (Lohmöller 1989; Wold 1982). Different from factor-based SEM, which
equates constructs and the conceptual variables that they represent (Rigdon et al.
2019), PLS-SEM is an approximation method that inherently recognizes that con-
structs and conceptual variables are not identical (Rigdon et al. 2017). As Rigdon
(2016, p. 19) notes, “common factor proxies cannot be assumed to carry greater
significance than composite proxies in regard to the existence or nature of conceptual
variables.”

PLS-SEM offers a good approximation of common factor models in situations
where factor-based SEM (chapter▶ “Structural Equation Modeling”) cannot deliver
results due to its methodological limitations in terms of, for example, model com-
plexity, sample size requirements, or inclusion of composite variables in the model
(Reinartz et al. 2009; Sarstedt et al. 2016; Willaby et al. 2015). Bentler and Huang’s

Table 8 PLSpredict results
Q2

predict
RMSE

PLS-SEM LM

cusl_1 0.260 1.299 1.312

cusl_2 0.234 1.522 1.538

cusl_3 0.142 1.530 1.567
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(2014) PLSe as well as Dijkstra and Henseler’s (2015b) PLSc algorithm allow
researchers to mimic factor-based SEM results while benefiting from the original
PLS-SEM method’s flexibility in terms of model specification. Such an analysis
assumes, however, that factor-based SEM is the correct estimator that delivers the
true results as a benchmark for SEM (Hair et al. 2019a).

Most importantly, PLS-SEM constitutes a causal-predictive approach to SEM,
which focuses on establishing the predictive power of a model, whose structure has
been derived from theory and logic. PLS-SEM strikes a balance between factor-
based SEM, which follows a confirmatory paradigm, and modern machine learning
methods, which focus on prediction (Hair and Sarstedt 2021a) by providing a
“cognitive path to predictions” (Douglas 2009, p. 454). As Hair and Sarstedt
(2021a) note, “we live in a noisy, probabilistic world in which we can at best
make imperfect predictions. In such a world, causal explanation reduces the com-
plexity of the world to make it more manageable and understandable.” At the same
time, solely following the confirmation-only paradigm limits the practical usefulness
of research as the ‘correct’ model does not necessarily exhibit high levels of
predictive power.

While standard PLS-SEM analyses provide important insights into the strength
and significance of the hypothesized model relationships, more advanced modeling
and estimating techniques shed further light on the proposed relationships. Research
has brought forward a variety of complementary analysis techniques and procedures,
which extend the methodological toolbox of researchers working with the
method (e.g., to conduct robustness checks; Sarstedt et al. 2020b). Examples of
these methods include the confirmatory tetrad analysis (CTA-PLS), which enables
researchers to statistically test if the measurement model operationalization should
rather build on effect or composite indicators (Gudergan et al. 2008), and latent class
techniques, which allow assessing if unobserved heterogeneity affects the model
estimates. Prominent examples of latent class techniques for PLS-SEM include finite
mixture partial least squares (Hahn et al. 2002; Sarstedt et al. 2011), PLS genetic
algorithm segmentation (Ringle et al. 2014; Ringle et al. 2013), prediction-oriented
segmentation (Becker et al. 2013b), iterative reweighted regressions (Schlittgen et al.
2016), and a modified k-means clustering approach (Fordellone and Vichi 2020).
Further methods to account for heterogeneity in the structural model include the
analysis of moderating effects (Memon et al. 2019), and the multigroup analysis
(Matthews 2017), including testing for measurement invariance (Henseler et al.
2016b).

Approaches for combing PLS-SEM with the necessary condition analysis (NCA;
Richter et al. 2020) and the fuzzy-set qualitative comparative analysis (fsQCA; e.g.,
Leischnig et al. 2016; Rasoolimanesh et al. 2021), testing nonlinear effects (Hair
et al. 2018b), higher-order constructs (Sarstedt et al. 2019), mediation effect (Nitzl
et al. 2016), conditional process models (Sarstedt et al. 2020a), and model compar-
ison using CVPAT (Liengaard et al. 2021) and its extensions for predictive model
assessment and comparison (Sharma et al. 2021) complement the set of advanced
PLS-SEM procedures. A further complementary method, the importance-
performance map analysis (IPMA), facilitates richer outcome discussions in that it
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extends the analysis of total effects in the model by adding a second results
dimension to the analysis which incorporates the average values of the latent vari-
ables (Ringle and Sarstedt 2016). Finally, Hult et al. (2018) introduced a procedure
for handling endogeneity in PLS path models, which occurs when a construct’s error
term is correlated with the scores of one or more explanatory variables in a partial
regression relationship (chapter ▶ “Dealing with Endogeneity: A Nontechnical
Guide for Marketing Researchers”). In such a situation, path coefficient estimates
become causally uninterpretable, which proves problematic in PLS-SEM analyses
that have a strict confirmatory focus. Hair et al. (2018b) provide a more detailed
overview and introduction to these complementary techniques for more advanced
PLS-SEM analyses. Sarstedt et al. (2020b) discuss a series of robustness tests that
draw on advanced modeling and model evaluation techniques.

Cross-References

▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶Measuring Customer Satisfaction and Customer Loyalty
▶ Structural Equation Modeling
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Abstract

The amount of text available for analysis by marketing researchers has grown
exponentially in the last two decades. Consumer reviews, message board
forums, and social media feeds are just a few sources of data about consumer
thought, interaction, and culture. However, written language is filled with
complex meaning, ambiguity, and nuance. How can marketing researchers
possibly transform this rich linguistic representation into quantifiable data for
statistical analysis and modeling? This chapter provides an introduction to text
analysis, covering approaches that range from top-down deductive methods to
bottom-up inductive methods for text mining. After covering some foundational
aspects of text analysis, applications to marketing research such as sentiment
analysis, topic modeling, and studying organizational communication are sum-
marized and explored, including a case study of word-of-mouth response to a
product launch.

Keywords

Text analysis · computer-assisted text analysis · automated content analysis ·
content analysis · topic modeling · sentiment analysis · LDA · word-of-mouth

Introduction

Automated or computer-assisted text analysis describes a family of methods for
parsing, classifying, and then quantifying textual data for further statistical
analysis. Although automated text analysis using computers dates to the 1960s,
the rise of digital technology for communicating has created a deluge of textual
data for analysis and increased managerial desire to gain insights from text
produced by consumers. Platforms like Twitter and Facebook provide a space
for consumer-to-consumer discussion of products, brands, and services. Retail
sites like Amazon, Best Buy, and Zappos and review sites like CNET and Yelp!
host consumer reviews on a nearly endless array of products and services.
Particular brand sites like Sephora, Gap, and Brooks Brothers offer social
shopping capabilities such as consumer reviews represented by stars and exten-
sive product reviews that detail fit, material, and quality (Stephen and Toubia
2010). This text from consumers, firms, and the media can provide insight into
consumer needs and wants, sentiment, market structure, and transmission of
word-of-mouth communication.

This chapter presents a high-level overview of methods for conducting text
analysis in market research and provides resources for further investigating
the methodological details depending on the approach one takes to text
analysis.
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Foundations of Text Analysis

History

To understand the implementation of automatic analysis, it will help to first review
its relation to and its emergence from traditional content analysis. Content analysis is
a method used in the social sciences to systematically assess and analyze the content
of a message, usually in the form of text. Although traditions of content analysis go
as far back as sixteenth-century monastic life, modern content analysis was first
proposed by Max Weber (1924) to study the press. Since then, scholars in sociology
and communications have used human-coded content analysis to investigate differ-
ences in media content, describe trends in communications over time, reveal patterns
of organizational or individual attention, and examine attitudes, interests, intentions,
or values of an individual or a group (e.g., Berelson 1971; Gamson and Modigliani
1989).

Traditional content analysis was first introduced to consumer behavior with
Kassarjian’s (1977) outline of the method and was then updated by Kolbe and
Burnett (1991) in an attempt to improve reliability and objectivity, focusing primar-
ily on standards for calculating inter-coder agreement (see also Grayson and Rust
2001). In consumer research and marketing, traditional content analysis has been
used to analyze trends in magazine advertisements (Belk and Pollay 1985), direct
mail (Stevenson and Swayne 1999), newspaper articles (Garrett 1987), and word-of-
mouth communication (Moore 2015; Phelps et al. 2004) to name a few. Although
automated text analysis can improve the efficiency and reliability of traditional
content analysis, it also has limitations. For instance, computerized text analysis
can miss subtleties in the text and cannot code finer shades of meaning. While
dealing with negation is possible (Jia et al. 2009; Villarroel Ordenes et al. 2017), it
remains somewhat analytically onerous.

Automated text analysis is not radically new, but it has become easier to imple-
ment since the widespread of adoption of the personal computer. The General
Inquirer (Stone 1966) was one of the first computer content-analytic tools used in
consumer research (Kranz 1970). Since then, vast strides have been made in
automated text analysis. Kranz’s (1970) early three-page treatment of computer-
assisted content analysis in marketing deals with dictionary creation, but does not
address category creation, validity, or measurement decisions. Since then, a variety
of approaches have emerged.

Approaches to Text Analysis

In current practice, there are essentially two orientations toward automated text
analysis: top-down vs. bottom-up approaches (Boyd and Pennebaker 2015a; Mehl
and Gill 2008). The top-down approach counts concepts of interest, identified either
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through a list of words or through a set of rules. Top-down, also called dictionary-
based, methods are deductively or theoretically driven in the sense that researchers
use them to look for hypothesized patterns in text from a known set of concepts.
Bottom-up approaches, on the other hand, code all concepts present in the text and
then look for patterns (Rayson 2009). These approaches can range considerably from
methods of supervised learning, where researchers define some preliminary catego-
ries and then train the computer to sort documents based on latent differences, to
discovery-oriented approaches such as calculating then flagging statistically signif-
icant differences between groups of texts (Rayson 2009), or fully automated pro-
cesses where a computer identifies topics based on word co-occurrence (Lee and
Bradlow 2011). In this way, bottom-up approaches to text analysis become similar to
data mining approaches. That is, first the researcher looks at all differences in the
data and builds conclusions from those differences.

Top-down, dictionary-based methods have been used extensively in social sci-
ences like consumer research (Humphreys and Wang 2018), psychology (Chung and
Pennebaker 2013; Mehl and Gill 2008; Pennebaker and King 1999), sociology (Van
de Rijt et al. 2013), and political science (Grimmer and Stewart 2013; Lasswell and
Leites 1949) due to their ability to translate theoretical constructs into text and the
transparency in reporting results and reliabilities. Bottom-up methods, on the other
hand, have been used more extensively in engineering, computer science, and
marketing science. Marketing strategy has drawn from both approaches, although
dictionary-based approaches appear to be more common (Ertimur and Coskuner-
Balli 2015; Humphreys 2010; Ludwig et al. 2013; Packard et al. 2014). This chapter
briefly covers the fundamentals of each approach before moving to their application
in marketing.

Dictionary-Based Methods

Dictionary-based methods for text analysis are based on a predeveloped word list, or
dictionary, for counting the occurrence of words in a text. Standardized dictionaries
are available for many constructs such as sentiment (e.g., Hutto and Gilbert 2014),
marketing-related constructs like authenticity and brand personality (Kovács et al.
2013; Opoku et al. 2006), as well as many standard concepts in psychology
(Pennebaker et al. 2001; Snefjella and Kuperman 2015) and other fields like political
science (Dunphy et al. 1974; Stone 1966). In addition to using a standard dictionary,
many researchers choose to create their own dictionary to fit the specific context,
although this should be done only if a standard dictionary is not available.

There are several methods for dictionary creation ranging from inductive to
deductive. The most inductive method of dictionary creation is to work from a
concordance, or all words in the document listed in terms of frequency and group
words according to relevant categories for the research question and hypothesis
(Chung and Pennebaker 2013). If the researcher does not know what categories are
relevant a priori, qualitative methods of reading and coding the text prior to dictio-
nary development can be used to create a set of relevant concepts and a list of words
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for their operationalization in text (Humphreys 2010). For example, to study insti-
tutional logics pertaining to the Yoga industry in newspaper articles, Ertimur and
Coskuner-Balli (2015) first open and then axially code a dataset of newspaper
articles and other historical texts. Generally, a random sample of 10–20% of the
dataset is sufficient for coding (Humphreys and Wang 2018), but researchers should
be mindful of unevenness in data quantity according to category or time period and
stratify accordingly (Humphreys 2010). The most deductive method for dictionary
creation is to create a wordlist from theoretical concepts or categories. However, one
should be mindful of the tendency for researchers and writers to pick more abstract
words than are generally present in textual data (Palmquist et al. 2009). For this
reason, careful postmeasurement validation is necessary to ensure construct validity.
After text is cleaned and stored and the dictionary has been created, researchers use a
program like Diction, LIWC, WordStat, or R to execute counts. Data can then be
saved and analyzed using a traditional statistical package or, for some packages like
Wordstat and R, analyzed within the same package.

After calculating word frequencies, postmeasurement validation should be
performed, and for this there are a variety of methods ranging from methods that
are iterative with dictionary development to stand-alone calculations of inter-rater
reliability. Weber (2005) suggests a saturation procedure whereby researchers pull a
sample of 10 or 20 instances of a concept and have a research assistant code them as
accurately representing the category (or not). If the rate is below 80%, the dictionary
category should be revised until the threshold is met. Pennebaker et al. (2001)
recommend a method of validating the dictionary, but not the resulting measure-
ments. Here, three research assistants count a word as being representative of the
category or not, and words are retained if two of the three coders agree. If they do
not, the word should be dropped from the dictionary. Percentage agreements on
dictionary categories can then be calculated and reported, and the general threshold
is similar to that for Krippendorf’s alpha, above 75%. A final option is to compare
the computer-coded results with an extensive set of human-coded results from two or
more coders. To do this, one selects a random sample from the dataset (the amount
may vary depending on the size of the dataset) and human coders code the text
according to the category descriptions, calculating reliability as one would in a
traditional content analysis. This can then be compared to the additional “coder”
of the computer to produce a similarity score. Although this final method has the
advantage of comparison with traditional content analysis, it is not always necessary
and in some cases can produce misguided results. Human coders pick up on subtle
meanings that computers cannot and likewise computers are able to code concepts
consistently and evenly over an entire dataset without omission or bias. For this
reason, comparing human to computer coding can in some cases be like comparing
apples to oranges.

Dictionary-based analyses have studied a wide range of theoretical concepts such
as emotion (Berger and Milkman 2012), construal level (Snefjella and Kuperman
2015), institutional logics (Ertimur and Coskuner-Balli 2015), risk (Humphreys and
Thompson 2014), speech acts (Ludwig et al. 2016; Villarroel Ordenes et al. 2017),
and framing (Fiss and Hirsch 2005; Humphreys and Latour 2013; Jurafsky et al.
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2014). Awide variety of contexts can be explored through dictionary-based analysis
such as product and restaurant reviews (Barasch and Berger 2014, Jurafsky et al.
2014; Kovács et al. 2013), tweets (Mogilner et al. 2010), customer service calls
(Packard et al. 2014), blogs (Arsel and Bean 2013), and news articles (Humphreys
2010; Humphreys and Thompson 2014).

Classification Methods

Bottom up methods include classification and topic modeling. Classification
methods of text analysis are based on categorizing documents into different
“types” and then further describing what textual elements best predict the likelihood
of being a “type.” For example, Tirunillai and Tellis (2012) use classification to train
a model to recognize positive versus negative reviews based on star rating. Using a
training data set, they use both a Naïve Bayes and a support vector machine (SVM)
classifier to find which words predict star rating and then use this information to
categorize the entire set of reviews, achieving a precision – meaning their algorithm
predicts true positives – 68–85% of the time, depending on the product category.
Villarroel Ordenes et al. (2017) further refine measures of sentiment by using both
explicit and implicit indicators of emotion to measure sentiment and sentiment
strength, also testing their framework on a set of starred reviews from Tripadvisor,
Amazon, and Barnes and Noble. Classification models vary in sophistication;
accuracy of these approaches varies from 55% to 96% for sentiment, for example
(Hutto and Gilbert 2014). In general, considerations for model selection are based on
the underlying frequency of occurrence of words that one wants to use to make
predictions and the clarity of categories one wants to produce. For instance, SVM
classification provides clear, mutually-exclusive categories, while LDA produces
probabilistic groupings where it is possible for categories to overlap.

Classification models have been used to study reviews (Tirunillai and Tellis 2012;
Van Laer et al. 2017), online forums (Homburg et al. 2015), email (Ludwig et al.
2016), and literary texts (Boyd and Pennebaker 2015b; Plaisant et al. 2006). For
example, to measure sentiment of message board posts, Homburg et al. (2015)
classify a training dataset of unambiguously positive and negative posts. They
then use sentiment as a dependent measure to understand how much firm engage-
ment actually increases positive consumer sentiment, finding that there are
diminishing returns to engagement.

Topic Modeling

Topic modeling is an approach that begins by parsing text into discrete words, and
then finding recurring patterns in co-occurrence that are statistically unlikely if one
assumes that word occurrence is independent. In this way, the analysis identifies
categories that may be latently represented by the manifest presence of words, and
these word groupings are then labeled to represent meaningful concepts or traits in
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the data as one would in factor analysis. For example, in a study of hotel reviews,
Mankad et al. (2016) use latent Dirichlet allocation (LDA) to identify five topics that
occur in users’ TripAdvisor comments, identifying amenities, location, transactions,
value, and experience as key topics mentioned by reviewers. Latent semantic
analysis (LSA), k-means clustering (Lee and Bradlow 2011), probabilistic latent
semantic analysis (PLSA), and LDA (Blei et al. 2003) are all methods for topic
modeling, with LDA being the most recent and common analytical methods for topic
modeling.

LSA is based on the relatively straightforward process of generating a matrix that
represents word occurrence (0 for nonoccurrence and 1 for occurrence) and then
generating a vector of similarity that represents either the similarity between documents
(the dot product of the rows) or the similarity between two or more words (the dot
product of the columns). These vectors can then be reduced using singular value
decomposition (SVD) to represent the “topics” that tend to occur across documents.
PLSA is a similar process; topics are treated as word distributions based on probability.

LDA is a hierarchical Bayesian model for determining the mixture of topics present
in a given document. Like PLSA, it assumes topics are probabilistic distributions of
words, except it uses a Dirichlet prior for estimation, which reduces over-fitting. For
LDA, one sets the number of topics prior to running the analysis (othermethods such as
hierarchical Diriclet Process do not need this assumption). Using assumptions that there
is a certain probability distribution for the choice of topic, and a certain distribution
within that for choice of words to represent that topic, LDA produces a final list of
topics (as represented by a list of words in that topic) and probabilities that a given topic
is in the document. Althoughmost approaches are word or phrase based, Büschken and
Allenby (2016) conduct an LDA analysis using sentences as the unit of analysis and
find that this produces results more predictive of rating than word-based LDA. A
sentence-based model assumes that all words in the sentence are part of the same
topic, which is reasonable, given Grice’s maxims of relation and manner (Grice 1975).
Büschken and Allenby (2016) use this model to identify topics for Italian restaurants
and hotels from reviews on Expedia and we8there.com.

LDA has been used in a wide range of applications (Büschken and Allenby 2016;
Tirunillai and Tellis 2014). As with dictionary approaches, postmeasurement vali-
dation, in this case using a hold-out sample or other predictive technique (e.g.,
external DV) is highly advisable. Machines will only read literal meaning, and
therefore homonyms and other colloquialisms including sarcasm can be problematic,
as they are overly general and overly specific words. Further, careful cleaning and
preparation of the text can reduce errors, as textual markers can sometimes be added
during data collection (e.g., headers, footers, etc.).

Market Research Applications of Text Analysis

This section discusses ways that text analysis has been incorporated into marketing
research. Although potentially useful for many types of sources and research ques-
tions, text analysis has been particularly fruitful for representing consumer sentiment,
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studying word-of-mouth communication, and creating positioning maps from online
text, among other uses.

Sentiment Analysis

Many text analytic programs and practitioners claim to measure sentiment, but it is
not always clear what goes into this key metric. Before discussing the text analysis of
sentiment, it might first to help to discuss what sentiment is and what it is trying to
capture. In most marketing contexts, researchers and practitioners are interested in
consumer attitude toward a brand, product, or service. Yet attitudes are complex
mental structures composed not only of emotion, but also cognitive beliefs and
intentions (Fishbein and Ajzen 1972). Further, the importance an attitude for any
given product for ultimate purchase and future behavior like loyalty depends to a
large degree on context and involvement (Petty and Cacioppo 1979). Further, people
may articulate attitudes online that do not fully reflect their underlying attitude, there
may be selection bias in the attitudes they choose to articulate, and they may behave
differently than the attitudes they espouse. Nonetheless, discourse online, as
expressed in sentiment, can reflect some underlying attitude about a brand, product,
or service, and importantly can affect the social consensus shared among other
consumers. Sentiment has been shown to predict movie sales (Krauss et al. 2008;
Mestyán et al. 2013) and stock market returns (Bollen et al. 2011; De Choudhury
et al. 2008; Tirunillai and Tellis 2012), although there may be natural biases in
nonreporting of null results. Structurally, most approaches seek to classify or mea-
sure text as having positive, negative, or sometimes neutral sentiment, and some
approaches transform this into net sentiment, subtracting negative words from
positive words (e.g., Ludwig et al. 2013; Homburg et al. 2015). Top-down
approaches do this using a dictionary or lexicon of words, while bottom-up
approaches use some underlying external classification like human coding of a
training set or customer ratings to identify the set of words that indicate sentiment.

In addition to valence, sentiment can also have strength and certainty. Previous
research has used both explicit, semantic indicators of emotion along with implicit,
more pragmatic indicators of emotion such as speech acts (commission, assertion,
and direction) to successfully measure strength of sentiment (Villarroel Ordenes
et al. 2017). Work has further shown that other types of speech such as demonstra-
tives (Potts and Schwarz 2010) and other pragmatic markers can indicate expressive
content, commonly expressed in product reviews (Constant et al. 2009).

Using predeveloped, standardized dictionaries is one of the most reliable ways to
measure sentiment across contexts, as these wordlists have been developed and
tested on a wide range of textual data, and some have themselves been developed
through bottom-up approaches.

VADAR, for example, uses a dictionary with a rule-based approach for measuring
sentiment. Specifically, Hutto and Gilbert (2014) use a combination of dictionaries
based on previous standardized dictionaries like LIWC and General Inquirer but then
also develop five rules that take into account syntax and grammar tomeasure intensity
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as well. Bottom-up approaches to measure sentiment produce accuracies ranging
from 55% to 96%, depending on the context (Hutto and Gilbert 2014). For example,
Tirunillai and Tellis (2012) use star rating to create a classification system for
sentiment, with an accuracy rate of 68–85%.

Studying Word of Mouth Through Text Analysis

The primary use of text analysis in marketing research to date has been to study
online word-of-mouth communication. Consumers have always shared product
information through interpersonal communication (Arndt 1967), and this communi-
cation has been shown to be more effective than commercial messages (Brown and
Reingen 1987; see also Godes and Mayzlin 2004; Money et al. 1998). And yet while
word-of-mouth communication was previously communicated face to face or over
the telephone, it is now visible and archived on social shopping sites (Stephen and
Toubia 2010), social media (Humphreys 2015), and third-party review sites and
platforms. Product reviews on Amazon, hotel reviews on TripAdvisor, and restau-
rant reviews on Yelp! have all provided marketing insights to better understand the
relationship of ratings to sales and stock price (Moe and Schweidel 2014; Schweidel
and Moe 2014; Moe and Trusov 2011). For example, Moe and Trusov (2011) find
that positive reviews have a direct effect on sales, but this effect is somewhat short-
lived because of downward convergence as people post more ratings (i.e., the social
dynamics of posts result in reviews becoming relatively more negative over time).
Further, positivity can vary depending on platform (Schweidel and Moe 2014;
Villarroel Ordenes et al. 2017).

Word of mouth online can be represented by measuring valence, volume, and
variance (Godes and Mayzlin 2004). Volume and variance are relatively compatible
with existing modeling measures, as volume can be aggregated and variance can be
measured through start ratings or other user input. Valence, while partially captured
by star measures, is perhaps best measured by sentiment, which requires text
analysis as a method for converting the unstructured data of linguistic description
into data that can be incorporated into quantitative models. There is also, it should be
noted, a wide range of linguistic properties and semantic content beyond valence that
usefully informs marketing research (Humphreys and Wang 2018). For instance,
Kovács et al. (2013) show that restaurants have higher ratings if reviewers mention
authenticity in their reviews, even when controlling for restaurant quality.

The role of emotion in the spread of word of mouth is one key topic. In a study of
sharing news articles, Berger and Milkman (2012) find that positive emotion
increases virality, but so too does the presence of intense negative emotion like
anger or anxiety in the article. Effects of the sender and speech context have also
been investigated through text analysis using pronouns. Using a standard dictionary
for first-person personal pronouns (“I,” “me”), Packard and Wooten (2013) find that
consumers self-enhance more in word of mouth to signal knowledge about a
particular domain. Consumers have also been shown to engage in self-presentation
by sharing fewer negative emotions when broadcasting to a large audience versus
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narrowcasting to a smaller one (Barasch and Berger 2014). When evaluating
a product like a movie, consumers are more likely to use pronouns referring to
themselves when expressing views about taste vs. their views about quality (Spiller
and Belogolova 2016).

Topic Discovery and Creating Positioning Maps from Online Text

Text analysis can be used to create positioning maps for brands, companies, or
products and to visualize market structure based on attributes within a particular
category. Bottom-up methods such as LDA, LSA, and similar methods like k-means
clustering are used to group words in a text (like reviews) into attributes or brands
based on common co-occurrence. For example, to create a visualization of market
structure for cameras from a set of reviews on Epinions.com, Lee and Bradlow
(2011) first extract phrases related to particular attributes (e.g., battery life, photo
quality) and then use k-means clustering to group phrases based on their similarity
(calculated as cosine similarity between vectors of words). They then go on to show
that this kind of analysis reveals attributes mentioned by and important to con-
sumers, but absent from expert reviews such as size, design, and screen brightness.
Similarly, using text data from diabetes forums, Netzer et al. (2012) find several side
effects commonly mentioned on the forum, but absent from a site like WebMD (e.g.,
weight gain, kidney problems).

Topic-based models are compatible with psychological theories such as spreading
activation in semantic memory (Collins and Loftus 1975). For instance, based on the
idea that people talk about brands together that are related in semantic memory,
Netzer et al. (2012) produce a perceptual map for car brands using reviews from
Edmunds.com and compare that to results from perceptual maps based on more
typical survey and brand-switching based on sales approaches. In doing so, they find
several notable differences between the results based on text analysis versus those
based on sales or survey data. For instance, based on the sales data, Korean brands of
cars are not associated with the Japanese brands. However, based on the textual data,
these brands are grouped together. This suggests that while text analysis can capture
cognitive associations, these may not necessarily translate into behavior such as
brand switching (Table 1).

Measurement of the Organization and Firm Environment

Finally, text analysis can be used to measure organizational attention through the
analysis of shareholder reports, press releases, and other marketing communication.
These studies are primarily based on dictionary-based analysis, and often create
dictionaries rather than using standardized dictionaries to fit the industry or original
context and research question. For example, scholars have developed dictionaries to
study the changes in CSR language over time to reveal differences in developing
countries (Gandolfo et al. 2016). In an analysis of annual reports, Lee et al. (2004)
find that companies that issued internal reasons for negative events had higher stock
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prices a year after the event, suggesting that organizations who attribute blame to
firm-controlled factors appear more in control than those who do not and therefore
have more favorable impressions from investors. Interactions between firm
employees or agents can also be better understood. For example, Ludwig et al.
(2016) develop a method for detecting deception in sales emails. They find that
deceivers are more likely to use elaborate, superfluous descriptions, and less self-
referencing, quickly taking on the linguistic style of their intralocular.

Firm environment can also be captured through measuring media such as news-
papers, magazines, and trade publications. For example, Humphreys (2010) shows
that changes in the institutional and cultural environment enabled the legitimation of
the casino gambling industry in the United States. Humphreys and Thompson (2014)
study the environment of risk perceptions following two crises – the Exxon and BP
oils spills – and find that the media narratives serve to contain risk perceptions
following these disasters. Ertimur and Coskuner-Balli (Ertimur and Coskuner-Balli
2015) trace how the Yoga industry shifted over time, developing distinct institutional
logics that impacted branding and positioning within the industry.

Issues in Working with Textual Data

Although language provides a window into many areas of consumer thought and
market strategy, there are several issues to consider when analyzing text. Language
rarely, if ever, follows patterns of normal distribution (Zipf 1932). For instance,

Table 1 Types of text analysis

Type of text
analysis

Materials Theoretical areas Software/
methods

Relevant
examples

Dictionary-
based

Reviews,
tweets, online
forums, news
articles, press
releases, annual
reports

Sentiment/emotion,
psychological
mindset (e.g.,
construal level),
brand attention and
brand value,
legitimacy/corporate
image, customer
service

LIWC,
WordStat,
Diction

Humphreys
(2010), Berger
and Milkman
(2012), Packard
et al. (2018)

Classification Reviews, online
forums, literary
texts, tweets,
email

Sentiment,
deception, product
attributes, market
structure

SVM, Naïve
Bayes,
k-nearest
neighbor,
neural
networks,
WordStat

Homburg et al.
(2015), Van
Laer et al.
(2018),
Tirunillai and
Tellis (2012)

Topic
modeling

Product or
service reviews,
online forums

Product attributes,
positioning, market
structure, customer
needs

LDA, LSA,
PLSA,
K-means
clustering, R,
WordStat

Netzer et al.
(2012), Lee and
Bradlow (2006),
Buschken and
Allenby (2016)
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functional words like “a,” “he,” and “there” make up about 40% of all language in
normal usage. Common words like nouns and verbs make up another 59%, and only
a small fraction of those common words will usually be relevant to the research
question. Textual data are often left-skewed (lots of zeros), documents often contain
different numbers of words, and the words of interest are often too infrequently or
too frequently occurring to make meaningful comparisons. For these reasons, after
word frequency has been calculated, researchers will often transform the data prior to
statistical analysis. Further, many test such as ANOVAwould not be appropriate due
to the non-normal distribution of the data.

Text is therefore almost always represented as a percentage of words in the
document (e.g., Ludwig et al. 2013), and log transformation to account for
skewedness is often commonly employed (Netzer et al. 2012), although there are
several possible transformations used (Manning et al. 2008). Tf*idf is a measure
often used to account for the term frequency, standardized by the overall frequency
of a word in the dataset as a whole (see Salton and McGill 1983 for details in
calculating tf*idf, with attendant options for transformation).

Traditional methods for measuring co-occurrence such as Pearson correlation can
be problematic due to the large number of zeros in a dataset (Netzer et al. 2012). For
this reason, researchers will often use cosine similarity or Jaccard distance to
compare words and documents. A series of robustness checks using multiple
methods to calculate co-occurrence is often necessary to ensure that results do not
occur simply due to infrequently or too-frequently occurring words (Monroe et al.
2009; Netzer et al. 2012). For example, if a word like “him” is very common, it is
likely to co-occur with more words than an infrequent word like “airbag.” And yet,
the word “airbag” may be more diagnostic of the concept safety than a personal
pronoun like “him” even though detecting the co-occurrence will be more likely.
Because data are not normally distributed, statistical tests such as the Mann-Whitney
test, which tests for significance in rankings rather than absolute number, can serve
as a replacement for ANOVA.

Extended Example: Word-Of-Mouth Differences Between Experts
and Nonexperts to a Product Launch

Purpose

This section presents a sample text analysis as an illustration of top-down, dictio-
nary-based methods according to the six stages (Table 2) (Reprinted from the Web
Appendix to Humphreys and Wang (2018), Automated Text Analysis for Consumer
Research, Journal of Consumer Research, 44(6), 1 (April), 1274–1306, with per-
mission from Oxford University Press.). Automated text analysis is appropriate for
tracking systematic trends in language over time and making comparisons between
groups of texts. To illustrate a top-down approach to text analysis, this section
presents a short study of consumer response to the product launch of an mp3
player/wireless device, the Apple iTouch. This case has been selected because it
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can be used to illustrate both comparison between groups and change over time and
because it is relatively agnostic regarding theoretical framework. One could study
word-of-mouth communication from a psychological, sociological, anthropological,
or marketing strategy point of view (c.f. Godes and Mayzlin 2004; Kozinets 2010;
Phelps et al. 2004; Winer 2009).

Stage 1: Develop a Research Question

This study proposes a specific, strategic research question: After a product launch,
do experts respond differently from nonexperts? Further, how does word-of-mouth
response change in expert versus nonexpert groups as the product diffuses? Word of
mouth from experts can be particularly influential in product adoption, so it is

Table 2 Stages of automated content analysis

Stages of automated content analysis (dictionary-based analysis)

Stage Elements of stage

1. Identify a research
question

Select a research topic and a question within that topic

2. Data collection Identify sources of information
Online databases or newspapers
Digital converters for printed text
Web scraping for internet data
Archival materials
Field interviews

2a. Data cleaning Organize the file structure
Spell check, if applicable
Eliminate problematic characters or words

3. Construct definition Qualitatively analyze a subsample of the data
Create a word list for each concept
Have human coders check and refine dictionary
Preliminarily implement dictionary to check for false positives and
false negatives

4. Operationalization Conduct computer analysis to compute the raw data
Make measurement decisions based on the research question:
Percent of all words
Percent of words within the time period or category
Percent of all coded words
Binary (“about” or “not about” a topic)

5. Interpretation and
analysis

Make unit of analysis decisions: By article, year, decade
Comparison by genre, speaker, etc.
Choose the appropriate statistical method for the research question:
Analysis of variance (ANOVA)
Regression analysis
Multidimensional scaling
Correlational analysis

6. Validation Pull a subsample and have coded by a research assistant or researcher

Calculate Krippendorf’s alpha or a hit/miss rate
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important to know how their views may change over time and in comparison with
nonexpert groups. The context chosen for this study, the launch of the Apple iTouch,
is a good case to study because both the product category and the criteria for
evaluating the product were ambiguous at the time of launch.

Stage 2: Data Collection

Data. Data were collected from two websites, Amazon.com and CNET.com. Con-
sumer comments from Amazon were used to reflect a nonexpert or mixed consumer
response, while user comments from CNET were used to measure expert response.
Amazon is a website that sells everything from books to toys and has a broad
audience. CNET, on the other hand, is a website dedicated exclusively to technology
and is likely to have posters with greater expertise. Archival data also suggests that
there are differences among visitors to the two sites.

According to Quantcast estimates (Quantcast 2010a, CNET Monthly Traffic
(Estimated)) (www.quantcast.com/cnet.com), users to CNET.com are predominantly
male and likely to visit websites like majorgeeks.com and read PC World. Amazon
users, on the other hand, represent a broader demographic. They are more evenly
divided between men and women (48/52), are more likely to have kids, and, visit
websites like buy.com (Quantcast 2010b, Amazon monthly traffic (estimated))
(www.quantcast.com/amazon.com). Data were collected on November 2009.

Data were collected with the help of a research assistant from Amazon.com and
CNET.com from September 5, 2007 to November 6, 2009. Keyword search for
“iPod Touch”was used to gather all customer reviews available for the product at the
time of analysis. Reviews for multiple versions of the device (first and second
generation) were included and segmented in the analysis according to release date.
The first-generation iPod Touch was released on September 5, 2007, and the second-
generation was released on September 9, 2008.

Data were scraped from the internet, stored in a spreadsheet, and segmented by
post. The comment date, poster name, rating, location of the poster, and the text of
the comment itself were all stored as separate variables. Two levels of analysis were
chosen. The most basic level of analysis is at the comment level. Each comment was
coded for its content so that correlations between the content of that post and the
date, poster experience, and location could be assessed. The second level of analysis
is the group level, between Amazon and CNET. Comparisons can thus be made
between expert and nonexpert groups based on the assumption that Amazon posters
are nonexperts or a mix of experts and nonexperts, while dedicated members of the
CNET community have more expertise. Lastly, because the time variable exists in
the dataset, it will also be possible to periodize the data. This may be relevant in
assessing the effects of different product launches (e.g., first- vs. second-generation
iPods) on the textual content of posts. About 204 posts were collected from Amazon
and 269 posts were collected from CNET, yielding a sample size high enough to
make statistical comparisons between groups.
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After a file structure was created, data were cleaned by running a spell check on
all entries. Slang words (e.g., “kinda”) were replaced with their proper counterparts.
Text was scanned for problematic words. For example, “touch” appeared with
greater frequency than usual because it was used to refer to the product, not to the
sense. For that reason, “touch” was replaced with a noncodable character like “TTT”
so that it would not be counted in the haptic category used in the standard dictionary.

Stage 3: Construct Definition

Work in information processing suggests that experts process information differently
from novices (Alba and Hutchinson 1987). In general, experts view products more
cognitively, evaluating product attributes over benefits or uses (Maheswaran and
Sternthal 1990; Maheswaran et al. 1996; Sujan 1985). While novices use only
stereotypical information, experts use both attribute information and stereotypical
cues (Maheswaran 1994). Experts are able to assimilate categorical ambiguity,
which means one would expect for them to adjust to an ambiguous product more
quickly than nonexperts (Meyers-Levy and Tybout 1989). They also tend to
approach judgment in an abstract, higher level construal than nonexperts (Hong
and Sternthal 2010).

From previous research, several working hypotheses can be developed. The
strategic comparison we wish to make is about how experts versus nonexperts
evaluate the product and whether or not this changes over time. First, one might
expect that experts would use more cognitive language and that they would more
critically evaluate the device.

H1: Experts will use more cognitive language than novices.
Secondly, one would also expect that experts would attend to features of the

device, but nonexperts would attend more to uses of the device (Maheswaran et al.
1996). Note that this is based on the necessary assumption that users discuss or
verbally elaborate on what draws their mental attention, which is reasonable
according to previous research (Carley 1997).

H2: Experts will discuss features more than nonexperts.
H3: Nonexperts will discuss benefits and uses more than experts.
Thirdly, over time, one might predict that experts would be able to assimilate

ambiguous product attributes while nonexperts would not. Because experts can more
easily process ambiguous category information and because they have a higher
construal level, one would predict that they would like this ambiguous product
more than novices and would learn to assimilate the ambiguous information. For
example, in this case, the capacity of the device makes it hard to categorize (cell
phone vs. mp3 player). One would expect that experts would more quickly under-
stand this ambiguity and that over time their elaboration on this feature would
decrease.

H4: Experts will talk about ambiguous attributes (e.g., capacity) less over time,
while nonexperts will continue to discuss ambiguous attributes.Lastly, previous
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research suggests that these differences in focus, experts on features and nonexperts
on benefits, would differentially influence product ratings. That is, ratings for non-
experts will depend on evaluation of benefits such as entertainment, but expert
ratings would be influenced more by features.

H5: Ratings will be driven by benefits for nonexperts.
H6: Ratings will be driven by features by experts.
These are only a few of the many potential hypotheses that could be explored in

an analysis of online word-of-mouth communication. One could equally explore the
cultural framing of new technologies (Giesler 2008) or the co-production of brand
communications by seeding product reviews with bloggers (Kozinets 2010). The
question posed here – do experts respond differently to new products than non-
experts over time? – is meant to be illustrative of what can be done with automated
text analysis rather than a rigorous test of the psychological properties of expertise.

In this illustrative example, the key constructs in examining H1 through H6 are
known: expert and nonexperts, cognitive expressions, affect, product features, and
benefits. We therefore proceed with a top-down approach. Operationalization for
some of the constructs – cognitive and affective language – is available through a
standardized measure (LIWC; Pennebaker et al. 2001), and we can therefore use a
standardized dictionary for their operationalization. However, some constructs such
as features and benefits are context-specific, and a custom dictionary will be neces-
sary for operationalization. In addition, there may be other characteristics that
distinguish experts from nonexperts. We will therefore also perform a bottom-up
approach of classification.

Stage 4: Operationalization

For this analysis, the standard LIWC dictionary developed by Pennebaker et al.
(2001) was used in addition to a custom dictionary. Table 3 presents the categories
used from both the standardized and the custom dictionaries. The standard dictionary
includes categories for personal pronouns such as “I,” parts of speech such as
adjectives, psychometrically pretested categories such as positive and negative
emotion, and content-related categories such as leisure, family, and friend-related
language.

A custom dictionary was also developed to identify categories specific to the
product word-of-mouth data analyzed here. Ten comments from each website were
selected and open coded, with the researcher blind to the site from which they came.
Then, ten more comments from each website were selected and codes were added
until saturation was reached (Weber 2005). In all, the subsample required to develop
the custom dictionary was 60 comments, 30 from each website, about 11% of all
comments. Fourteen categories were created, each containing six words on average.

The qualitative analysis of comments revealed posters tended to talk about the
product in terms of features or aesthetics. Dictionary categories were therefore
created for words associated with features (e.g., GPS, camera, hard drive, battery)
and for aesthetics (e.g., sharp, clean, sexy, sleek). Posters also had recurring concerns
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about the capacity of the device, the cost of the product, and reported problems they
experienced using the product. Categories were created for each of these concerns.
Because there might be some researcher-driven interest in product uses and because
posters frequently mentioned entertainment and work-related uses, categories were
created for each type of use. Categories of “big” versus “small” were included
because previous theorization in sociology has suggested that the success of the
iPod comes from its offerings of excess – large screen, excess capacity, etc. (Sennett
2006). Two categories were created to count when competitive products were
mentioned, either within the Apple brand or outside of it.

The dictionary categories were validated by three coders who suggested words
for inclusion and exclusion. Percent agreements between coders on each dictionary
category can be found in Table 3. Average agreement was 90%. Text files were run

Table 3 Standard and custom dictionaries

Category Abbv Words No. of words Alpha*

Social processes Social Mate, talk, they, child 455 97%

Affective processes Affect Happy, cried, abandon 915 97%

Positive emotion Posemo Love, nice, sweet 406 97%

Negative emotion Negemo Hurt, ugly, nasty 499 97%

Cognitive processes Cogmech Cause, know, ought 730 97%

Past tense Past Went, ran, had 145 94%

Present tense Present Is, does, hear 169 91%

Future tense Future Will, gonna 48 75%

Discrepancy Discrep Should, would, could 76 80%

Exclusive Excl But, without, exclude 17 67%

Perceptual processes Percept Observing, heard, feeling 273 96%

Relativity Relativ Area, bend, exit, stop 638 98%

Space Space Down, in, thin 220 96%

Time Time End, until, season 239 94%

Work Work Job, majors, xerox 327 91%

Aesthetics Aesth Sleek, cool, shiny, perfect 9 83%

Capacity Cap Capacity, space, storage 7 93%

Cost Cost Price, cost, dollars 6 100%

Big Big Large, huge, full 5 83%

Problems Prob Bugs, crash, freeze 7 100%

Competitors Comp Zune, Microsoft, Archos 4 67%

Apple Apple Nano, iPod, iPhone 4 100%

Entertainment Ent Music, video, fun 9 85%

Job Job Work, commute, conference 9 100%

Connectability Connect Wifi, internet, web 9 95%

Features Feat GPS, camera, battery 5 87%

Love Love Amazing, best, love 7 100%

Small Small Empty, small, tiny 4 100%

Expertise Expert Jailbreak, jailbroke, keynote 4 67%

*Alpha is the percent agreement of three coders on dictionary words in the category
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through the LIWC program, first using the standard dictionary, then using the custom
dictionary. A spreadsheet was created from three sets of data: (1) the comment data
collected directly from the website (e.g., date of post, rating of product), (2) the
computer output from the standard dictionary, and (3) the output from the custom
dictionary.

Validation. Once rough findings were gleaned, the coding was validated. Twenty
instances from each category were pulled from the dataset and categorized. “Hits”
and “false hits” were then calculated. This yielded an average hit rate of 85% and a
“false hit” rate of 15%. The least accurate category was aesthetics, with a hit rate of
70% and a false hit rate of 30%. The most accurate category was “small,” which had
a hit rate of 95% and a false hit rate of 5%.

Stage 5: Interpretation and Analysis

Overall, the findings indicate that there are systematic differences between the way
experts and nonexperts interpret the new device. As with most textual data, there are
many potential variables and measures of interest. The standard LIWC dictionary
contains 61 categories, and in the dataset studied here, 28 of these categories were
significantly different among text from the three websites. We will report some of the
most notable differences, including those needed to test the hypotheses.

Comparison between groups. First, we assessed differences among the two
groups of comments. This was done by comparing differences in the percent of
words coded in each category between groups using the Mann-Whitney test due to
the skewed distribution of the data. Tables 4 and 5 show the differences by category.
With the standard dictionary, several important differences between the word of
mouth of nonexperts and experts can be discerned.

First, experts use more cognitive words (Mcog|CNET= 16.57, Mcog|Amazon= 15.64,
Mann-Whitney U = 30,562, z = 2.12 p < 0.05) than nonexperts, but they also use
more affective (both positive and negative) language (M

affect|CNET
= 7.3 vs. Maffect|

Amazon = 6.53, U = 30, 581, z = 2.14, p < 0.05) as well. The finding that experts
evaluate the product cognitively is congruent with previous research (Maheswaran
et al. 1996), and the highly affective tone indicates that they are likely more involved
in product evaluation (Kelting and Duhacheck 2009). However, CNET posters use
more negation (Mneg|CNET = 2.47, Mneg|Amazon = 1.74, U = 34,487, z = 4.81,
p< 0.001). Together with the presence of cognitive language, this indicates that they
may be doing more critical evaluation. The first hypothesis was therefore supported.

Secondly, nonexperts focus on distal rather than proximate uses, while experts
focus on device-related issues like features. Nonexperts on Amazon use more distal
social, time-, family-related language (e.g., Msocial|Amazon = 5.55 vs. Mscoial|

NET = 4.23, U = 22,259.5, z = �3.52, p < 0.001 and Mtime|Amazon = 5.65, Mtime|

CNET = 3.89, U = 18,527 z = �6.01, p < 0.001). Experts on CNET, on the other
hand, focus on features (Mfeatures|CNET = 0.61 vs. Mfeatures|Amazon = 0.41,
U = 30,012.5, z = 2.10, p < 0.05) and capacity (Mconnect|CNET = 1.08
vs. Mconnect|Amazon= 0.756, U= 35,819, z= 6.14, p< 0.001), but also on aesthetics
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Table 4 Amazon vs. CNET differences in means, standard dictionary

Amazon CNET

WC 160.99 149.11

Social*** 5.55 4.23

Affect† 6.53 7.20

Posemo 5.50 5.94

Negemo 1.10 1.31

Cogmech* 15.64 16.57

Past*** 3.58 2.13

Present 8.91 9.22

Future* 0.76 1.01

Certain 1.66 1.87

Excl** 2.68 3.20

Percept*** 3.34 4.86

Relativ*** 11.26 9.53

Space* 4.06 4.64

Time*** 5.65 3.89

Work 2.08 1.92

Achieve 2.24 2.58

Leisure† 3.28 3.80
†p < 0.10
*p < 0.05
**p < 0.01
***p < 0.001

Table 5 Differences in means, custom dictionary

Amazon CNET

Aesthetics*** 0.168 0.833

Capacity*** 0.538 1.408

Cost* 0.384 0.641

Big** 0.070 0.178

Problems† 0.286 0.165

Competitors 0.080 0.104

Apple* 1.461 1.927

Entertainment** 1.377 1.838

Job† 0.164 0.087

Connect* 0.756 1.075

Features† 0.413 0.606

Love*** 0.746 1.470

Small* 0.054 0.135

Expert* 0.009 0.028
†p < 0.10
*p < 0.05
**p < 0.01
***p < 0.001
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(Maesth|CNET = 0.833 vs. Maesth|Amazon = 0.168, U = 33,518, z = 5.02, p < 0.001).
Experts discussed aesthetics about eight times more than the mixed group on
Amazon. These differences indicate that, in general, experts focus on the device
itself while nonexperts focus on uses. This lends convergent evidence to support to
H2 and H3.

One other finding not specified by the hypotheses is notable. Nonexperts use
more past-oriented language (Mpast|Amazon = 3.58 vs. Mpast|CNET = 2.13, U = 21,
289, z = �4.20, p < 0.001), while expert posters use more future-oriented language
(Mfuture|CNET = 1.01, Mfuture|Amazon = 0.76, U = 31,446, z = 2.83, p < 0.01). This
suggests that experts might frame the innovation in the future while nonexperts focus
on the past. Recent research suggests experts and novices differ in temporal con-
strual (Hong and Sternthal 2010). Experts focus on the far future while novices focus
on the near future. The results here provide convergent evidence that supports
previous research and suggests a further hypothesis – that novices focus on past-
related information – for future experimental research (Table 6).

In an extended analysis, adding a third group could help the researcher draw more
rigorous conclusions through techniques of analytic induction (Mahoney 2003; Mill
1843). That is, if an alternative explanation is possible, the researcher could include a
comparison set to rule out the alternative explanation. For example, one might
propose that the difference in “cost” discourse is because Amazon.com users make
less money than CNET users, on average, and are therefore more concerned about
price. One could then include an expert website where the users are known to have a
lower income than the posters on Amazon to address this explanation. If the same
results are found, this would rule out the alternative hypothesis.

Trends over time. Because the product studied here is an innovation, the change of
comments over time as the product diffuses is of interest. Time was analyzed first as
a continuous variable in a correlation analysis and then as a discrete variable in
ordinary least squares regression analyses, where the release of the first and second
generation of iTouch marked each period.

A correlation analysis was used to analyze time as a continuous variable
(Table 7). We find that affect increases over time in the expert group, which indicates
that group becomes more involved (r(affect, Date|CNET) = 0.144, p < 0.01). Experts
become less concerned with capacity (r(capacity, Date|CNET) = �0.203 p < 0.01) while
Amazon users do not change in their concern for capacity. This indicates that experts
learn something about the product category: the limited capacity was initially a
shock to reviewers, as it was unorthodox for an mp3 player. But, over time, experts
learned that this new category segment – mp3 wireless devices – did not offer as
much memory. This supports Hypothesis 4 (Fig. 1).

Besides the correlation analysis, we also did ordinary least square linear regres-
sion analyses to analyze whether reviewers’ expressions changed over time
(Table 8). We created a binary variable, which is set to “100 if the review is posted
after the second generation of iTouch is released, and “000 if the review is for the first
generation of iTouch. To account for asymmetry in their distributions due to
non-normality, we log-transformed the term frequency measurements of affect and
capacity, our variables of interest. The results from the OLS analyses are congruent
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with the correlation analysis. We observe that in general expert reviewers discussed
capacity more than nonexperts ( bβ ¼ 0:407, p < 0.001). However, as predicted by
Hypothesis 4, such discussions decreased after the release of the second-generation
iPod ( bβ ¼ �0:546, p < 0.001).

Affect also changes differentially in each group (Fig. 2). The OLS analysis
(Table 7) shows that in the first time-period, affective language is roughly equivalent,
but experts on CNET use more affective language in the second time-period than
they do in the first time-period (bβ ¼ 0:275, p< 0.05). In short, site and period have a
positive interactive effect on affective expressions. These are just two examples of

Table 7 OLS regression coefficient estimates. Affect and capacity by time and Amazon vs. CNET

Dependent variable B Std. error

ln(capacity) (Intercept)*** 0.275 0.058

Is 2nd Gen 0.024 0.081

Is CNET*** 0.407 0.069

Is 2nd Gen � CNET*** �0.546 0.158

ln(affect) (Intercept)*** 1.916 0.048

Is 2nd Gen �0.043 0.068

Is CNET 0.063 0.057

Is 2nd Gen � CNET* 0.275 0.132

p < 0.10
*p < 0.05
**p < 0.01
***p < 0.001

Fig. 1 Mean number of capacity words by site and time period
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Table 8 Regression coefficients: predictors of product rating for experts vs. nonexperts

Coefficients

Site Category Unstandardized
coefficients

Standardized
coefficients

t Sig.

B Std.
error

Beta

Amazon (constant) 3.839 0.137 27.932 0.000

Aesthetics 0.145 0.175 0.058 0.833 0.406

Capacity 0.064 0.087 0.051 0.732 0.465

Problems �0.015 0.086 �0.012 �0.174 0.862

Entertainment 0.150 0.047 0.221 3.178 0.002

Connect �0.035 0.073 �0.033 �0.476 0.635

Features 0.174 0.088 0.136 1.972 0.050

CNET (constant) 3.799 0.144 26.373 0.000

Aesthetics 0.031 0.031 0.062 0.978 0.329

Capacity �0.029 0.042 �0.043 �0.697 0.486

Problems �0.290 0.195 �0.091 �1.484 0.139

Entertainment 0.011 0.040 0.017 0.277 0.782

Connect 0.100 0.049 0.128 2.062 0.040

Features �0.126 0.059 �0.137 �2.138 0.033

Fig. 2 Mean number of affect words by site and time period
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how automated content analysis can be used to assess changes in word-of-mouth
communication.

Regression with ratings. Now that relationships between semantic elements in the
text have been discerned, their relationship to other, nonsemantic variables is of
interest. For example, what factors impact ratings for experts vs. nonexperts? To
test the impact of discourse on rating, an OLS regression was run with rating
as the dependent variable and the discursive categories as the independent
variables. Several discursive variables were significant predictors of ratings overall
(FAmazon = 2.55, p < 0.05; FCNET = 2.30, p < 0.05). Results are shown in Table 8.
These reveal that the ratings of nonexperts were influenced by entertainment and
features, while the ratings of experts were affected by connectability and by the
(negative) evaluation of the features. This provides support for H5 and H6. However,
they also indicate a more complicated relationship. Features are correlated with both
expert and nonexpert ratings. However, for nonexperts, features are positively cor-
related with ratings while for experts, they are negatively correlated. Problems and
cost, although much discussed in the posts, appeared to have little effect on ratings.
The unimportance of cost may be explained by the fact that the ratings data are
nonbehavioral, that is, most posters had already purchased the device.

Stage 6: Validation

The previous analyses revealed there were systematic differences in the number of
words used between experts and nonexperts. To assess construct validity, we used a
triangulation approach to explore the relationships between the concepts through a
correlation analysis of word association within comment (Table 7). This means that
we are looking for how the dictionary categories occur together within one post. To
assess construct validity of affect, we included another operationalization of affect,
star rating, in the correlational analysis. We calculated Pearson correlations for all
categories in the set and compared them with cosine similarities. Both tables
produced directionally similar results, and here we report Pearson correlations, as
it accounts for both presence and absence of collocation. First, a few expected
correlations between categories were checked. For both sites, positive emotion is
correlated with rating (r(posem, rating) = 0.335, p < 0.01), as one would expect.
Negative emotion is negatively correlated with positive emotion (r(negemo,

posemo) = �0.348, p < 0.01). More can be learned, however, by comparing word
association in expert versus nonexpert groups.

In general, nonexperts use positive language alongside distal uses for the iPod
such as work and family (r(work,posem|Amazon) = 0.243, p < 0.01 and r(family, posemo|

Amazon) = 0.190, p < 0.01). For the non-experts, negative emotion is correlated with
problems, as one would expect (r(problems,negem|Amazon) = .470). For experts, positive
emotion occurs alongside aesthetics (r(aesth,posem|CNET) = 0.409, p < 0.01). For
experts, there is also a positive correlation between Apple and love (r(Apple, love|
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CNET) = 0.203, p < 0.01) that does not exist for nonexperts. These correlations
indicate that aesthetics are viewed positively by experts and that they are involved
with not only the device but the brand as well. Cosine similarities produce
directionally similar results.

Secondly, features are interpreted differentially between the two groups. Novices
interpret some features using standards of other categories (like anmp3 player), while
experts are more willing to judge them relative to the standards for a new category.
For example, from the correlation between small and capacity among the nonexpert
group (r(capacity,small|Amazon)= 0.144, p< 0.01), one can conclude that posters feel the
capacity is too small. No such correlation exists for experts. This could be because the
iTouch is a product without a known category. Experts can interpret size for this
ambiguous product, but novices are uncertain about what capacity is appropriate for
the device. These are just a few of the findings that can be gleaned using a correlation
Table. A full spatial analysis might compare the network of meanings in the Amazon
group to the network of meanings in the CNET group.

For the binary logistic classification, k-fold cross-validation was performed, and
per convention, we set k = 10. The resulting comparisons between predicted values
based on our model and the real values show that overall the model is 80.13%
accurate (95% accuracy confidence interval = [0.7624, 0.8363]). Table 9 shows the
confusion matrix.

In sum, the automated text analysis presented here shows that that experts evaluate
new products in a systematically different way from nonexperts. Using comparison
between groups, we show that experts evaluate products by focusing on features
while nonexperts focus on the uses and benefits of the devices. Using correlation
analysis, we find that experts associate aesthetics with positive emotion while non-
experts associate positive emotion with uses of the device and negative emotion with
problems. Further, the correlation analysis provides some validation for themethod of
automated content analysis by demonstrating the correlation between positive emo-
tion and ratings, a variable used in previous studies of online word-of-mouth com-
munication (Godes and Mayzlin 2004, 2009). We find that, over time, experts focus
less on problematic features like capacity and speak more affectively about the
product. A regression analysis of the elements of discourse on ratings demonstrates
that ratings for experts are driven by features, while ratings by nonexperts are better
predicted by both features and the amount of talk about entertainment, a benefit. Note
that, like field research, these findings make sense in convergence with previous
findings from experimental data and provide ecological validity to previous findings
obtained in laboratory settings. These are not meant to be a rigorous test of expertise,

Table 9 Confusion matrix from tenfold cross-validation. Accuracy= 0.8013. p-Value [accuracy>
no information rate] = < 2e-16

Prediction Expert Not expert

Expert 237 62

Not expert 32 142
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but rather an illustration of the way in which text analysis can provide convergent
evidence that is meaningful to consumer researchers.

Conclusion and Future Directions

Developments in text analysis have opened a large and fascinating arena for mar-
keting research. Theoretically, marketing research can now incorporate linguistic
theory to understand consumer attitudes, interaction, and culture (Humphreys and
Wang 2018). While most approaches have focused on analyzing word frequencies, a
vast world of looking at text structure at higher, conversational levels remain open.
For example, understanding where a word like “great” falls within the text itself
(early, middle, or late in a sentence or paragraph) may shed light on the importance
of the word in predicting, for example, consumer sentiment. Drawing inferences on
the sentence or paragraph level may yield more meaningful results in some contexts
(Büschken and Allenby 2016). Lastly, pragmatics, the area of linguistic research
aimed at understanding the effect of context on word meaning may help marketing
researchers capture more about the nature of consumer communication online.

Practically, incorporating this kind of data allows researchers and managers to
integrate the abundance of textual data with existing and growing datasets of
behavioral data collected online or through devices. And yet one must be aware of
the many limitations of using machines to interpret a human language that has
developed socially in face-to-face contexts over 100,000 years. Text analysis can
often be used to gather information about top-line patterns of attention or relatively
wrote patterns of interaction, but capturing the subtly of human communication
remains allusive to machines. Further, due to the ambiguity of language, careful and
transparent analysis and interpretation are required at each step of text analysis, from
cleaning textual markers that may be misleading to correctly interpreting correlations
and differences. Despite these challenges, marketing researchers have clearly shown
the theoretical, practical, and managerial insight that can be distilled through the
seemingly simple process of counting words.
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Abstract

Recent technical advances and the rise of digital platforms enhanced consumers’
abilities to take and share images and led to a tremendous increase in the impor-
tance of visual communication. The abundance of visual data, together with the
development of image processing tools and advanced modeling techniques, pro-
vides unique opportunities for marketing researchers, in both academia and
practice, to study the relationship between consumers and firms in depth and to
generate insights which can be generalized across a variety of people and contexts.

However, with the opportunity come challenges. Specifically, researchers
interested in using image analytics for marketing are faced with a triple challenge:
(1) To which type of research questions can image analytics add insights that
cannot be obtained otherwise? (2) Which visual data should be used to answer the
research questions, and (3) which method is the right one?

In this chapter, the authors provide a guidance on how to formulate a worthy
research question, select the appropriate data source, and apply the right method
of analysis. They first identify five relevant areas in marketing that would benefit
greatly from image analytics. They then discuss different types of visual data and
explain their merits and drawbacks. Finally, they describe methodological
approaches to analyzing visual data and discuss issues such as feature extraction,
model training, evaluation, and validation as well as application to a marketing
problem.

Keywords

Image analytics · Visual information · Image processing · Image tagging · Firm
images · Consumer images · Feature extraction · Deep neural networks · High-
level features · Low-level features · Human-coded features · Color histograms ·
Gabor filters

Introduction

“The drawing shows me at one glance what might be spread over ten pages in a
book.”

Ivan S. Turgenev, Fathers and Sons, 1862.
In the past two decades, images have been playing an increasing role in the

marketing arena. Social media outlets have become more image rich, new versions
of mobile phones have enhanced ability to take, store, and share photos, and storage
and communication infrastructures have become more accessible. These processes
have immensely increased the significance of images in consumer life in general, and
in marketing in particular.

Images have always been an important part of firms’ marketing efforts. Visuals
convey a sense of proximity and closeness, and thus, are able to represent objects
better than words (Amit et al. 2009). Relative to text, visual information was found to
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be better processed and better remembered by humans (MacInnis and Price 1987).
Therefore, many of the components of product design, packaging, brand elements,
advertising, and design of shopping outlets, use visuals.

These visuals impact consumer response and purchase. For example, Raghubir
and Greenleaf (2006) found that certain geometrical ratio of rectangular packaging
and print ads influence consumers’ relative preferences and purchase intentions.
Meyers-Levy and Zhu (2008) showed that various visual elements of store design,
such as architecture, freestanding in-store structures, display surfaces, type and
arrangement of display cases, mirror orientation, and artwork, relate to consumers’
choice and shopping behaviors.

In marketing communications, images are dominant in brands’ paid media, such
as print, outdoor, and television advertising. Over time, the proportion of pictorial
content in a typical magazine ad has grown, while the proportion of text has been
gradually shrinking (McQuarrie 2008). A higher proportion of pictorial content in an
ad is more efficient in attracting attention (Pieters and Wedel 2004), and is associated
with more positive attitude toward the ad (Radach et al. 2003) and with a better
memory of the advertised brand (Wedel and Pieters 2000). The layout of the ad, and
the size and color combination of its elements have a strong impact on consumers’
perceptions and attitudes toward the ad as well as the brand (Janiszewski 1998;
Wedel and Pieters 2014; Cho et al. 2008). For example, studies have found that ads
containing colors with lighter shade (high “value” in color theory terms) lead to
greater liking of the ad. This effect is mediated by stronger feelings of relaxation
induced by higher value colors. Higher levels of chroma (a color dimension that
relates to the intensity of the color) induce feelings of excitement, which in turn also
increase the likeability of the ad (Gorn et al. 1997). Finally, upward looking angles
are aligned with perception of potency while photos taken from a downward looking
angle were found to lead to a more detailed recall of the brand (Peracchio and
Meyers-Levy 2005).

In addition to product design and marketing communications, images are prom-
inently used in marketing research. Consumers express their thoughts, perceptions,
and emotions through images. Images have been demonstrated to successfully
disrupt people’s well-rehearsed narratives and reflect authentic thoughts and deep
metaphors. For this reason, visual research methods often better reflect emotions,
cultural practices, and attitudes compared to verbal methods (Reavey 2012). Qual-
itative visual methods are used to arrange brand associations on a map (John et al.
2006), to create brand collages (Zaltman and Coulter 1995; Zaltman and Zaltman
2008), and to elicit brand associations. Other studies used lab experiments
(Peracchio and Meyers-Levy 2005) or user-generated digital content (Liu et al.
2017; Klostermann et al. 2018; Pavlov and Mizik 2019; Dzyabura and Peres
2021) to create visual representation of brand associations and connect them with
brand characteristics.

The development of digital platforms has further increased the role of images in
consumers’ lives. Pictures became an important part of brands’ owned media –
websites, apps, and social media outlets, as well as of brands’ earned media – that is,
brand content posted by users on social media. Industry reports indicate that 74% of
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the content generated by firms contains some form of visual elements, including
photos, illustrations, videos, and data visualization (Venngage 2020). Much of the
visual activity happens through social media outlets: every minute 136,000 photos
are uploaded to Facebook. Every day five Million photos are uploaded to Instagram,
added to its corpus of 50 billion photos, which are viewed and receive 3.5 billion
likes per day by Instagram’s one billion users (ibid.). Consumers use images to
communicate with each other and share their experiences, feelings, and impressions.
Brands use visual data to learn about consumers’ needs and perceptions, to create
and communicate value, to shape consumers’ attitudes and drive them into action.
This ongoing activity has created a rich, dynamic, and vibrant visual ecosystem,
which provides a fertile ground for marketing research and marketing activity.

The abundance of visual data, together with the development of image processing
tools and advanced modeling techniques, provides unique opportunities for market-
ing researchers, in both academia and practice, to study the relationship between
consumers and firms in depth and to generate insights which can be generalized
across a variety of people and contexts.

However, with the opportunity come challenges. Specifically, researchers inter-
ested in using image analytics for marketing are faced with a triple challenge. First is
the formulation of the research question. Since working with visuals requires
elaborate data collection and elaborate analysis, one should identify a research
question to which image analytics can add insights that are difficult to obtain in
other, more conventional ways.

The second challenge is the choice of data. Visual data sources include user-
generated content on brands’ web pages (e.g., comments on the brand’s Facebook
page), data from consumer interactions with other consumers (e.g., one’s own
Instagram), firm-generated content, general photo repositories (e.g., Flickr), visual
product presentation in shopping outlets (eBay, Airbnb), or directly elicited visuals
(e.g., online collages). Each of these data sources has its own merits as well as
limitations and sometimes, once the research question has been identified, the right
data source needs to be carefully chosen. Sometimes, none of the existing data
sources contains all the information of interest and the researcher must find ways to
combine several sources or supplement the dataset with additional data collection.

The third challenge is the choice of method – most methods used in image
analytics were developed in engineering and computer science and were not neces-
sarily optimized for marketing questions. Therefore, using image analytics in mar-
keting requires tailoring existing methods to better fit the data and the research
question, or developing new methods altogether.

These three challenges are not independent of each other – the data and method
need to be congruent with the research question. For example, a research which
seeks to elicit brand associations (Dzyabura and Peres 2021) will need to use
interpretable features (such as objects in the pictures), rather than low-level image
patterns, and consequently can use image tagging methods and tag-based classifiers
to extract high-level features. On the other hand, forecasting the success of a brand
based on consumer reviews (Zhang and Luo 2019) has more freedom in choosing
the features, but requires showing that pictorial content contains information which
cannot be retrieved by a straightforward sentiment or content analysis of the review
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text. Finding the right combination of research question, data source, and method is
the key to producing meaningful image analytics research in marketing.

Our goal in this chapter is to provide guidance as to how to approach this triple
challenge: formulate a worthy research question, select the appropriate data source,
and apply the right method of analysis. We start by identifying research questions in
five areas that would greatly benefit from using image analytics. We then discuss the
different types of visual data including firm-generated and user-generated data and
explain their merits and limitations. While data sources constantly change, we
suggest guidelines for their characterization and evaluation. We further describe
the methodological approaches to analyzing visual data, discussing issues such as
feature extraction, model training, classification, and deep learning. We conclude
with a decision matrix which can be used as a tool to assist in matching the data and
method to the problem at hand. To provide the novice researcher with a gateway to
start implementing the ideas, we provide a hands-on tutorial (available on https://
github.com/dariasil/image_tutorial), which contains code implementation of several
fundamental image analytics tasks and explanations on the required software tools
and libraries. We hope that the set of research questions, data sources, richness of
methods, code and examples, and guidelines as to how to bring them all together,
will help marketing researchers to maximize the tremendous potential of image
analytics methods in order to expand the understanding of important research
problems and gain meaningful, valuable insights for the benefit of the field.

Top Research Questions by Area Using Image Analytics

The rapid evolution of the visual ecosystem has created unprecedented opportunities
to obtain new perspectives on enduring marketing questions. At the same time, it
also evoked a large number of new managerial decisions and consumer behaviors
which need to be studied. We are just beginning to scratch the surface of this
fascinating realm. We outline below the five major areas in marketing that have
been most affected by this ecosystem and offer, within each of them, a set of research
questions that could lead the further research using image analytics. These questions
are summarized in Fig. 1.

Fig. 1 Summary of future research questions for image analytics in marketing
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Product Design

In many product categories, design is a dominant factor in consumer choices (Bloch
1995; Rubera 2015). Firms use product design and aesthetics to differentiate them-
selves (Crilly et al. 2004) and to strategically position their brand among competitors
(Keller 2003).

Research has demonstrated how specific elements of product and package design
impact consumer perception (Greenleaf and Raghubir 2008). Studies of product
aesthetics are mostly focused on one or several specific visual aspects of a design,
such as characteristic lines, silhouettes, ornamentation, color, or texture (Orsborn
et al. 2009; Eisenman et al. 2016; Chan et al. 2018). Image analytics, on the other
hand, allows taking a more holistic view and study the joint, synergetic effect of the
overall product design to customer decision or product performance. It also makes it
possible to automatically compare a large number of designs and derive quantitative
insights and predictions.

Characterizing Designs: How Can Designs Be Characterized Above
and Beyond Their Specific Visual Elements?
Images can be used to classify and characterize product designs without the need to
break them down into specific predefined visual elements. Such classification can
help to:

1. Measure similarity and differences between designs. Specifically, quantify the
distance of a focal design from the “average” design, to evaluate how unique the
focal design is. This distance could be used to construct a metric measuring
design differentiation and design innovativeness.

2. Map designs to brand perceptual dimensions. For example, whether a car design
looks family friendly, or a shoe looks rugged, or a sofa looks modern.

3. Match the product design to the customer’s personal style. Such matching can be
used to identify and assemble the products to recommend to customers (see
stitchfix.com).

4. Creating new designs. Models of image analytics can be used to augment the
creative process of product design by suggesting novel and unexpected combi-
nations of existing design elements. Algorithms of generative adversarial net-
works (GAN) that use computer vision to assist in the process of product design.
Burnap et al. (2019) demonstrate how image analytic algorithms of GAN to
generate models of cars for the design team to consider.

Quantifying the Value of Designs: How Can We Assess and Predict
Consumer Attitudes Toward Various Product Designs?
Traditionally, demand models are based on quantifiable product attributes (e.g.,
miles per gallon, battery life, screen size, brand name, safety rating, price). The
design of a product, that is, its overall appearance, vibes, emotion, and symbolism, is
hard to be decomposed into quantifiable product attributes, yet they are critical
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factors in consumer choice. When a model is estimated using only these traditional
functional attributes, these design characteristics end up in the error term.

Image analytics can improve the accuracy of such models by incorporating
product images alongside the traditional characteristics in the demand model. For
example, they can incorporate information about the success of previous designs in
order to forecast various aspects of demand such as product liking, purchase in
different channels, product returns or word-of-mouth. Combining image analytics
with traditional models requires the development of new models and estimation
methods. Specifically, the challenge is to retain the interpretability and un-biasness
of some of the traditional coefficients such as price.

Advertising

Image analytics opens new possibilities for taking a systematic, quantitative
approach to selecting, adjusting, and optimizing the visual composition of print
and video advertisements.

Assessing Ad Creativity: How Can Print and Video Advertisements Be
Rated According to Their Level of Creativity? What Are
the Combinations of Visual Elements That Make an Ad Perceived
as Creative?
Creativity is an important property of advertising messages that is associated with ad
recall and effectiveness (Ang et al. 2007). It is sometimes defined as being composed
of two factors: divergence and relevance. Divergence is the originality of the ad, and
relevance is the extent to which at least some ad or brand elements are meaningful or
valuable to the consumer (Smith et al. 2007).

Identifying the visual qualities which construct creativity is challenging. There-
fore, creativity of visual ads is typically evaluated by human judges, using research
tools such as surveys (Yang and Smith 2009; Sheinin et al. 2011), creativity awards
(Lehnert et al. 2014), or crowdsourcing platforms (Kireyev et al. 2020).

Image analytics can allow for automated and scalable assessment of ad creativity.
This can be done, for example, by comparing the focal ads to award winning ads, or
to a corpus of candidate ads. Toubia and Netzer (2017) developed a prototypicality-
based measure of text creativity. Based on their approach, a similar measure can also
be constructed for images, either over predefined attributes or as a self-emergent
arrangement of the visual space.

Linking Visuals to Emotional and Cognitive Effects: What Visuals Should
Be Included in an Ad in Order to Achieve a Desired Outcome? What
Objects, Colors, Shades, or Visual Structures Can Be Used to Spark
Laughter, Fear, Urgency, Attention, Long-Term Recall, or Other Effects?
Image analytics could address these questions by taking large repositories of photos
and their corresponding consumer reactions, and identifying images with certain
emotional and cognitive effects.
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Initial steps in this direction were taken by Rietveld et al. (2020), who extracted
emotional information (i.e., arousal and valence levels) from Instagram photos of
different brands and combined them with text analysis to predict customer engage-
ment with the brand. However, there is need for further research in order to achieve a
more complete visual-emotional-cognitive mapping.

Monetizing the Value of Images: What Is the Value of Images in Various
Stages of the Customer Journey?
For the first time, differential effectiveness of visuals throughout the purchase funnel
can be quantified by image analytics. Specifically:

1. Which visual features are most appropriate for various stages of the purchase
funnel – what visuals get consumers’ attention? Enhance awareness? Increase
consideration, liking, and purchase intentions?

2. Which visuals should a firm present to customers at various stages in the customer
life cycle? For example, are different images effective for customer
acquisition vs. repeat purchase, upgrade, development, and retention?

3. How should visual features in ads be priced? Image analytics could revolutionize the
way ads are priced. While media outlets are priced according to their reach, creative
advertising is priced based on the effort invested and the reputation of the creative
team. Quantifying the value of various visual components of an ad can lead to a
differential pricing scheme. For example,measuring the relative value of a face in an
ad versus a white space, or scenery, enables value-based pricing of ad creatives.

Branding

Images play a key role in consumer brand perception, recall, and associations
(Peracchio and Meyers-Levy 1994, 2005). Image analytics opens new opportunities
for brands to execute their desired positioning through visuals, manage their brand
portfolio, and foster brand collaborations.

Visual Brand Representation: What Is the Visual Representation
of Brand Associations? How Does It Align with Brand Characteristics?
What Is the Role of the Visual Brand Elements and Brand
Communications in Shaping Brand Perception and Associations?
A recently proposed tool to explore the visual representation of brand perception and
elicit brand associationswas described in the work of Dzyabura and Peres (2021). They
developed a platform for eliciting brand associations through creating and analyzing
online collages of images and showed how these collages can be used to retrieve a
visual representation of brand associations and to connect it to brand personality and
brand equity metrics. Such approaches have the potential to address many additional
questions relating to the nature of these associations, their dynamics over time, their
representation in brand communications, and their connection to various brandmetrics.

Every brand has a unique set of visual brand elements (logo, colors, fonts, etc.)
created by designers in collaboration with brand managers. These brand elements

672 D. Dzyabura et al.



reflect the brand positioning, foster the desired associations and differentiate the
brand from its competitors. Through image analytics, marketing scholars and brand
managers can evaluate to what extent a proposed design achieves these goals (Dew
et al. 2019).

Brand Hierarchy: What Are the Optimal Relationships Between
the Visual Elements of Brands in a Brand Portfolio?
Sub-brands within a brand hierarchy require identities which are distinct from one
another and yet convey the identity of the master brand. Brands vary in the extent the
master brand dominates these sub-brand identities. For example, Fig. 2 shows the
brand hierarchy of FedEx and Gillette. For FedEx, the master brand visual elements
are clearly dominant, while for Gillette, the sub-brands have distinct visual elements
of their own with the master brand being represented to a much lesser degree.

Image analytics can assist in achieving the desired balance between these two
extremes. First, image analytics methods can be used to measure the level of visual
coherence within the brand hierarchy. Second, it identifies the visual elements that
create the perception of similarity. Third, it can connect the overall visuals of the
hierarchy to brand performance metrics.

Brand Strategic Collaborations: When Brands Collaborate with Each
Other, What Is the Right Mix of Their Visual Elements Which Will Ensure
that Both Brands Are Fairly Represented?
Creating a visual identity for a collaboration of brands is often challenging and
complicated for the collaborating parties to agree which visual elements should be
taken from each brand and how to combine them together. Consider, for example, the
two designs of the joint Philadelphia-Milka brand illustrated in Fig. 3. Design A
contains more Milka colors, but a larger Philadelphia logo than Design B. Do they
manage to achieve parity? Image analytics can help address such dilemma by evalu-
ation to what extent a proposed design represents the desired collaborative identity.

Fig. 2 Examples of the brand hierarchies of FedEx and Gillette
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Online Shopping Experience

Image analytics can help firms make better decisions with respect to physical store
design and the visual elements of online shopping outlets.

The Role of Visuals inOnline Product Display: HowDoes the Composition
of Visual Elements, Objects, Size, Background, and Relative Location
Impact the Search, Click, and Purchase Propensity?
When photographing a shirt for the online shop, the retailer has numerous options as
to how to present the item: folded neatly on a flat surface, laying more carelessly,
hanging against the wall, worn by a model, photographed against a solid color
background, in an outdoor or indoor location, etc. All these factors influence
consumer reactions and expectations from the product.

For example, Zhang et al. (2019) demonstrate that the photographic properties of
homes displayed on Airbnb, such as diagonal dominance and rule of thirds, influence
demand. Li et al. (2019a, b) show, on the same platform, that the order and layout in
which the photos are presented also influence demand. Peng et al. (2020) show that
the facial attractiveness of hosts on such rental platforms also influences the occu-
pancy of these homes. More research is needed to explore a larger variety of
situations, context, product categories, and consumer behaviors and understand
their underlying mechanisms.

The Role of Visuals in Ecommerce Website Design: How Do the Visual
Components of an Ecommerce Website Contribute to Profitability?
Designing an ecommerce website is a visual challenge. Designers must make
decisions on the sizes and colors of the items that are displayed on the website
(e.g., product images or buttons) and create a design that helps users to search for
products, explore assortments, get inspired, and discover new products. At the same

Fig. 3 Comparison of collaborative design packages with different mix of visual elements

674 D. Dzyabura et al.



time, the items should be presented in a way that will match their brand identity. This
raises several practical questions which can be answered by employing image
analytics methods:

1. How do images change/affect consumers’ propensity to keep searching on the
website? How does this propensity change at different stages of the search
process?

2. How to create more personalized website layouts? For example, Hauser et al.
(2009, 2014) use a multi-armed bandit approach that balances exploration and
exploitation to automatically match the look-and-feel of the website to customers’
cognitive styles.

Consumer Perspective

Studies have shown that consumers use photos to express emotions and attitudes
as well as to document their experiences (Van House et al. 2005). This usage has
greatly increased with the abundance of mobile phone cameras, storage space,
and sharing apps. While traditionally photos were taken on special occasions,
people have moved to continuously documenting and sharing their daily
routines.

Uncovering Consumer Attitudes: What Are the Hidden Consumer Traits
and Attitudes That Can Be Revealed Through Images and Go Beyond
the Standard Metrics?
The rich body of consumer-generated photos can be used by researchers to gain a
deeper understanding of the consumer experience, to profile and characterize a wide
range of experiences, and, in addition, to segment consumers based on dimensions
that could not be revealed otherwise.

For example, photos taken by consumers (either posted on social media or
collected directly through mobile diaries) can show what is the actual choice set
that consumers face when walking around the supermarket; what their environ-
ment looks like when sitting in a restaurant; what food brands are served at the
same meal; what is their personal style and how it relates to the brands they
buy, etc.

Data: Consumer Vs. Firm Images

Once the research question has been formulated, constructing the appropriate data is
the next key step. A good dataset for image analysis should satisfy the following
criteria: First, it should capture the specific constructs being studied. In many cases
this involves the combination of images and additional data. For example, photos
that users post on restaurant reviews and the corresponding restaurant financial
performance (Zhang and Luo 2019), or photos of Airbnb properties accompanied
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by property price, location, history, and host characteristics (Zhang et al. 2019, 2021;
Li et al. 2019a, b).

Second, the dataset should be large enough to allow drawing insights. The state-
of-the-art deep neural network models are trained on the ImageNet dataset, a freely
available dataset which contains over 1.2 million images, organized into one thou-
sand categories (http://image-net.org/). In marketing such big sizes are rare, but the
datasets still have to contain thousands of images for researchers to be able to draw
meaningful insights. Third, the dataset should contain minimal biases that could
interfere with the main constructs. For example, using user-generated content to
understand brand perception should be done carefully, since the sample is not
controlled, and since users often post strategically to signal something about them-
selves (rather than about the brand) to their peers.

Below we describe the main data sources for image analytics in marketing, as
summarized in Fig. 4. As illustrated in the figure, the data sources can be classified
into consumer-generated images and firm-generated images.

Consumer-Generated Images

Consumer images include all the images created by consumers for different pur-
poses: as a part of their own documentation of experiences and memories, for the
purpose of sharing with other consumers, and for sharing with firms. They can be
retrieved by researchers either through mining Internet and social media outlets, or
directly elicited through surveys, diaries, panels, and collage making tasks.

Images from Internet and Social Media
Consumers increasingly share images on social media platforms such as Instagram
or Facebook, and also on review platforms such as Yelp or Booking.com. For
example, both Rietveld et al. (2020) and Liu et al. (2020) use Instagram images to
monitor how brands are portrayed by consumers, and compare their perception to
firm-generated visuals. Zhang and Luo (2019) use consumer-posted images on Yelp
as a leading indicator of restaurant survival. They show that photos are more
predictive of restaurant survival than reviews. Jalali and Papatla (2016) use brand
images posted by users on Instagram to see how the color composition of the photo

Fig. 4 Sources for image data in Marketing
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influences its click-through rate, when a photo is curated by the website of the brand.
They found that click-rates are higher for photos that include higher proportions of
green and lower proportions of red and cyan. They also found that photos with
higher click-rates are characterized by higher chroma of red and blue. Klostermann
et al. (2018) use brand-related Instagram posts to derive insights on how consumers
think and feel about a brand (McDonald’s) in different brand-related situations.

The appeal of Internet and social media as sources of consumer-generated images
is that they are abundant, free, unaided, and cover a broad range of topics. However,
for many relevant research questions, these data will not capture the constructs of
interest. First, social media data are available for only certain categories and brands:
while the brand Nike generates a lot of social media commentary, finding social
media posts on other brands such as Colgate, is difficult. Second, it is difficult to
control the characteristics of the content contributors. For example, users who have a
stronger relationship with the brand (Labrecque 2014), or hold a particularly strong
positive or negative opinion, may contribute more than those who have only mild
opinions (Lovett et al. 2013). Finally, it is important to carefully interpret the content,
since consumers’ posts may serve a self-signaling or other purpose (Han et al. 2010).

Social media resources are also valuable in constructing the visual representation
of concepts. In many cases the images are tagged and labeled by the users, and these
tags can be used as a means of describing the content of the picture. This labeling
goes beyond object detection. It can be used to interpret the visual representation of
emotions (e.g., happiness), abstract characteristics (e.g., glamorous), and general
concepts (e.g., big-city life). For example, several researchers have used Flickr to
gather an annotated dataset of images (e.g., Dhar et al. 2011; McAuley and Leskovec
2012; Zhang et al. 2012; Dzyabura and Peres 2021). Flickr lends itself well to
gathering an annotated image dataset, because it provides a search engine that
returns the most relevant images for a keyword. The search is based on text labels
provided by users, image content, and clickstream data (Stadlen 2015). An image
ranked at the top for a particular query has often been validated by tens of thousands
of users who clicked on the image, reflecting a large population consensus regarding
a strong association between the image and the query term.

Directly Elicited Images
Another approach for retrieving visual data from consumers is direct elicitation,
namely, asking respondents to provide, create, rate, or choose images according to
certain criteria.

Elicitation can go in one of two directions – one is presenting the respondents
with an image and asking them to indicate the properties of interest in this image. For
example, does the image look fun (Liu et al. 2020), does a clothing item in an image
has asymmetry (Dzyabura et al. 2020), does a logo look modern (Dew et al. 2019),
etc. Typically, several human judges are required to rank each image. Management
of such tasks can be done using commercially available software tools such as
Amazon MTurk or Appen.

The other direction is to provide respondents with a concept (a brand, an emotion,
a mood, etc.) and ask them to select or create the images that best represent this
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concept to them. Such a technique is used by Dzyabura and Peres (2021) who
developed a brand visual elicitation platform that allows firms to ask consumers to
create collages of images that they associate with a brand. Collage making is a
projective technique that has long been used for qualitative research by psycholo-
gists (Koll et al. 2010) and brand researchers (Zaltman and Coulter 1995; Zaltman
and Zaltman 2008). Typically, participants select images representing the concept in
focus, and then explain to the moderator why they chose these images. Dzyabura and
Peres (2021) have used image analytics to transform this task into a quantitative
market research method. Using online data collection, image processing, and
machine learning techniques, collage making now allows researchers to retrieve a
large number of images for any concept of interest, over a large number of respon-
dents. Figure 5 describes examples of collages (with some verbal descriptions)
created using this method for the brand Starbucks.

Another useful method to directly elicit visuals from consumers is mobile
diaries. Mobile diaries are a trending tool to collect repeated self-reports about
experiences. They have been used as a research tool in variety of domains
including psychology, geography, health, medicine (e.g., Hektner et al. 2007;
Heinonen et al. 2012; Hensel et al. 2012; Hofmann and Patel 2015), marketing
practice, and recently also by academic researchers (Lovett and Peres 2018). In
mobile diary visual studies, respondents are usually asked to take photos of certain
experiences – for example, photograph what they see on the shelf, windows of

Fig. 5 Examples for four collages for the brand Starbucks, created by four different respondents,
with verbal descriptions. (Source: Dzyabura and Peres (2021))
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stores they stop by, or the content of their refrigerator. These data can be later
analyzed to create a data-driven representation of consumer stimuli, choice set,
environment, and experience.

Note that data sources can be combined. For example, directly elicited data can be
used to validate conclusions derived from social media, to provide insights on the
underlying mechanisms, or complement the social media-generated data with inter-
pretable features. For example, Hartmann et al. (2021) complement data from
Twitter and Instagram with results from a lab experiment to show that the mecha-
nism behind higher click-through rates of brand selfies (images of consumers
holding a branded product, but face not showed in the frame) is that brand selfies
induce more self-related thoughts. Peng et al. (2020) use surveys to elaborate on the
mechanism behind the U-shaped relationship between facial attractiveness of the
seller and product sales.

Firm-Generated Images

Firms continuously create visuals as part of their marketing efforts. Data originating
from firms come in different formats such as visual brand elements (logo, colors,
fonts etc.), product images on online stores, images used in advertising, and the
firm’s social media outlets. All these provide rich data for visual research. Unlike
consumer-generated images, firm-generated images are typically curated and created
by professional teams to meet the firm positioning goals. Thus, they constitute a
visual representation of the firm strategy and can be used to study market structure
and competitive landscape. The reactions to these images by consumers can, in turn,
be used to study consumer response to various marketing actions. We list below
several main sources for firm-generated data.

Product Images on Retail Websites
Retail websites are a great source for product images, since they contain many
products from various vendors. The images are typically of good quality, focused
on the product itself, and often capture the product from various angles. Many retail
sites also require standardization of the images. For example, the shoe retail website
Zappos.com photographs all shoes in the same way: from seven angles, against a
solid white background. The uniformity makes it easier for image processing
algorithms to focus on the product image. Retail sites typically provide other
relevant product information such as price, materials, size, manufacturer, and
brand, which can complement the analysis.

The challenge with using image data from retail websites is that they often lack
data on many dependent variables of interest, such as clicks, likes, purchases,
profitability, product returns, and repeat purchase rates. Answering research ques-
tions regarding these variables requires collaboration with the firm. For example,
Dzyabura et al. (2020) used product images from an apparel retailer’s online shop
and collaborate with the firm to obtain information on the corresponding products’
online and offline purchases and product return rates. They found that incorporating
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the image in the prediction model in addition to the nonvisual attributes (e.g., price,
category, season, size) greatly improved its accuracy.

Some multi-vendor retail platforms such as Alibaba, eBay, Airbnb, and Amazon
provide consumer reviews and information about the product popularity, which can
serve as a proxy for some of these variables. Zhang et al. (2021), for example, use
property images posted by Airbnb hosts and combine it with the occupancy rate of
the property.

Images on the Firm Social Media Pages
The social media pages of firms are also a rich source of image data. They contain, in
addition to the products themselves, other components of the firm’s visual represen-
tation – endorsers, users and usage scenarios, print and video ads, brand elements,
sceneries, locations, activities, and all the visuals curated by the firms to create and
enhance its brand associations. These data can be used to study the competitive
landscape by identifying differences and similarities between the visual representa-
tion of competing brands, as well as between the brand self-representation and
consumer perceptions of the firm. Unlike the retail sites, social media outlets also
contain more dependent variables, such as consumer likes, shares, reactions, and
comments. For example, Li and Xie (2020) used photos of major airlines and sport
utility vehicle brands collected from Twitter and Instagram, and measured the
engagement they created through retweets and likes. One of their findings is that
the presence of a human face and the fit between the image and the textual content of
the post can induce higher user engagement on Twitter but not on Instagram.

The Firm Brand Communications
Researchers can use visual elements of brands of interest in order to explore
questions related to brand associations and brand image. This often requires the
research team to assemble their own dataset. For example, Dew et al. (2019)
assembled a dataset consisting of logos, textual description of firms, industry labels,
and brand personality rating of 706 major brands. Then they used image analytics to
explore the visual elements of logos they assembled and show how they can be used
to create new brand identities and spark ideation.

Advertising Databases
Advertising visuals are continuously being generated by firms, displayed in social
media outlets, websites, magazines, TV channels, and billboards. Interestingly,
central repositories of advertising images are hard to find. Studies on advertising
design effectiveness are mostly behavioral (Wedel and Pieters 2008) and use specific
manipulations to test theories. A notable exception is the paper of Pieters et al.
(2007), who used data from advertisements by several chains of grocery retailers in
the Netherlands to measure the relative importance of the pictorial content in the ad
in getting consumer attention.

Large-scale advertising image data across multiple firms, if assembled, could be
used to study aspects of parity and differentiation between similar offerings and
explore how the competitive landscape is reflected in the visual space. Combined
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with brand perception, consumer responses, and advertising expenditure, these data
can be used to study advertising effectiveness and provide guidance for the optimal
design for an ad. Such data repositories are already available in many domains such
as fashion (Xiao et al. 2017), autonomous driving (Caesar et al. 2020), and medical
imaging. A common general repository is ImageNet, a public dataset of 1.2 million
images labeled by humans, which was used to train many state-of-the-art models
(e.g., Krizhevsky et al. 2017). A joint data collection effort in advertising could lead
to many new and impactful insights on the visual aspects of advertisements.

Methods

Marketing researchers who study visual data have an unprecedented opportunity of
access to state-of-the-art methods and analysis techniques. These methods are
rapidly improving due to the increased computational power and ongoing efforts
of the machine-learning community to broaden the scope of the analysis tools and
make them publicly available and user-friendly. An image analytic process is
typically composed of the four stages: feature extraction, model training, model
evaluation and validation, and model application to the marketing problem.

Feature Extraction

The first step of the image analytics process is determining what feature space to
work in. A key challenge of working with images is that the raw input elements – the
pixels that make up the images – are not suitable features. A single pixel in isolation
does not lend itself to meaningful interpretation. Compared to text, for example, this
challenge is particularly pronounced. In text, the basic unit of analysis is words,
which carry a meaning, a positive or negative valence, and can be grouped by topic.
Pixels, on the other hand, have none of these properties. Therefore, a critical step in
any modeling of image data is generating features which will provide a meaningful
representation of the images.

There are multiple approaches to feature generation. One is predefined feature
extraction. Researchers have developed a variety of predefined features. Perhaps the
simplest are color histograms, which capture the distribution of the color composi-
tion of the image. Such histograms are created by discretizing the colors in the image
into bins, based on a color space, and counting the number of image pixels in each
bin. The most common color spaces are RGB (red, green, blue) and HSV (hue,
saturation, value). Another dimension of interest is shape, where the features are line
directions, corners, and curves. A third common property is texture – defining the
repeating patterns in the image, such as line and color intensity. Texture is most
commonly measured by a Gabor filter, which detects repeating frequencies of color
in certain parts of the image. For videos, Li et al. (2019b) add a dynamic component
by defining a measure of visual variation, calculated by decomposing a video into a
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number of static frames and then computing the visual distance between consecutive
frames.

The role of the feature extraction step has been revolutionized with the devel-
opment of deep neural networks (NN). In an NN, the feature selection and the
model training are done simultaneously, so the network automatically extracts the
features that are optimal for the specific research problem. For example, it would
extract different features for determining whether there is a pedestrian or a traffic
light in an image, versus determining whether an image appears fun or serious. A
deep NN does such simultaneous training by applying several “layers” of non-
linear transformations on the raw pixel data. The outputs of each transformation
serve as the features, or predictor variables, for the next layer. Through multiple
layers of such transformations, the network extracts higher- and higher-level
representations of the data, allowing the final layer to easily classify the data.
For example, lower layers of a deep-learning model may extract edges and
textures, whereas higher layers detect motifs, object parts, and complete objects
(Goodfellow et al. 2016). The final layer maps the resulting features onto the target
variables with a classification function.

There are many neural network architectures that are used in different applica-
tions that differ in the types of functions captured by their nodes, their depth, data
flow, etc. – together, these make up the network architecture. The networks that work
best for image analytics problems are Convolutional Neural Networks, or ConvNets.
ConvNets are characterized by the first several layers of the network being
convolutional layers: each neuron applies a particular transformation to a small
part of the image. Rather than applying a transformation to the entire image, it
processes small “batches” of the image separately, to detect shapes and edges in
different parts of the image. Two commonly used ConvNet architectures are ResNet
and VGG19.

Feature extraction using deep NN almost always results in higher predictive
accuracy than human-coded features. However, it has two major caveats. One is
that the features are not interpretable – they are complex nonlinear transformations
of pixels, which have no meaning on their own. While this is not a disadvantage if
the main task is prediction, it is, if interpretable insights are desired. For example,
interpretability is important if the goal is to understand what people associate with a
brand (Klostermann et al. 2018; Dzyabura and Peres 2021), what kind of image
content gets most engagement on social media (Li and Xie 2020), to give recom-
mendations for photographing a home for rent on Airbnb (Zhang et al. 2019), or to
create a promotional video for a project in a crowd funding platform (Li et al.
2019b). In such cases, the modeling must be done on interpretable features. One
way to obtain them is by using tagging software or a tagged dataset from sources
such as Flickr, in order to identify the objects, activities, sceneries, and themes
presented in the image. Thus, the image is described by a set of words or tags, which
serve as the features, and the image analysis task is transformed into a text analysis
task. This opens a wide range of options for the analysis: using word embeddings,
various dictionaries such as LIWC, sentiment analysis techniques, and topic model-
ing (chapter ▶ “Automated Text Analysis”).
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The other caveat is that training a deep neural network from scratch is extremely
challenging: it requires a very large annotated dataset, massive memory and com-
putational power, and complex engineering. Additionally, a lot of modeling choices,
such as the number, type, and order of layers, how much regularization to use, and
learning rate, are made through trial and error. To simplify the training stage, most
deep learning applications in marketing use transfer learning: rather than designing
and training a new neural network for every task, they use a network that has already
been trained by someone else for a different purpose. The reasoning behind it is that
knowledge gained from performing one task can be used to perform another. For
example, knowledge gained from recognizing image aesthetics could be applied to
forecast product demand or recognize brand perceptual attributes (Bengio et al.
2011; Bengio 2012).

The transfer can be done either by taking the final layers of the trained network as
is, or by fine tuning the trained NN. Dzyabura et al. (2020) took the first approach –
they used the second-to-last pre-output of ResNet, which is trained on the ImageNet
data, as features in a random forest model to predict the return rates of clothing items.

The fine tuning approach does train the NN, but instead of initializing the model
parameters with random numbers, the model is initialized with parameters learned
from another NN. The idea is similar to using an informed prior in Bayesian
estimation. Relative to training the model from scratch, fine tuning significantly
increases model performance and avoids overfitting (Donahue et al. 2014; Girshick
et al. 2014; Yosinski et al. 2014). Li et al. (2019a, b) employ fine tuning by using
ResNet50 to train their model and learn picture quality and room type (e.g.,
bedroom, bathroom) for images from Airbnb postings. The resulting features are
used to predict occupancy rates of the properties. Interestingly, Zhang et al. (2019)
also predict image quality on Airbnb, but they use a different pretrained model,
VGG16 (Simonyan and Zisserman 2015), also pretrained on ImageNet. The paper
uses the results to explain the decision-making process of the hosts who use pictures
of lower quality even when a high-quality option is free and available.

Model Training

Regardless of what approach was chosen for feature extraction, the resulting feature
space for an image problem will be very large, often larger than the number of
observations. Standard statistical methods which assume linear models and estimate
their coefficients cannot be applied. The large number of coefficients makes it
impossible to identify every single coefficient without bias. Therefore, researchers
apply machine learning methods which are tailored for working in very large feature
spaces.

Many image analytics problems can be formulated as a supervised classification
task – determining whether an image belongs to one or multiple predefined catego-
ries or classes. For example, in Liu et al. (2020), image classification is used to
determine whether an image exhibits a brand perceptual attribute: does the image
look fun? rugged healthy? glamorous? A classifier is trained on an annotated dataset
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of images labeled with the desired classes, that is, images that are known to belong or
not to belong to the classes (e.g., images which are glamorous and not glamorous).
As explained in “Product Design,” the annotated datasets can be taken from publicly
available sources, company data, or collected by the researchers. After training, the
classifier can assign a class to a new, unlabeled image.

Some research problems do not involve classifying images into predefined
categories. Instead, the researcher is looking to identify patterns in the data – such
as recurring objects, colors, shapes, and themes. This is most commonly done by
representing the images in a feature space (either using predefined features or with
deep neural networks), and then using unsupervised methods (e.g., clustering using
K-means or nearest neighbors) to group them together (Dew et al. 2019; Peng et al.
2020; chapter▶ “Cluster Analysis in Marketing Research”). If the feature extraction
is based on tagging, then one could use unsupervised methods for text analysis –
such as topic modeling (Dew et al. 2019; Nanne et al. 2020; Peng et al. 2020). In
some cases, the image analytic task aims at creating novel combinations of existing
patterns, for example – to create new designs of the product, using generative models
(Burnap et al. 2019), or predicting “design gaps” in a certain market (Burnap and
Hauser 2018).

Model Evaluation and Validation

Once the model has been trained, it is important to evaluate and validate
it. Evaluation establishes its performance and validation ensures that the output
obtained from the images measures the construct of interest.

A proper evaluation is done by testing the model performance on a different
sample than the one it was trained on. In most machine learning algorithms, a portion
of the sample is held out and used to test the model. This out-of-sample test is
important since the large size of the feature space can easily lead to overfitting. This
is only true for supervised learning. For unsupervised learning, model accuracy is
hard to evaluate, because there is no specific independent target variable.

Validation depends greatly on the nature of the task. Basically, validation ensures
that the model was successful in capturing the construct it intended to measure. For
example, if the analysis was done to assess how happy a face is, the results should be
validated by testing that faces that were identified as happy are indeed perceived as
happy by people. Validation is particularly challenging and particularly important in
the unsupervised case. Since predictive accuracy cannot be shown, how can one
prove that one clustering is better than another clustering, or that the identified
patterns are true? For example, Dzyabura and Peres (2021), used images to extract
brand associations from collages of images created by users. They used two layers of
validation to demonstrate that the extracted associations are the correct ones: users
were first asked to match extracted associations to a collage, and second, to guess the
brand based on the associations. Dew et al. (2019) built a model to predict the visual
features of a logo based on the verbal descriptions of the brand from the company
website, and validated it by taking the brand ShakeShack, using the model to predict
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the visual elements of its logo and comparing it against the existing logo. Peng et al.
(2020) studied face attractiveness and whether it can predict product sales in
ecommerce platforms. After extracting facial features, they validated the model
using a group of coders that were asked to rank the attractiveness of the faces. In
Zhang and Luo (2019), user-posted images were used to predict survival of restau-
rants. In such tasks, when looking at the examples the algorithm misclassified, one
can notice which types of restaurant the classifier fails, and add information accord-
ingly. In addition, by calculating the proportion of mistakes of each type, we can
have a better understanding of the precision rate that is possible.

Model Application

The final step of the analysis is applying the model to the research problem, whether
it be computing a brand metric (Liu et al. 2020), forecasting demand (Peng et al.
2020), or optimizing the visual communication (Li and Xie 2020; Li et al. 2019b).
This stage is important, since in marketing, clustering or classifying images is rarely
the end goal. The images are a manifestation of a more fundamental underlying
construct, and their analysis is typically an intermediate step in deriving meaningful
insights with respect to this construct and its relationship with perceptual, behav-
ioral, and economic variables.

Integrating It All Together

Image analytics could very easily go wrong. The researcher is faced with numerous
data sources, code packages, constantly improving methods, and pre-trained models.
All of these open a broad range of research opportunities, yet they often create
confusion as to the right choice of the model components. Specifically, the
researcher has to carefully match the research problem, data, and method. This is a
challenging task: the data, although very rich, might not contain the variables of
interest; the model might be good in classifying images but incapable of yielding
interpretable insights; the data can suffer from various biases and confounds, such as
user strategic posting and self-signaling. Many failures in image analytics tasks are
caused by incorrect matching between the various components, leading to none, or
even worse – misleading insights.

To ensure an optimal match between the research question, data, and method in
order to produce the highest quality analytics with meaningful insights, the
researcher should ask herself two questions: first, whether or not there is a single
dependent variable that is the crux of the research question. Such a variable could be
demand (Zhang et al. 2019, 2021), crowdfunding success (Li et al. 2019b; Peng et al.
2020), business survival (Zhang and Luo 2019), ad recall (Rosbergen et al. 1997), or
product return rates (Dzyabura et al. 2020). Second, whether interpretability of the
features is important for the task. That is, do the desired insights involve interpre-
tation of specific elements of the image? The answers to these questions determine
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the appropriate methods and data type. They can be described in the following 2� 2
matrix presented in Fig. 6.

Most computer vision tasks fall into the top right quadrant of the matrix: there is
a specific target variable of interest and interpretation of the features is not necessary.
This is the quadrant where most engineering computer vision problems belong. A
typical computer vision task is to identify, for instance for a self-driving car, whether
an image contains a pedestrian or a traffic light. A good algorithm for such problems
is engineered to detect the objects of interest with a low probability of error. It does
not need to be able to say what about the picture forms a pedestrian. The set of
methods in this quadrant are by definition supervised, and are typically based on
deep neural networks.

Thanks to the rapid growth and development of the computer vision field,
research questions in marketing that fall into this quadrant have a rich and constantly
improving set of methods to choose from. The choice of method depends on the
nature of the problem. Nanne et al. (2020) compared different computer vision
algorithms to monitor user-generated content, and found that they have different
strengths: Google Cloud Vision is more accurate in object detection, whereas
Clarifai provides more useful labels to interpret the portrayal of a brand and
YOLOV2 did not prove to be useful to analyze visual brand-related UGC. This
should be taken into account when conducting the analysis, and one might need to
use several methods and assess their performance for the specific research problem.

In order to apply these methods, the researcher needs to obtain good data from a
reliable source. The image data must be annotated with the target variable and it must
be very large: contain thousands of annotated images in the training set. In market-
ing, this is often challenging to accomplish. Most brands, for example, do not

Fig. 6 A classification matrix for combining data, features, and image analytic model
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produce thousands of images. To get a large enough dataset, one may need to pool
data across multiple brands or over time, risking introducing noise to the data.

Unlike engineering, many marketing questions do involve some sort of interpre-
tation of the image characteristics and their relationship with the target variable. For
example, in the case of forecasting demand based on product images, one likely
wants to know what it is about the product or the way it was photographed that leads
to high or low demand. Such cases belong to the top left quadrant. In this quadrant,
one faces a tradeoff, because the most accurate predictive models are not based on
interpretable features. Once one introduces a constraint on the types of features,
predictive accuracy will be compromised.

One way in which interpretable features can be generated is using image tagging
software which extracts the image content and produces a list of the objects,
sceneries, activities, moods, and other themes in the image (Klostermann et al.
2018; Rietveld et al. 2020; Nanne et al. 2020). Another way is to apply domain
expertise to identify the relevant features. In photography, these may be diagonal
dominance and rule of thirds (Zhang et al. 2019); in apparel, these may be types of
prints, graphics, collar type, sleeve length, symmetry or metallic details (Vilnai-
Yavetz and Tifferet 2015). These can be extracted using either machine learning
classifiers or using human judges. Once the features were extracted, one can use
econometric methods, such as regression, to obtain insights as to how they relate to
the target variable.

If both interpretable insights and accurate predictions are important, the analysis
should include both: a deep learning model trained to optimize the features and the
model for maximum predictive accuracy, and regression analyses over interpretable
features. For example, Dzyabura et al. (2020) use deep learned features to predict the
return rate of a product based on its image. Then, they have four independent judges
manually label the images with respect to industry standard design elements such as
symmetry, pattern (solid, floral, striped, geometric/abstract), and additional details
(text, metallic/sequin, graphic, lace). The authors then analyze which of these are
associated with higher return rates in a regression.

The bottom left quadrant comprises situations in which there are no dependent
variables of interest. Instead, we ask an open-ended question such as – how is a
brand perceived by consumers? How do consumers use the product? What visual
features of logos are associated with what brand perceptions?

These questions often require the combined use of interpretable features with
unsupervised learning algorithms. The features create a meaningful and manageri-
ally relevant space, into which all the relevant observations can be mapped. The
unsupervised algorithms, in turn, detect patterns and identify data-driven classifica-
tions in this space. For example, Dew et al. (2019) use features taken from theories of
logo semantics to form a “visual dictionary” that describes logos in a way that is
meaningful to designers (e.g., the amount of white space, corners, and edges). They
then use a probabilistic modeling framework to flexibly capture the linkages between
the brand descriptions, logo features, industry labels, and brand personality metrics.
Dzyabura and Peres (2021) used tagging to identify image content, and then use
unsupervised topic modeling to reveal latent topics. Klostermann et al. (2018) tag
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objects and situations using object detection software, and then employ
unsupervised clustering algorithms to form associative networks connecting image
content to consumer sentiment. The resulting map of associations is informative for
brand management, communications, and monitoring the response of consumers to
new products and features.

Finally, questions that belong to the bottom right quadrant do not have a
specific target variable and do not require interpretability of the features. This
quadrant is challenging since it applies structure neither to the features nor to the
dependent variable. In order to impose structure on these problems one might
consult with domain experts to identify either some relevant dependent variables
that are of interest to managers or a set of features that represent the space in a
meaningful way.

Conclusion

In the past two decades, major technological advances and the popularity of digital
platforms made taking and sharing images a crucial part of consumers’ daily lives. In
addition to the abundance of visual data, image processing tools and advances in
modeling techniques created unprecedented opportunities to obtain new perspec-
tives on important marketing questions. We are now able to study new phenomena,
investigate the relationship between consumers and firms and obtain insights that
would have been difficult or impossible to obtain otherwise.

Using image analytics to generate insights is not trivial though. Researchers are
faced with different sources of data, various analysis techniques, and continuously
improving methods. In order to benefit from implementing image analytics in
solving relevant marketing problems, matching a good research question with the
right visual data and appropriate method comes with many challenges. However,
once the researcher is able to surmount these challenges, many marketing areas can
benefit from image analytics to gain new insights. In the area of Product Design,
researchers can for example explore how to characterize designs above and beyond
their specific elements. Moreover, they can use image analytics to quantify the value
of designs by incorporating product images in traditional consumer demand models.
In the area of Advertising, image analytics can allow for a holistic quantitative
approach to selecting, adjusting, and optimizing the visual composition of print and
video advertisements. In Branding, image analytics opens new perspectives for
firms to strategically position their brands, manage their brand portfolio, and identify
new collaborations. Image analytics can also help firms make well-grounded deci-
sions to enhance consumers’ Online Shopping Experience by identifying the role
of visuals in ecommerce websites for example. Finally, from a Consumer Perspec-
tive, image analytics has the potential to reveal through images more about con-
sumers than we knew so far. For example, firms can understand how consumers see
brands, how they think about consumption, and how they perceive and evaluate their
environments.
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Abstract

The increased awareness about the presence of social effects in consumer net-
works has inspired marketers to better understand and address the needs of their
consumers through network analyses. In this chapter we consider network
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analyses as a set of techniques which allows researchers to analyze how the social
structure of relationships around consumers affects their attitudes and behavior,
and vice versa, how attitudes and behavior may affect the social structure. We
focus on the types of network analyses that are currently most prominent within
the field of marketing. We provide basic network theory and notation with
references to key publications in the field. We also provide suggestions for
software (packages) and useful functions including code snippets to support
researchers and practitioners in setting up their first social network analyses. At
the end of the chapter we discuss several more advanced network analysis
methods and list several resources that might be useful to the interested reader.

Keywords

Social Networks · Social Influence · Social Contagion · Network Analysis ·
Consumer Networks

Introduction

While marketers have shifted from mass marketing techniques to personalized
marketing strategies in which the focus lies on the individual consumer, a broad
stream of literature in the social sciences has shown that consumers do not operate as
separate entities. That is, consumers typically affect other consumers with their
behavior and at the same time are themselves affected by the behavior of others.
For example, Bikhchandani et al. (1992) show that consumers are likely to conform
to the behavior of other consumers in order to reduce the risk associated with a
commercial decision. This behavior is based on the presumption that the majority
must be right. Another example is provided by Burnkrant and Cousineau (1975) who
provide experimental evidence that consumers perceive products as more favorable
after they observed other consumers evaluating the product positively. Thus, it has
been known for decades that ignoring social effects prevents marketers from fully
understanding consumers’ behavior and leads to missed marketing opportunities.
Fortunately, the increasing availability of consumer network data creates a wide-
spread opportunity for marketers to fully realize the potential of marketing cam-
paigns that incorporate social effects to better address the consumers’ needs. This
chapter provides both scholars and practitioners with fundamental information on
social network analyses and allows them to get their first hands-on experience in
estimating social effects from observational data.

In this chapter, we consider social network analysis as a set of techniques, which
allows researchers to analyze how the social structure of relationships around
consumers affects their behavior and attitudes, and vice versa, how behavior and
attitudes may affect the social structure. That is, marketers can leverage network data
in several ways. On the one hand, social networks among consumers facilitate the
working of social influence. For example, networks facilitate the diffusion of
information and therefore, observing the social network of consumers allows
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marketers to strategically spread information about new products or services through
word-of-mouth mechanisms (e.g., Peres et al. 2010). Not only do consumers regu-
larly become aware of new products or competing offers through their peers, they
also consider their peers to be the most trustful source of information (Nielsen 2015).
As a result, consumer behavior is influenced by information provided by their social
network on a daily basis. On the other hand, observing the behavior and attitudes of a
consumer’s social network can reveal latent information about the consumer
her/himself (e.g., Goel and Goldstein 2014). For example, little is known about a
consumer before acquisition. However, consumers tend to be part of a network that
consists of individuals with similar preferences and characteristics, a phenomenon
called homophily (Aral et al. 2009). Hence, when data about the consumer of interest
is not directly available, data about their already acquired peers can provide a
solution. Similarly, consumers’ decisions to adopt or defect can inform marketers
about the propensity of connected consumers to adopt or defect as well (e.g., Nitzan
and Libai 2011; Landsman and Nitzan 2020). In summary, with the right network
data and analyses, marketers are able to (1) identify consumers that can either be
acquired or should be actively retained based on the behavior of their peers, and
(2) try to acquire or retain these consumers by leveraging social effects within their
personal network. Of course, the possibilities that network analysis provides to
marketers are much broader, and the rapidly expanding research stream on social
influence continuously provides additional insights about the relevance and usability
of social effects among consumers, e.g., by integrating consumers’ influence in their
customer lifetime value (Kumar et al. 2010) or by identifying the most influential
consumers (Goldenberg et al. 2009). The goal of this chapter is to provide a
comprehensive overview of marketing insights that can be generated from network
data, and to summarize and illustrate the most common methods to generate these
insights. In the next section, we briefly discuss how network analyses can benefit
both marketing researchers and practitioners. Subsequently, we discuss the most
important components and metrics of network data. Next, we illustrate the suitability
of various types of data and sampling methods for network analyses. After this, we
will illustrate how to derive the network metrics and apply some of the discussed
network analyses on a publicly available dataset. We will conclude with a few words
on more advanced network analysis methods and list several resources that might be
useful to the reader.

The Relevance of Network Analyses for Marketing Purposes

Network analysis enables marketers to derive a broad range of customer insights. We
start with a brief overview of two broad research fields within the social sciences and
marketing in particular: (1) social influence, which includes the study of the under-
lying social mechanisms and (2) the role of influencers, which includes the study of
consumer network characteristics at an aggregated and individual level. These types
of network analyses are broadly researched and applied in practice and will be the
main focus throughout the chapter. However, network analyses can serve a much
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broader set of marketing purposes. We refer to Valente (2012) for a brief overview of
possible network interventions that can be used to accelerate behavioral change.

The first question marketers might ask themselves is how relevant social influ-
ence is for their customer acquisition, development, and retention processes. While
the presence of social influence among consumers has been acknowledged for
decades, the role of social influence can fiercely vary depending on the type of
consumer decision and the underlying mechanism of social influence. First, social
normative pressure, i.e., the discomfort a consumer might experience if they don’t
own a product their peers purchased, is typically high for products and services that
are displayed to a broad audience (Burnkrant and Cousineau 1975). For example,
peer groups can easily observe whether their members conform to the established
fashion norms and praise those who do or reprimand those who don’t. On the
contrary, this social mechanism might be less relevant for brands that offer services
and products that are consumed in a private setting or that are not strongly associated
with consumer identity (Iyengar et al. 2015). For example, it is ambiguous to
establish social norms on the use of household products because it is difficult to
observe compliance and praise/reprimand accordingly. Second, the presence of
social learning, i.e., gathering information from the decisions and experiences of
peers, is typically strong for consumer decisions that involve high risk, while it will
be much weaker for decisions that involve little investment and commitment
(Iyengar et al. 2015). For example, consumers interested in the services of a telecom
provider generally commit to a long-term contract and therefore reduce the decision
risk by gathering information from their social environment (Nitzan and Libai 2011;
Haenlein 2013). on the other hand it is unlikely to find strong social effects for
purchase decisions of cheap consumer goods, as consumers can learn from their own
experiences against low informational costs. Third, there are some other less com-
mon social influence mechanisms that are context-specific. For example, network
effects cause an increase in product/service value with an increase in adoption rate,
e.g., the value of online social platforms increases with the number of users (imagine
being the only Twitter user, it would get boring quite fast). Further, competitive
concerns cause influence among firms, as failing to adopt new innovations that are
adopted by the competition can lead to competitive disadvantages (Van den Bulte
and Lilien 2001).

Thus, the relevance of social influence varies between industries, brands, and the
type of consumer decision, e.g., adoption versus repurchases (Hahn et al. 1994).
Self-evidently, marketing tools like influencer marketing, brand ambassadors, and
referral campaigns will be much more efficient when there is a sufficient level of
social influence among the target consumers. Therefore, studying the presence and
nature of social influence in the relevant context is a critical step in the development
of a successful social network strategy. We will discuss different measures of social
influence and provide an example of the identification of social influence on a
publicly available dataset later on in the chapter.

When social influence is present, a first step toward leveraging these social
mechanisms is to understand the role of hubs, also commonly referred to as
influencers or opinion leaders. Typically, within a network, there are certain
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consumers that exert a greater influence (e.g., Goldenberg et al. 2009). First, these
consumers might have a higher level of persuasiveness because they are considered
experts, because they represent a desirable image, or because of a combination of
both. As it is sometimes ambiguous to identify these features from pure network
data, additional survey data can provide a solution (Iyengar et al. 2011). Second,
consumers might exert a greater influence because of their reach. Obviously, a
consumer with many connections can spread information quicker to a broad audi-
ence than consumers with a small number of connections (Hinz et al. 2011).
However, besides the number of connections, a consumer’s position within a
network is at least as important (Burt 2004; Granovetter 1983). Consumers that
are connected to other well-connected consumers can help to spread information
even faster. Understanding the role that such consumers play in the working of social
effects gives marketers valuable insights about whom to target first with their
marketing campaigns.

Even in the absence of social influence, network analyses can be used to generate
valuable consumer insights. For example, it is well known that consumers that are
more alike tend to be clustered within a network (Aral et al. 2009). As such, different
clusters within the network might differ in preferences, in behavior, or in their
attitude toward the brand (chapter ▶ “Market Segmentation” in this Handbook).
Identifying the value and preferences of consumers within a cluster reveals infor-
mation about the potential to acquire the consumer and helps to predict whether the
consumer will have a high customer lifetime value (chapter ▶ “Modeling Customer
Lifetime Value, Retention, and Churn” in this Handbook; Haenlein and Libai 2013).
Further, identifying the overall attitude of a network segment is especially important
for managers that seek to manage positive and negative word-of-mouth on social
media channels (Homburg et al. 2015). However, while on the one hand homophily
can be an important driver of social influence, the clustering of preferences and
attitudes within a network also causes severe challenges in the identification of social
influence. We will highlight these benefits and challenges further throughout the
chapter. Next, we will first introduce some basic network metrics that help marketers
to better understand the network that they aim to analyze.

Network Metrics

A social network is made up of two components, i.e., actors and ties. A social
network is defined as the set of actors and the ties between them. As terminology
differs across research disciplines, actors are also referred to as individuals, nodes,
vertices, agents, players, and in the marketing field typically as consumers. Com-
monly used alternatives to the term tie are dyad, link, edge, and relationship. We will
use these terms interchangeably throughout this chapter.

Social networks are a subset of all possible networks and have the unique
characteristic that the actors are human beings. Examples of other networks are
infrastructure networks (e.g., actors: train stations, ties: railroads) or the Internet
(e.g., actors: websites, ties: links). This observation illustrates the interdisciplinary
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nature of the social network field. Theories and models to guide the use of social
network analysis in marketing could come from a broad set of research fields, such as
logistics (i.e., understanding the flow of products through infrastructure networks),
computer science (i.e., understanding information flow and the ranking of search
results on the Internet), sociology (i.e., fundamental theories on social interactions),
and medicine (i.e., understanding the spread of viruses through a population) among
others.

We distinguish two types of social network analysis, namely, the analysis of the
evolution of the structure of a network and the analysis of behavior and information
flow within an existing network. In this chapter, we focus on the latter, because it
facilitates the discussion of basic network characteristics and analyses. There is an
interesting body of literature on the evolution of networks (e.g., Snijders et al. 2010)
which is beyond the scope of this chapter as most of the marketing studies have used
static networks only.

Network

A first step in social network analysis is describing a social network by means of
simple metrics. We can measure networks at three different levels, the actor level, the
tie level, and the network level. These metrics provide information on characteristics
of the actors, ties, and the network as a whole, respectively. They enable marketers to
get a first impression of which consumers might be influential and which relation-
ships are likely to be crucial for the diffusion of innovations. In the following
paragraphs, we introduce basic network notation and a selection of network metrics,
their formulas and corresponding examples on how to calculate and interpret these
metrics. We provide only a selection, because the complete set of metrics described
in the literature is large and once the intuition on this type of metrics is clear, it
should be easy to find and calculate the metric that is particularly relevant to answer a
specific research question.

Basic Notation

We use notation that is widely used by others, e.g., Jackson (2010). We define a set of
actors: N ¼ {1,...,i,. . .,j,. . .,n} and a n � n matrix A where each element of this
matrix, Aij, represents a tie between actors i and j. In the simplest case, A is a binary
matrix where Aij¼ 1 if there is a tie between actors i and j, and Aij¼ 0 otherwise. We
refer to Aij as an adjacency matrix. Instead of just the presence or absence of a tie, it
is also possible to indicate the strength of the tie between two actors by any real
number for Aij. We then refer to this matrix as a weight matrix. In both cases, we
denote the resulting network or graph as (N, A). To illustrate several metrics, we use
an example network, Fig. 1a, based on the adjacency matrix in Fig. 1b. We assume
that the distance between all adjacent pairs is 1.
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Actor Level

We start our discussion on metrics at the actor level. These metrics capture individual
characteristics and therefore complement the set of consumer-level variables typi-
cally used in marketing, such as socio-demographic or service usage data. These
so-called centrality measures each relate to a particular role of an individual in the
network, such as influencer or information broker. Marketers can use this additional
individual level information to enrich their customer segmentations and prediction
models for behaviors such as product adoption and churn.

Degree Centrality
The most basic and most commonly used centrality measure is degree centrality. It is
simply the number of ties an actor has, for example, the number of friends on
Facebook or the number of connections on LinkedIn. Those with an extremely
high degree centrality are called (social) hubs and are generally seen as influential
individuals.

To calculate degree centrality one only accounts for the presence or absence of a
tie and ignores the potential direction of the relationship. However, in many real
networks, relationships are generally asymmetric or only go in one direction. For
example, on Twitter you may be a follower of person j (the tie goes in the direction
from i to person j, i! j), but person jmay not be following you (there is no tie going
back from person j to i). Undirected ties are graphically represented by either a line i-j
or double arrows i⇄ j. An undirected network is formalized by a symmetric adja-
cency matrix while a directed network is formalized by an asymmetric adjacency
matrix. To account for this directionality, we use the metrics in-degree centrality and
out-degree centrality. In-degree centrality measures the number of incoming ties and
out-degree measures the number of outgoing ties.

Assuming an undirected network in which Aij ¼ Aji for all i and j, you calculate
degree centrality of actor i, di(A), as:

di Að Þ ¼ # j : Aij ¼ 1
� �

In the case of a directed network, we define in-degree centrality, di,in, and
out-degree, di,out, as follows:

Fig. 1 (a) Example network, (b) Adjacency matrix of the example network
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di,in Að Þ ¼ # j : Aji ¼ 1
� �

di,out Að Þ ¼ # j : Aij ¼ 1
� �

Some authors divide this measure by the maximum number of ties (n�1) to
obtain values between 0 and 1. This standardization accounts for the size of the
network and facilitates comparison of degree centralities across networks. The
standardized version is most insightful in small networks where having ties to all
other actors would be feasible, e.g., a class in school or a sports club, and you would
observe values in the entire (0, 1) range. Table 1 shows the degree centralities of our
example network.

Betweenness Centrality
The second, slightly more complex centrality measure that we discuss is between-
ness centrality. This measure is based on the number of times an actor occurs on the
shortest path between any pair of actors in a network. To calculate betweenness
centrality, you first need to determine the shortest paths between all possible pairs of
actors and then count how many times an actor appears on each of these paths. The
difficulty here is that there may be multiple shortest paths and an actor might be on
none, some, or all of these shortest paths.

A high betweenness centrality implies that a large amount of information flows
“through” an actor on its way from sender to receiver. This gives the actor a high
level of influence over which and how much information to pass on through the
network and thus provides the actor with brokerage power (Burt 2004).

We define the number of shortest paths between actors j and k as P(kj) and the
number of shortest paths between j and k that go through actor i as Pi(kj). Then, the
ratio Pi(kj)/ P(kj) indicates how crucial actor i is in the relationship between actors
j and k. The betweenness centrality of actor i is as follows:

BCi ¼ Σk 6¼j,i not in k,jf gPi kjð Þ=P kjð Þ
Some authors divide this measure by the total number of pairs of actors (n�1)

(n�2)/2 to obtain average values. The latter would facilitate comparison across
networks, but other than that the measures are equally useful. Table 1 shows the
betweenness centralities of our example network.

Table 1 Actor level metrics of our example network

Actor
Degree
centrality

Betweenness
centrality

Closeness
centrality

Eigenvector
centrality

1 2 0 1.8 0.54

2 3 1.5 1.4 0.88

3 2 0 2 0.62

4 3 1.5 1.4 0.88

5 4 6 1.2 1.00

6 2 0 1.8 0.54
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Closeness Centrality
Closeness centrality is the average distance between an actor and all other actors in
the network. Distance could reflect the number of steps between two actors (1: friend,
2: friend of a friend, etc.), or it could be a weighted version of the number of steps by,
for example, tie strength. It indicates quite literally how close everyone else in the
network is to an actor and thus how much effort it would take to reach all others.
Using the length of the shortest path l(i,j) between actor i and any other actor j, the
closeness centrality of actor i is:

CCi ¼ Σ j 6¼il i, jð Þ= n� 1ð Þ
Some authors take the inverse of this metric such that higher values of closeness

centrality correspond to shorter paths and thus increased closeness. Which one to
choose is a matter of conceptual preference and/or convention in a research domain.
Table 1 shows the degree centralities of our example network.

Eigenvector Centrality
The previous three metrics reflect how central an actor is directly based on the actor’s
characteristics. Eigenvector centrality on the other hand is more complex and
indirect in that it reflects how central an actor is based on how central or well-
connected the actor’s neighbors are. This metric builds on the notion that an actor
can be considered central even if she/he only has a limited number of connections
(i.e., low degree centrality) when these actors in turn are well-connected. Calculating
this metric by hand is rather complex, because it is self-referential: the eigenvector
centrality of actor i partly depends on the eigenvector centrality of his/her neighbor-
ing actor j, but the eigenvector centrality of this actor j again depends partly on the
eigenvector centrality of actor i. Table 1 shows the eigenvector centralities of our
example network.

Tie Level

We now move to the metrics on tie level. We distinguish two types of tie level
characteristics, (1) those that measure a characteristic of the tie itself (e.g., strength or
direction) and (2) those that measure similarities and differences between the two
actors forming the tie (e.g., homophily). These tie characteristics provide a lot of
information in addition to the actor level variables. They capture the social context in
which the actor operates and allow you to put the actor characteristics in perspective.
For example, for contagion purposes it might matter whether a female consumer is
mainly connected to other males or females and whether her ties with others are
generally strong or weak.

Tie Strength
Measuring tie strength is less straightforward than measuring the actor characteris-
tics from the previous section. Following Granovetter, we define tie strength as “a
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combination of the amount of time, the emotional intensity, the intimacy (mutual
confiding), and the reciprocal services which characterize the tie” (Granovetter 1973,
p. 1361). The challenge is how to operationalize this definition, because many social
network datasets lack information on one or several of the dimensions from the
definition. Most papers in the marketing literature use a proxy for tie strength based
on interaction intensity, see Table 2.

Homophily
Homophily refers to the phenomenon that we tend to form relationships with others
that are in some way similar to us. Awell-known expression for this phenomenon is
“birds of a feather flock together” (McPherson et al. 2001). When analyzing social
network data, homophily is important to take into account, because otherwise
observed similarities in behavior of connected individuals might erroneously be
attributed to social influence or contagion (Aral et al. 2009; Manski 2000). The
reason for this is that connected individuals tend to be similar and similar individuals
with similar preferences tend to behave similarly regardless of any social influence
occurring between them. Only after adjusting your analysis for homophily one can
infer the impact of social influence properly.

Network Level

Metrics on the network level provide information on the network as a whole. They
provide the context in which the lower level (actor, tie) action takes place. The role of
these network level metrics is similar to the role of descriptive statistics for cross-
sectional data: it gives you a good first impression of the information contained in the
data at a glimpse.

Size
The most basic network level metric is the size of the network, i.e., the number of
actors. Like the sample size in cross-sectional data, it is an important metric to report
as it helps to calculate all other lower-level network metrics.

Table 2 Operationalizations of tie strength

Data source Papers Tie strength measure

Call detail
records
(telecom)

Haenlein (2013)
Meyners et al. (2017)
Nitzan and Libai
(2011)
Onnela et al. (2007)
Risselada et al. (2014)

Aggregated duration of calls between users A and B
over a reciprocated tie (relative to an actor’s total
calling duration).

Direct
messaging
network

Aral et al. (2009) Number/fraction of exchanged messages.

702 H. Risselada and J. van den Ochtend



Density
Network density reflects the proportion all existing ties in a network to all possible
ties in a network. It is closely related to the actor level variable degree centrality
discussed above. You calculate the density of a network by dividing the average
degree centrality of all actors by (n�1), with n the number of actors in the network. It
tells you how much of the network potential is actually used.

Degree Distribution
The degree distribution of a network is the relative frequency of actors with a certain
degree. The distribution is therefore not a metric but rather a feature of a social
network. Many social networks have a degree distribution which is highly skewed,
where many actors have only a few ties, and only a few actors have many ties. This
phenomenon is caused by preferential attachment, i.e., actors typically want to
connect to popular (high-degree) actors. A common term for networks with such
properties is scale-free networks. On the contrary, when the degree distribution
follows a normal distribution, the network is said to be random, i.e., the likelihood
that actors connect is independent of their degree. See Barabasi and Bonabeau
(2003) and Broido and Clauset (2019) for more information about the properties
of common real-world networks.

Network Data and Sampling Methods

Scaling down to networks that are relevant for marketers, there are still numerous
networks that differ substantially in the nature of ties and actors, and the structure of
the network. Networks that are often analyzed in marketing include product net-
works (for recommendation systems), networks of companies (for B2B marketing),
organizational networks (for social influence among employees), and market net-
works (for buyer–seller relationships). As before, we focus on networks of con-
sumers, as this is the most common network type in marketing research and practice.
A large collection of different types of networks is provided by the Colorado Index
of Complex Networks (https://icon.colorado.edu/).

Data Collection

To gather insights in consumer networks, there are multiple data solutions. Table 3
illustrates the types of online and offline network data and their benefits and
disadvantages. A solution that is as straightforward as it is effective is the use of
geographic proximity (Wuyts et al. 2011; Meyners et al. 2017). Naturally, con-
sumers that live close to each other tend to interact with each other. In addition,
local social influence effects can be quite strong due to the high level of perceived
similarity between consumers that live in the same area (i.e., perceived homo-
phily). For example, Nam et al. (2010) estimate the effect of social influence on
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the adoption of a video-on-demand service by measuring how local quality
differences drive the adoption within the same geographical area. The benefit of
geographical data is that it is relatively easy and cheap to obtain for a large group
of consumers. However, the data is often an imperfect representation of the true
network and does not allow for detailed information about the ties, such as tie
strength and homophily. A second method that requires more effort is the use of
surveys (chapter ▶ “Crafting Survey Research: A Systematic Process for
Conducting Survey Research” in this Handbook). The benefit of survey data is
that one can measure the more detailed tie attributes such as tie-strength and
homophily. For example, Iyengar et al. (2015) are able to distinguish individuals
that are seen as experts from individuals that are seen as discussion partners. Besides

Table 3 Types of network data with selection of papers

Type of
network data Benefits Disadvantages

Examples within the
marketing literature

Geographic
proximity

Easy to obtain data
Highly scalable

Low accuracy
No information about the
individual ties
No detailed information
about homophily

Bell and Song (2007)
Nam et al. (2010)
Choi et al. (2010)

Survey data High accuracy
Complete network
Tie-strength info
Information about
nature of relationship
Detailed information
about homophily

Hard to obtain data
Not highly scalable
Self-report bias

Iyengar et al. (2011)
Iyengar et al. (2015)
Nair et al. (2010)

CDR data High accuracy
Highly scalable
Tie-strength info
Some information
about homophily

Privacy issues
No information about
nature of relationship

Nitzan and Libai
(2011)
Onnela et al. (2007)
Risselada et al.
(2014)

Social
network
platform

Medium hard to obtain
data
Highly scalable
Tie-strength info
Detailed information
about homophily
Information about
WOM content

Limited data access through
APIs
Strong sampling bias
dependent on type of
platform

Ma et al. (2015)
Trusov et al. (2009)
Trusov et al. (2010)
Aral and Walker
(2014)
Valsesia et al. (2020)

Instant
messenger

Highly scalable
Tie-strength info

Hard to obtain data
Little information about
nature of relationship

Aral et al. (2009)

Community
networks

High accuracy
Detailed information
about homophily
Information about
WOM content

Only information about
current customers

Zhang and Godes
(2018)
Park et al. (2018)
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the high costs of collecting data, researchers should be aware of possible self-report
biases. For example, friendships are not always reciprocal, and the number of friends
or the own social status can be overestimated (Wuyts et al. 2011; Haenlein 2013). To
generate a connected network from survey data, one can engage in snowball
sampling or the so-called referral chain sampling (Ebbes et al. 2016; Reingen and
Kernan 1986). This type of sampling refers to a specific type of survey distribution,
in which the surveyed consumers forward the questionnaire to his/her connections.
As such, one can obtain a network in which each node is connected with the entire
network. A third technique that is widely applied in marketing is to leverage third
party data of a telecom provider. The so-called “call detail records” (CDR) data
contains all phone calls of the customers of the telecom company. Based on these
calls, one can derive the relevant network of the customer. For example, Nitzan and
Libai (2011) identify the effect of social influence on churn behavior from such a
dataset. Studies show that such networks accurately represent offline networks
(Eagle et al. 2009). Features such as the weight of a tie can be estimated by taking
the frequency and the duration of calls into account (Risselada et al. 2014). However,
little information about the nature of the relationship is known (e.g., friends or
colleagues?) and the rising privacy regulations make it more difficult to obtain
CDR data. A fourth method is to analyze the network from a social network
platform such as Twitter or LinkedIn. Often such data can be gathered through an
API provided by the platform and gives a good indication of the individuals
network, see https://developer.twitter.com/en/docs for APIs that can be used to
download data from Twitter and see https://www.linkedin.com/developers/ for APIs
that can be used to download data from LinkedIn. When the platform also tracks
features such as individual messaging, or interactions with user-generated content,
one can use these as tie strength measures. In addition, these platforms often gather
demographic and behavioral data of their users, which allows for precise homophily
measures between the nodes. An example of the use of such data is the study by
Valsesia et al. (2020), which shows that the number of out-degree ties, conditional on
the number of in-degree ties, has a negative effect on the perceived and actual
influence of social media users. Similar data can be derived from online communi-
cation tools, such as networks based on e-mail traffic or online message services.
While the true nature of the ties is often unobserved in such networks, they are able
to provide a sufficient proxy for the offline network of consumers. However, not
every online network is a representation of the offline network. Typically, the
boundary between friends and strangers deteriorates when moving from an offline
to an online network. Nevertheless, online networks are highly relevant for marketers
as consumers can be influenced by both close friends as well as by acquaintances or
complete strangers (Zhang et al. 2015). Finally, other typical online networks are
community networks. Firms create community networks to foster shared consump-
tion experiences, collaboration, or competition between their customers. In addition,
it provides their customers with a single point of concentration information about the
products or services of a firm. For example, analyzing the network of an online
gaming community, Park et al. (2018) identify a positive effect of social contagion
on users’ spending behavior.
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Network Sampling

Consumer networks can include millions of nodes and the square number of ties
resulting in large and complex data. As such, to map out and analyze the entire
network is a computationally expensive task. Even though some of the techniques to
model networks discussed later on are scalable, many methods are limited in their
capacity and require a lot of computational power. To reduce the size and complexity
of the network, researchers can apply several sampling techniques. These techniques
differ in their ability to recover the different network characteristics. As such, their
suitability depends on the goal of the researchers.

When the goal of the analyses is to identify the impact of social influence on
consumer behavior at an individual level, researchers can rely on random sampling.
To measure social influence, the data needs to include (1) the behavior of an
individual node, (2) the nodes that are connected to the focal node, and (3) the
behavior of the connected nodes. As such, the overall network structure is less
relevant, and the interest focuses mainly on the ego-network, i.,. the focal actor
(“ego”) and the nodes that are directly connected to the actor (e.g., Risselada et al.
2014; Nitzan and Libai 2011; Haenlein 2013). Such direct connections are typically
referred to as first-degree neighbors. Scholars that are interested in social influence
across multiple nodes or on a global level can expand the ego-network to include
second- or higher-degree neighbors. Figure 2 illustrates the relevant ego network
versus the complete network.

As soon as marketers are interested in social influence at the global level or want
to predict the results of possible marketing initiatives that leverage social influence,
network sampling techniques are required. To derive a representative sample of the
network, it is important to recover important network characteristics such as
betweenness and closeness centrality, and the degree distribution. This can be
achieved through the so-called subgraph sampling methods. These methods differ

Fig. 2 Ego network
(gray ¼ ego) versus complete
network
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from the random sampling described above. In the procedure of collecting data from
ego-networks, we first select a group of random nodes and subsequently select their
links. In subgraph sampling, we sample the nodes and links jointly. There are four
widely applied network sampling methods to derive a subgraph from a population
network, i.e., the random sampling method, the snowball method, the random walk
method, and the forest fire method. To illustrate the different methods, we define a
population network as G¼ (V, E), with the set of actors V¼ {v1, . . ., vN} and the set
ties E ¼ {(vi, vj)}. We define a subgraph of G as G* ¼ (V*, E*), where the sampled
actor set and tie set of graph G* are V* � V and E* � E. In the case of random
sampling, we take a random selection of actors, V*, and then include all ties between
the actors, E*, to build the subgraph G*¼ (V*, E*). For snowball sampling, we start
with selecting one actor, v1*, then select all neighbors, v2*, and select all their
unselected neighbors, v3*, up to vk*, until we’ve reached a large enough set of actors
V*{v1*, . . ., vk*}. In the case of the random walk method, we only select one
neighbor at random from the entire set of unselected neighbors. In the case of the
forest fire method, we select a certain percentage (i.e., the burn rate) of the remaining
unselected neighbors at random for each round. Ebbes et al. (2016) compare the
performance of all methods and conclude that (1) forest-fire sampling with a burn-
rate around 50% should be used in research on local influence, as this method is best
in recovering the degree distribution of the graph, and (2) the random walk method
or forest-fire sampling with a low burn-rate (e.g., 20%) should be used for research
on influence at a network level as it is best in retrieving the centrality measures.

Social Network Analysis in R

In this section, we illustrate how to calculate the metrics discussed above and how to
estimate a basic model to quantify social influence. The main package we use for the
network-related analyses is the igraph package (Csardi and Nepusz 2006) in R
(R Core Team 2018). This package is also available for Python.

Data

We use the classic Coleman’s Drug Adoption dataset “Innovation among Physi-
cians,” which is publicly available in the spatialprobit R-package (Wilhelm and de
Matos 2015). You can find a detailed description of the dataset in the package by
typing? CKM in the R console after loading the spatialprobit package.

> library(spatialprobit) #load the spatialprobit package
> ?CKM #this calls for the help on the CKM dataset

The dataset contains information on 246 physicians in four cities and was
collected in 1966. Table 4 shows the variables we use in our examples.

To be able to work with the dataset, you need to load it in R.
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> data(CKM) #load the dataset

We use the data tables format in R to make the data manipulation and coding as
easy as possible. See https://cran.r-project.org/web/packages/data.table/vignettes/
datatable-intro.html for more information regarding the data table format and the
data.table package (Dowle and Srinivasan 2019).

> library(data.table) #load the data.table package
> CKM <- as.data.table(CKM) #make CKM a data.table object
> CKM[,date := as.numeric(adoption.date)] #change the variable
type of adoption.date to numeric for ease of analysis

We add a new variable called id to have a clear identifier for all individuals in the
dataset.

> CKM[,id := 1:.N] #assign IDs to all individuals in the dataset

Now we are all set to create the network. Here we use an adjacency matrix
approach where each element of the matrix simply indicates absence (0) or presence
(1) of a tie. In this example, we base the adjacency matrix on three matrices for which
the original authors collected data by means of a sociometric approach. The three
relevant questions were “When you need information or advice about questions of
therapy where do you usually turn?”, “Who are the three or four physicians with
whom you most often find yourself discussing cases or therapy in the course of an
ordinary week – last week for instance?”, and “Would you tell me the first names of
your three friends whom you see most often socially?.” These three questions
resulted in an advice matrix (A1), a discussion matrix (A2), and a friend matrix
(A3), respectively. For illustrative purposes, we combine the three matrices in a
unique adjency matrix A4 by setting its elements to 1 if it was 1 in A1, A2, or A3.

> A4 <- A1 + A2 + A3 #add up the advice, discussion, and friend
matrices

Table 4 Variable names and descriptions as given in the spatialprobit package

Variable
name Description

city a numeric vector; City: 1 Peoria, 2 Bloomington, 3 Quincy, 4 Galesburg

adoption.
date

an ordered factor with levels November, 1953; December, 1953; January,
1954; February, 1954; March, 1954; April, 1954; May, 1954; June, 1954; July,
1954; August, 1954; September, 1954; October, 1954; November,
1954; December, 1954; December/January, 1954/1955; January/February,
1955; February, 1955; no prescriptions found; no prescription data obtained

med_sch_yr Years in practice

friends friends

community Time in the community

specialty Medical specialty

708 H. Risselada and J. van den Ochtend

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html


> A4[A4 > 0] <- 1 #create a binary adjacency matrix
> library(igraph) #load the igraph package
> medinnovNetw <- graph_from_adjacency_matrix(A4) #create the
network

To get a first impression of the network you can use the plot function to generate a
simple network plot. This will only provide useful output for smaller networks.
Large networks will be messy or even unreadable. Visualizing large and complex
networks requires specialized software, e.g., Gephi (https://gephi.org).

Calculating Actor Level Metrics

Figure 3 shows that the network is not fully connected. It consists of several
disconnected clusters. For illustrative purposes we will use the largest cluster and
calculate the actor level metrics discussed above. The reason for this is that a metric

Fig. 3 Plot of the network. (Notes: generated by plot (medinnovNetw,vertex.size ¼ 5,edge.arrow.
size ¼ 0.3,vertex.label ¼ ""))

Social Network Analysis 709

https://gephi.org


like closeness centrality cannot be calculated for disconnected parts of the network,
because the distance between two actors in different clusters would be infinite.

> medinnovNetw.components <- clusters(medinnovNetw) #identify the
clusters in the network; the largest cluster consists of 117 actors
> medinnovNetw.components.graphs <- decompose.graph(medinnovNetw)
#decompose the network into separate clusters; each cluster is an
element in a list
> medinnovNetw.subgraph1 <- as.undirected(medinnovNetw.
components.graphs[[1]]) #we store the largest cluster as an
undirected network for illustrative purposes
> gorder(medinnovNetw.subgraph1) #check whether the subgraph is
indeed the one with 117 vertices

Now that we have our new network, we can easily calculate all network metrics
using standard functions in the igraph package. We show the code here and provide
summary statistics in Table 5.

> subgraph1.degree.centrality <- degree(medinnovNetw.subgraph1)
> subgraph1.betweenness.centrality <- betweenness(medinnovNetw.
subgraph1)
> summary(subgraph1.closeness.centrality)
> subgraph1.eigenvector.centrality <- eigen_centrality
(medinnovNetw.subgraph1)#the first element of this list contains the
centralities

Calculating Tie Level Metrics

We now switch back to using the complete dataset. Most papers using communica-
tion-based network data, for example, call detail records or online social network
data, use interaction intensity as a proxy for tie strength. However, the dataset that we
use here is not based on communication, but on survey responses and the network is
based on sociometric questions related to advice, discussion, and friendship. We
used the binary adjacency matrices to construct the network and we can use the
weight matrices derived from the adjacency matrices (and included as W1, W2, and
W3 in the CKM data) as our tie strength measure. The weight matrices are just the
normalized versions of the adjacency matrices. For example, if physician 1 indicated

Table 5 Descriptive statistics of the actor level metrics

Actor level metric Mean S.D. Min. Max.

Degree centrality 7.966 4.026 2.000 26.000

Betweenness centrality 91.880 99.114 0.000 717.120

Closeness centrality 0.003 0.0003 0.003 0.004

Eigenvector centrality 0.262 0.153 0.031 1.000
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7 friends, the weight of each of those friends would be 1/7. The implicit assumption
here would be that the more friends you have, the weaker the tie per friend.

The variables in the dataset that we use to calculate homophily are the city (city),
years in practice (med_sch_yr), time in the community (community), and medical
specialty (specialty). Before we can perform these calculations, we need to prepare
the data. Note that we continue with the adjacency matrix A4 that we created earlier.

> dimnames(A4) <- list(as.character(CKM$id),as.character(CKM$id))
> g <- graph_from_adjacency_matrix(A4)
> g.list <- data.table(get.edgelist(g)) #this returns a data table
with all edges (relationships)
> friends <- g.list[,list(id=as.numeric(V1),friend=as.numeric
(V2))] #set names
> friends <- rbind(friends,friends[,list(id=friend,friend=id)])
#the original data is directed, but here we make an edgelist for an
undirected graph
> friends <- merge(friends,
+ CKM[,list(friend=id,
+ d.adopt=date,
+ f.city=city,
+ f.med_sch_yr=med_sch_yr,
+ f.community=community,
+ f.specialty=specialty)],
+ by="friend") #we add the adoption dates and the
variables we need to calculate homophily later for the friends
> friends[,f.adopt := 1]
> friends[d.adopt > 17,f.adopt := 0] #in these two steps we create
an adoption dummy and set it equal to zero when the adoption month
is larger than 17 (i.e. the end of the observation period)
> friends2 <- merge(friends,
+ CKM[,list(id =id,
+ id.city=city,
+ id.med_sch_yr=med_sch_yr,
+ id.community=community,
+ id.specialty=specialty)],
+ by="id") #we add the variables we need to calculate
homophily later for the ids
> setkey(friends,id) #we create a key to sort the data and speed up
the data manipulation

To check whether we got the desired results we use the head() function to
display the first few rows of the dataframe, see Fig. 4. In the table friends2 we see the

Fig. 4 The result of head(friends2)
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two physician identifiers (id, friend) forming a tie, the adoption date (d.adopt) and
dummy (f.adopt) of the friend, and the variables we use for the homophily calcula-
tion of both id and friend.

We can now calculate the homophily variable in two steps. First, we create a new
variable per dimension attaching a weight of ¼ when id and friend have the same
value for that dimension. We add the conditions that end with “!¼ 9” to exclude the
cases where the respondent indicated “no answer,” because two individuals not
answering does not make them more similar. In the second step we add all the
weights to get a homophily score per id, the variable HOMOPH.

> friends3 <- friends2 %>%
+ mutate(
+ city.hom = ifelse(id.city == f.city, 1/4, 0),
+ med_sch_yr.hom = ifelse(id.med_sch_yr == f.med_sch_yr & id.
med_sch_yr != 9, 1/4, 0),
+ community.hom = ifelse(id.community == f.community & id.
community != 9, 1/4, 0),
+ specialty.hom = ifelse(id.specialty == f.specialty & id.
specialty != 9, 1/4, 0),
+ HOMOPH = city.hom + med_sch_yr.hom + community.hom +
specialty.hom
+ )

Modeling Social Contagion

Assessing the relationship between the adoption by the id and the adoption(s) by
his/her friend(s) is our main objective here. We start by creating a clean version of
the original CKM dataset.

> CKM <- CKM[date < 19] #remove all missing values on adoption
(date ¼¼ 19 or 20)
> CKM[,adoption := 1] #we create an adoption dummy
> CKM[date == 18,adoption := 0] #set it to 0 if id did not adopt
(date ¼¼ 18)
> CKM <- CKM[discuss != 9 & friends != 9] #remove if no answer on
friends or discussion

Then we create a panel dataset with a unique row per id-month combination. The
last month per id is the month in which the id adopted (i.e., adoption ¼ 1). If id did
not adopt at all during the observation period the maximum number of rows is
17 where adoption¼ 0 for all rows. The time-independent covariates are the same in
every row per id. Figure 5 below shows the top of the created panel dataset CKM.
panel.

> CKM.panel <- CKM[,list(month=seq(from=1,to=17,by=1)),by=id]
> CKM.panel <- merge(CKM.panel,CKM[,list(id,date,jours,patients,
med_sch_yr,specialty)],all.x=T,by="id")
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> CKM.panel[,adoption := 0]
> CKM.panel[date == month, adoption := 1]
> CKM.panel <- CKM.panel[month <= date]

We need to create another dataset based on the friends dataset we created earlier in
order to be able to link the adoptions by friends to the adoption by id in a certain
month. The code below sums up the number of adoptions (f.adopt = sum(f.
adopt) per id-date (by = c("id","d.adopt")) combination and stores this in
a new dataset called friends.adopt.

> friends.adopt <- friends[,list(f.adopt=sum(f.adopt)),by=c
("id","d.adopt")]
> setnames(friends.adopt,"d.adopt","month")

We can now merge the friends.adopt dataset with the CKM.panel to obtain the
analysis set.

> CKM.panel <- merge(CKM.panel,friends.adopt,all.x=T,by=c
("id","month"))
> CKM.panel[is.na(f.adopt),f.adopt := 0]
> CKM.panel[,c.adopt := cumsum(f.adopt),by=id]

Our social contagion model simply regresses adoption by the id in a certain
month to the number of adoptions of friends until and including that month (chapter
▶ “Regression Analysis” in this Handbook). Figure 6 shows the results. The param-
eter of the social influence variable is positive and significant (β¼ 0.367, p< 0.001),
which implies that the likelihood of adoption by an individual is greater when the
number of friends who already adopted is larger.

A Word of Caution

To identify social influence is not an easy task. For example, the model above is
fairly simple and misses many important variables. To increase the causal evidence,
we could include the homophily variable (HOMOPH) that we created earlier in our
social contagion model. One way to do this is by using the homophily variable as a

Fig. 5 First six rows of the CKM.panel dataset
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weight for the adoptions (e.g., Risselada et al. 2014). Another refinement would be
to take the recency of adoptions into account where adoptions of more than a certain
number of periods ago would no longer contribute to the social influence variable.
Alternatively, one could use a stock variable approach which is commonly for
advertising expenditures in sales response models. Further, scholars have shown
that controlling for marketing initiatives removes the evidence of social influence
that we found in the dataset above (van den Bulte and Lilien 2001).

However, when analyzing social influence based on network data, there are three
additional challenges that can lead to a biased estimate of social influence, i.e.,
simultaneity, external shocks, and homophily (Manski 2000). Simultaneity or reflec-
tion arises when two consumers influence each other simultaneously. When this is
the case, it remains unclear whether the actor is influenced by her/his connections, or
whether the connections are influenced by the actor. To avoid a bias due to simul-
taneity, scholars can use a lagged variable of social influence. That is, the behavior of
connections in the past can influence the current behavior of the actor, but not vice
versa. External shocks refer to a change in the environmental conditions that can
influence the behavior of consumers that are connected at the same time. For
example, changes at a geographical local level might impact the behavior of multiple
connected consumers. Finally, there is the issue of homophily. While we can use
similarity measures based on observed characteristics to capture homophily and even
use it as moderator of social influence, it is likely that we do not observe all relevant
characteristics. That is, there are latent variables, such as unobserved consumer
preferences, that both drive the network formation as well as the behavior of interest.

Fig. 6 R code and estimation results of our social contagion model
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As such, observed clustered behavior within a network might not be the cause of
social influence, but rather a result of the clustered unobserved preferences. Several
solutions to this problem have been proposed, such as propensity score matching on
observed variables (Aral et al. 2009), the use of fixed effects with longitudinal data
(Park et al. 2018), the use of instrumental variables (Aral and Nicolaides 2017), or
the use of specific network models such as the latent space model (Davin et al. 2013)
or the spatial error model (Ansari et al. 2011). Currently, the problem of homophily
and the mentioned solutions are still subject to an ongoing discussion (Shalizi and
Thomas 2011). Both, the issue of external shocks and homophily are similar to the
endogeneity problem caused by omitted variables (chapter ▶ “Dealing with
Endogeneity: A Nontechnical Guide for Marketing Researchers” in this Handbook).

Conclusion

While the existence of social influence among consumers has been studied for
decades, the increasing availability of network data and the tools to analyze these
allows marketers to better understand and address consumers’ needs. However,
collecting and analyzing network data brings new challenges to marketing
researchers and practitioners. In this chapter we provide basic network theory and
notation with references to key publications in the field. We also provide suggestions
for software (packages) and useful functions including code snippets to support you
in preparing and running your first social network analyses. Our aim was neither to
provide a complete literature overview nor was it the aim to go into the most
advanced social contagion models. We hope that this chapter is a good starting
point for those willing to discover the exciting social network domain.

Cross-References

▶Crafting Survey Research: A Systematic Process for Conducting Survey Research
▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶Market Segmentation
▶Modeling Customer Lifetime Value, Retention, and Churn
▶Regression Analysis
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Abstract

Bayesian models have become a mainstay in the tool set for marketing research in
academia and industry practice. In this chapter, I discuss the advantages the
Bayesian approach offers to researchers in marketing, the essential building
blocks of a Bayesian model, Bayesian model comparison, and useful algorithmic
approaches to fully Bayesian estimation. I show how to achieve feasible Bayesian
inference to support marketing decisions under uncertainty using the Gibbs
sampler, the Metropolis Hastings algorithm, and point to more recent develop-
ments – specifically the no-U-turn implementation of Hamiltonian Monte Carlo
sampling available in Stan. The emphasis is on the development of an
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appreciation of Bayesian inference techniques supported by references to
implementations in the open source software R, and not on the discussion of
individual models. The goal is to encourage researchers to formulate new, more
complete, and useful prior structures that can be updated with data for better
marketing decision support.

Keywords

Marketing decision-making · Bayesian inference · Gibbs sampling · Metropolis
Hastings · Hamiltonian Monte Carlo · R · bayesm · Stan

Introduction: Why Use Bayesian Models?

Bayesian models have gained popularity over the past 30 years both among aca-
demics in marketing and marketing research practitioners. There are several reasons
for this popularity. First, many marketing problems involve data in the form of
relatively short panels but with many observational units (large N, small T ). Each
observational unit, e.g., a respondent, a customer, or a store supplies only a limited
amount of data, but there are many observational units in the data set. In the vast
majority of these applications, decision makers know a priori that observational units
are heterogeneous in their underlying, at least partially unobserved characteristics
that generated the data. And the successful marketing of differentiated goods that
involves market segmentation, targeting and positioning requires measures of het-
erogeneity in the population of observational units. Estimating separate, independent
models for each observational unit results in unreliable estimates, and in many
applications, individual level time series are too sparse for individual level maximum
likelihood estimates to be defined. Hierarchical Bayes models offer a convenient and
practical solution to this problem.

Second, the overwhelming majority of marketing data sets involve so-called
limited dependent variables, e.g., choices, ratings, rankings, or generally dependent
variables that have strongly noncontinuous features. Although a number of non-
Bayesian estimators are available for models with such dependent variables (see e.g.,
Amemiya 1985; Long 1997), the assessment of statistical uncertainty in estimates
relies on large sample asymptotic arguments. In marketing, large samples that allow
for inference based on asymptotic arguments are the exception, even in an era where
big data has become a ubiquitous buzzword. Big data, by definition, involves large
data sets. However, the size of the data set usually does not translate into more
statistical information about individual target parameters. Big data are always “big”
because of their dimensionality spanning across, e.g., tens of thousands of cus-
tomers, products, and time points, and include a myriad of potentially useful
conditioning arguments. The dimensionality of the data at the very source of its
size, or “bigness,” regularly translates into similarly high-dimensional models and
estimation problems, such that the amount of statistical information about individual
target parameters is small yet again. Bayesian models allow for coherent inference
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even in small samples, or more generally in situations where there is little data-based
information about individual parameters. Moreover, a number of relatively simple
yet powerful computational algorithms facilitate the estimation of limited dependent
variable models.

Third, in marketing, inference about model parameters or more generally about
different models, i.e., the statistical assessment of the likely mechanisms that bring
about consumers’ and competitors’ behaviors in a market is usually not an end in
itself but input to the decisions of marketing managers in companies. The likely
benefit from various alternatives for, e.g., product design, product line composition,
pricing, or advertising schedules can be expressed as a function of a model and its
parameters. However, knowledge of model parameters and generally the model that
generated the observed market behaviors will never be perfect. Bayesian modeling
facilitates the accurate incorporation of any remaining uncertainty about the mech-
anism behind observed market behaviors in managerial decisions.

Fourth, computational resources become more powerful and affordable every
year, facilitating the estimation of ever more realistic and thus complex models in
academic and industry applications. In addition, freely available software such as,
e.g., the R-package bayesm (see Rossi et al. 2005) makes a collection of Bayesian
models useful for marketing applications readily accessible (The latest version of
bayesm is written for speed using the R-package Rcpp (Eddelbuettel and François
2011; Eddelbuettel 2013). The last complete version mostly written in plain R is
version 2.2–5. The R-files are available from the CRAN-archives and often a useful
start when developing your own routines). In fact, one reason for the popularity of
Bayesian modeling among market research practitioners has been the adoption of
hierarchical Bayes models for inference by companies like Sawtooth software (Orme
2017) that revolutionized how market research consultants approach the analysis of,
for example, choice-based conjoint experiments. Finally, Stan (Carpenter et al.
2017) appears as a big step towards freeing creative modeling from having to invest
substantial amounts of time in the development of efficient Bayesian estimation
routines.

Fifth, because Bayesian estimation is simply the exact reverse of the data
generating process (DGP), it is naturally attractive to researchers that are interested
in the development and the empirical test of their own marketing models. Some
researchers view the need to specify a complete DGP as a drawback. The argument is
that theory never is precise enough to do so, and that this requirement leads to
arbitrary choices that unduly impact the inference for quantities the data are more or
less directly informative about. The Bayesian response to this criticism is to specify
highly flexible DGPs in instances where theory is lacking. This strategy is facilitated
by algorithms that adaptively determine a reasonable dimensionality of a flexibly
formulated model. This determination is based on statistical evidence that potentially
favors a lower dimensional, simpler model and not just fails to reject that model as in
classical hypothesis testing.

All that said, it usually still takes longer to estimate a fully Bayesian model than it
takes to compute maximum likelihood estimates, in case they exist. I have also heard
people “complain” about the amount of information contained in large samples from
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posterior distributions as produced by modern numerical Bayesian inference tools
(Compared to a collection of maximum likelihood estimates and their standard
errors). However, it seems natural to wait somewhat longer for a more complete
answer to a decision problem. And many interesting decision problems cannot be
properly addressed based on a collection of maximum likelihood estimates (should
they even exist) and especially upon realizing that their standard errors cannot be
reliably estimated with the data at hand.

Bayesian Essentials

A Bayesian model consists of a likelihood function p (y|θ) that fully specifies the
probability of the data y given parameters θ, i.e., the process that generates the data
for known parameters. In fact, if the researcher only wants to work with one
likelihood function, is not interested in comparing across different mechanisms
that may have generated the data, any function that is proportional to p (y|θ) will
do, i.e., all functions that differ from p (y|θ) only by an arbitrary positive constant c
are likelihood functions, ‘(y| θ)� c � p(y|θ). We will revisit this point later. A simple
example is the linear regression model yi ¼ x

0

i βþei, ei e iidN 0, σ2e
� �

that implies the

following likelihood for the data p yjβ, σ2e
� �

¼
QN

i¼1 N yij x
0
i β, σ

2
e

� �
.

The second component of a Bayesian model is a prior distribution for the
parameters indexing the likelihood p(θ). The notation p(θ) means “the density p
evaluated at the value θ.” Further, defining the prior distribution as p(θ) implies that θ
~ p, i.e., that θ is (a priori) distributed according to density p, or simply is p-distrib-
uted. The notation p(θ) is short-hand because it omits the (subjective prior) param-
eters indexing the prior distribution. For example, in an application the statement that
the prior is a multivariate normal distribution is incomplete. We need to add
the information about the prior mean and variance, e.g., p θð Þ ¼ N θjθ0,Σ0

� �
, where

N θjθ0,Σ0
� �

is the multivariate normal distribution with mean θ0 and variance-
covariance Σ0 evaluated at θ. The multivariate normal density can be evaluated in
R using the command dmvn from the R-package mvnfast (Fasiolo 2016) or the
command dmvnorm from R-package mvtnorm (Genz et al. 2018). Both commands
support computations on the log-scale which are essential for numerical accuracy.
For example, a log-likelihood value of �2000 can only be numerically distinguished
from a log-likelihood value of, say,�2050 on the log-scale, because both likelihoods,
i.e., exp(�2000) and exp(�2050) evaluate to an “exact” machine zero at currently
available machine accuracies.

The need to specify prior distributions for Bayesian analysis is often viewed as a
drawback of the Bayesian approach. There are several aspects to the specification
and the role of the prior distribution in a Bayesian model. First, as suggested by the
name, the prior distribution is the formal vehicle to bring prior substantive knowl-
edge to bear on the analysis. And it is sometimes overlooked by critics of the
Bayesian approach that such knowledge is already required when specifying the
likelihood function. Second, from a purely technical point of view, prior
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distributions improve the statistical properties of estimators derived from the model
(see e.g., Robert 1994, p. 75).

In the regression example, a useful way to probe into prior knowledge is to think
about expected changes in yi as a function of changes in xi. Unless the substantive
domain the data originates from is unknown, it is extremely likely that the analyst
will have some substantive idea about the DGP that should be used in the formula-
tion of prior distributions. In the event where the analysis is a follow-up on previous
statistical analyses in the same or a related domain, the choice of prior can build on
these results. An example would be market research companies that more or less
continuously study demand in a set of markets.

With the specification of a prior distribution, the analyst expresses his beliefs
about what parameter values are more likely than other parameter values and by
how much, based on his existing substantive understanding of the DGP. If the
analyst specifies a prior such that parameters in a relatively small subset of the
parameter space are much more likely than other parameters, the prior is usually
referred to as an informative prior. The most extreme case of an informative prior
is a distribution that concentrates all its mass on a singular parameter value. Such a
prior is called degenerate. Degenerate priors constrain parameters to take particular
values known a priori. Conversely, the prior is weakly informative or diffuse if
there is no discernible concentration of prior mass on subsets of the parameter
space. However, unless the parameter space is bounded in all directions as, e.g., in
the case of a parameter measuring a probability, it is impossible to put exactly
equal prior weight on all parameter values without violating the requirement that
the prior needs to be in the form of a probability density function (A function p(θ)
is a probability density function if

Ð
p(θ)dθ = 1). Priors that fulfill this requirement

are also referred to as proper priors and priors that do not are improper or literally
noninformative. Finally, if the prior puts zero mass on subsets of the parameter
space, e.g., zero mass on positive price coefficients in a demand model, it is called
a constrained prior.

Bayesian models then apply Bayes’ theorem to derive the posterior distribution of
model parameters given the data:

p θjyð Þ ¼ p yjθð Þ p θð ÞÐ
p yjθð Þ p θð Þ dθ

¼ p y, θð Þ
p yð Þ (1)

Equation 1 identifies the goal of a Bayesian model as to make probability
statements about quantities of interest, θ. More specifically, a Bayesian model
extracts information in the data y via the likelihood function p(y|θ) to update prior
knowledge about these quantities summarized in the prior distribution p(θ). The
updated knowledge is then used to compare among marketing actions a with payoffs
that depend on θ. If we define the loss from an action a given θ asL(a, θ) the optimal
Bayes action minimizes the posterior expected loss:

L ajyð Þ ¼
ð
L a,θð Þ p θjyð Þ dθ (2)

Bayesian Models 723



In marketing applications, the loss usually does not directly depend on θ but
on the implied data ŷ, usually some manifestation of demand, i.e., L a, θð Þ ¼

Ð
L a, ŷð Þ

p ŷjθ, að Þ dŷ. The notation p ŷjθ,að Þ covers the relevant case where the actions under
investigation are conditioning arguments to the DGP. Awell-known example is finding
the coupon strategy that maximizes net revenues, i.e., minimizes the loss defined as
negative net revenues in Rossi et al. (1996).

The denominator in Eq. 1, p (y), is known as the marginal likelihood of the data y
or the normalizing constant of the posterior distribution p (θ|y). As we will see in
section “Bayesian Estimation,” knowledge of this quantity is not required for
Bayesian inference given a particular model. However, statements about quantities
of interest θ in probability form require that 0 < p(y) < 1. Only if this condition
is met, the posterior p (θ|y) will be in the form of a probability density functions, i.e.,Ð
p(θ|y)dθ = 1.
In addition, the marginal likelihood of the data is p (y) needed for the comparison

across different models for the same data where models may be arbitrarily different
in terms of the likelihood function, the prior distribution or both. In fact, based on the
marginal likelihood of the data given a particular model M, i.e., p(y|M), the
decision theoretic framework in Eq. 2 can be extended to cover decisions about
the DGP itself, and to take uncertainty about the data generating model into account
when choosing a marketing action. The optimal action given a set of possible data
generating models M1, . . . , MK and the data minimizes

L ajy,M1, . . . ,MKð Þ ¼
X
k

p yjMkð ÞPr Mkð Þ
ð
L a; θð Þp θjy,Mkð Þdθ (3)

where Pr(Mk) is the subjective prior probability that model k is the true model that is
often chosen to be 1/K in the absence of better knowledge. A marketing application
following this general idea is presented in Montgomery and Bradlow (1999).

The fundamental appeal of being able to make probability statements about
quantities of interest θ is the seamless integration with decision-making based on
the expected utility from a set of possible actions. Note that the posterior expected
loss in Eq. 2 will only usefully distinguish between different actions a if the posterior
p(θ|y) integrates to 1, i.e., is a valid probability density function. It should be
recognized that a proper prior distribution p(θ) essentially guarantees that we can
make these probability statements, independent of any data deficiencies that may be
present. A Bayesian model therefore quantifies how much the data, through the
likelihood, add to our prior understanding of a DGP by comparing the prior
distribution p(θ) to the posterior distribution p(θ|y). This is different from the
classical question what models or model parameters the data can identify.

Consider the following illustrative example. Let us assume that someone
measured the preferences for various credit cards on a linear, continuous scale.
The cards vary in terms of brand: Mastercard, Visa, Discover; interest rate on
outstanding balances: 18%, 15%, 12%; annual fee: no annual fee, $10, $20; and
finally the credit limit: $1000, $2500, $5000. The researcher has preference
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measures for the following eight cards in Table 1, where “1 s” indicate which
attribute levels are present.

Dummy coding using the brand Mastercard, 18% interest, no annual fee and a
credit limit of $1000 as base lines, and adding a constant, we obtain the matrix
corresponding to the linear regression model yi ¼ β0 þ x1,iβ1 þ . . .þ x8,iβ8 þ ei,ei e
N 0, σ2e
� �

for cards i = 1, . . . , 8 in Table 2.
It is easy to verify that the overall nine β-coefficients in this model are not jointly

likelihood identified, because there are only eight observations. This can be viewed
as toy example of the increasingly common situation, where the number of (poten-
tial) explanatory variables exceeds the number of observations, including big data
that owe their size to the number of variables in addition to the number of observa-
tions (are “broader” than “long”). In such data sets, a purely data-based distinction
between connections from explanatory variables to the dependent variable is no
longer possible, even if all explanatory variables come from independent processes a
priori.

Inspecting the bivariate correlations between covariates in Table 2 that are
depicted in Table 3, we can see that these correlations are not too strong, individually.
However, we also see that no two design columns are perfectly orthogonal. I further

Table 1 Credit card Designmatrix

Brand Interest Annual fee Credit limit

# Master Visa Discover 18% 15% 12% $0 $10 $20 $1000 $2500 $5000

1 1 0 0 1 0 0 1 0 0 1 0 0

2 1 0 0 0 0 1 0 0 1 0 0 1

3 0 1 0 1 0 0 0 1 0 0 0 1

4 0 0 1 1 0 0 0 0 1 0 1 0

5 0 0 1 0 0 1 0 1 0 1 0 0

6 0 0 1 0 1 0 1 0 0 0 0 1

7 0 1 0 0 0 1 1 0 0 0 1 0

8 1 0 0 0 1 0 0 1 0 0 1 0

Table 2 Credit card Modelmatrix

Brand Interest Annual fee Credit limit

Constant Visa Discover 15% 12% $10 $20 $2500 $5000

# x0 x1 x2 x3 x4 x5 x6 x7 x8
1 1 0 0 0 0 0 0 0 0

2 1 0 0 0 1 0 1 0 1

3 1 1 0 0 0 1 0 0 1

4 1 0 1 0 0 0 1 1 0

5 1 0 1 0 1 1 0 0 0

6 1 0 1 1 0 0 0 0 1

7 1 1 0 0 1 0 0 1 0

8 1 0 0 1 0 1 0 1 0
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investigate the model in Table 2 using regression analysis. Specifically, I regress each
column in Table 2 (excluding the constant) on the remaining columns. Every one of
these eight regression results in a perfect prediction because we have 9 � 1 = 8
predictors and 8 observations, each. The rows in Table 4 report the coefficients from
regressing the covariate indicated by the row name on the remaining seven covariates
in addition to a constant. A dash indicates that the covariate indicated by the column
label in Table 4 is the dependent variable. The “NAs” result from perfect predictions
of the covariates “Discover,” “12% interest rate,” and “$10 annual fee” before
including the covariate “$5,000 credit limit” as predictor.

For example, the last line of Table 4 implies the following deterministic equation
from regressing the covariate “$5,000 credit limit” on the remaining covariates in
Table 2: x8 = 0 + 1x1 + 0x2 + 1x3 + 0x4 + 0x5 + 1x6 – 1x7. The contrasts x1, x3, and x6
involving “Visa,” “15% interest,” and “$20 annual fee” are therefore positively
confounded with the contrast involving “$5,000 credit limit,” and this latter contrast
is negatively confounded with the contrast x7 involving “$2,500 credit limit.”

Now, what are the implications for modeling the variation in the preference
measures y as a function of covariates? In order to arrive at a likelihood-identified
regression model, we need to reduce the number of covariates (the number of
columns in Table 2) such that the resulting X-matrix is of full column rank, and
the inverse of X0X is well defined. As a general rule, we can always throw out
covariates that are independent of all covariates we would like to keep in the model,

Table 3 Correlations between design columns

Visa Discover 15% 12% $10 $20 $2500 $5000

Visa 1

Discover �0.45 1

15% �0.33 0.15 1

12% 0.15 �0.07 �0.45 1

$10 0.15 �0.07 0.15 �0.07 1

$20 �0.33 0.15 �0.33 0.15 �0.45 1

$2500 0.15 �0.07 0.15 �0.07 �0.07 0.15 1

$5000 0.15 �0.07 0.15 �0.07 �0.07 0.15 �0.6 1

Table 4 Design column dependence – regression analysis

Constant Visa Discover 15% 12% $10 $20 $2500 $5000

Visa 0 – 0 �1 0 0 �1 1 1

Discover 0.5 �0.5 – 0 0 0 0 0 NA

15% 0 �1 0 – 0 0 �1 1 1

12% 0.5 0 0 �0.5 – 0 0 0 NA

$10 0.5 0 0 0 0 – �0.5 0 NA

$20 0 �1 0 �1 0 0 – 1 1

$2500 0 1 0 1 0 0 1 – �1

$5000 0 1 0 1 0 0 1 �1 –
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without biasing our inference for the influence of the latter. Throwing out such
covariates, at worst, increases the unexplained variance. In this example, no covar-
iate fulfills this criterion by the mere fact that we have too many covariates to choose
from, relative to the number of observations.

As a second general rule, we can eliminate covariates from the model which we
strongly believe (know a priori) to have no (direct) effect on the dependent variable.
We can do so regardless of how such covariates are related to covariates we would
like to keep in the model, for unbiased inference about the influence of the latter.

However, if we eliminate a covariate that actually has a direct effect on the
dependent variable that is not independent of all covariates we would like to keep in
the model, the resulting inference will be biased. For example, whatever the true
preference contribution of “$5,000 credit limit” relative to the baseline of only
“$1,000 credit limit,” the coefficients associated with “Visa,” “15% interest,” and
“$20 annual fee” will be biased upward by this amount, and the coefficient associated
with “$2,500 credit limit”will be biased downward by the same amount upon deleting
column x8 (“$5,000 credit limit”) for identification in this example. Also, note that the
confounds identified here are not automatically resolved upon collecting more data. In
fact, even an infinite number of observations from the model in Table 2 will exhibit the
same problem.What is required for improved data based identification is not onlymore
but also “different” data, i.e., data generated byX-configurations different from those in
Table 2. However, more data will necessarily be “suitably different” if the processes
that generate the covariates are independent, at least conditionally.

In this particular example, there is no obvious choice of covariates that could be
omitted based on strong prior beliefs that their direct effect is equal to zero. In fact, a
prior understanding of preferences for credit cards would suggest that all covariates
likely causally relate to the observed preferences for the different cards. Thus, any
likelihood identified model obtained by omitting covariates from Table 2 is likely to
yield substantially biased inferences regarding the influence of covariates retained in
the model.

At this point, it is useful to relate likelihood-identification by omitting covariates
to the formulation of a prior. In a sense, omitting covariates to achieve likelihood-
identification corresponds to a degenerate prior concentrated on zero for the effects
of omitted covariates, coupled with an improper prior for the effects of covariates
retained in the model. In contrast, a Bayesian model for this data defined through a
proper prior over all observed covariates expresses the belief that these covariates
contributed causally independently to the observed preferences, with some prior
uncertainty about the size of the individual contributions.

From the perspective of different (implied) priors, I believe that essentially
nobody would prefer one of the many possible likelihood identified models in this
example to the Bayesian model that keeps with the prior causal structure. Mutilating
the prior causal structure to overcome data deficiencies and to achieve likelihood-
identification (and more generally statistical efficiency) does not seem to be a
generally useful strategy. Obviously, one often can (and should) try to obtain more
informative data. However, completely discounting the information in only partially
informative data seems to be a wasteful strategy.
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Importantly, a prior that expresses the belief in invariant structural aspects of the data
generating process will eventually translate into accurate posterior measures of the
strength of structural relationships, once more likelihood information becomes avail-
able. A model (or prior structure) that is formulated in response to observed data
deficiencies will not. Thus, the findings from such a model are generally not useful as
prior input to future analysis of data from the same process, be it informative, or again
deficient per se, potentially in a different way.Wewill revisit this topic whenwe discuss
and numerically illustrate hierarchical Bayesian models that manage to extract infor-
mation about the distribution of parameters from a collection of likelihoods that
individually fail likelihood-identification (a collection of “deficient” data sets).

A big intellectual step is thus to acknowledge the limits of a perspective that
literally asks “for the data to speak.” The decisions that go into “making the data
speak,” be it in the form of simple summaries or complicated (likelihood identified)
models, always involve prior knowledge. In this context, trading beliefs about an
underlying structure for the ability to relate parameters to well-determined functions
of the data only regularly voids the thus identified parameters from the meaning
sought by the analyst in the first place. In contrast, updating a structurally intact prior
with deficient data preserves the structural interpretation of parameters, at the
expense of “purely” data-based identification (I put “purely” in quotes, because
the decision about how to arrive at a model that can be identified only based on the
data at hand always involves subjective, i.e., non-data based prior knowledge).

Now back to our example. When passed to R’s lm-function, for example, lm
automatically deletes the last column from the model for a model that just identifies
the remaining β-coefficients. This model computes eight parameters from eight
observations and thus trivially fits the data perfectly. Because of the perfect fit of
every member of the class of just identified models, the data cannot distinguish
among models in this class. However, as mentioned earlier, prior knowledge
strongly suggests that no likelihood-identified model obtained by deleting covariates
makes much structural sense in this example.

For illustration, I simulate 1000 data sets using the model matrix in Table 2, a
coefficient vector β = (4,2,0,1,1.5,�1,�1.5,2,3), and σ2e ¼ 1 . For each data set, I
estimate the regression model in Table 2 dropping column x8 for identification which
corresponds to the default in R’s lm-function. I also estimate a fully conjugate
(Conjugacy refers tomathematical properties of a prior in combination with a particular
likelihood function. So-called conjugate priors result in posteriors of the same distri-
butional form as the prior. For example, a normal prior is the conjugate prior for the
parameters in a normal likelihood with known variance, i.e., a likelihood that implies
(conditionally) normally distributed data) Bayesian regression model with conditional
prior β eN 0, Iσ2e100

� �
and without dropping any columns from Table 2 using the

routinerunireg in theR-packagebayesm (Rossi et al. 2005) (Themarginal prior for
σ2e . is inverse Gamma with 3 degrees of freedom and scale equal to the observed
variance of y in each data set, i.e., the default in the R-package bayesm).

Table 5 reports the data generating true β-values, the mean of the OLS- and
Bayes-estimates across 1000 data replications, as well as the corresponding standard
deviations. The comparison between the data generating values and the mean of the
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OLS-estimates clearly illustrates the bias analyzed theoretically earlier. The coeffi-
cients associated with “Visa,” “15% interest,” and “$20 annual fee” are biased
upwards by about a value of 3 which corresponds to the data generating preference
contribution of x8= 1, i.e., “$5,000 credit limit”whichwas dropped fromestimation for
identification. The coefficient associatedwith “$2,500 credit limit” is biased downward
by the same amount. Taking into account the standard deviations in parentheses, these
biases appear to be statistically significant, despite the small samples of eight observa-
tions. In contrast, the mean of the Bayes-estimates for the same coefficients is much
closer to the data generating values. In addition, the standard deviations show that
especially the parameters affected by bias in the OLS-regression are estimated with
more statistical precision in the Bayesian model.

The main difference between the classical OLS approach and the Bayesian
approach here are the assumptions that enable the extraction of information from
the data. While classical estimation requires prior information about how to reduce
the dimensionality of the inferential problem to deliver estimates, the Bayesian
approach allows us to retain the original dimensionality at the expense of assump-
tions that make regression parameters outside of some range very unlikely. In
applications where the form and thus the dimensionality of the likelihood function
derive from causal reasoning, i.e., theory, the Bayesian approach thus facilitates
inference without having to compromise on what is the core of existing beliefs about
the DGP in response to data deficiencies.

The rapidly developing field of machine learning provides alternative approaches
to flexibly “regularize” a likelihood function (see e.g., Hastie et al. 2001). On a
formal level, the regularization techniques employed in machine learning can be re-
expressed as prior assumptions about parameters or likely model structures. And
while the machine learning approach may have advantages in applications where the
analyst has minimal to no prior knowledge about the DGP, the Bayesian approach
excels when such knowledge is available.

The prior employed in our illustrative example certainly is closer to a common
sense understanding of preferences for credit cards than the model implied by
deleting x8 (“$5,000 credit limit”), or any other likelihood-identified model obtained

Table 5 Sampling experiment

OLS Bayes

True values Mean Standard deviation Mean Standard deviation

Constant 4.0 3.96 0.91 3.95 0.88

Visa 2.0 5.04 1.29 2.72 0.53

Discover 0.0 0.01 0.70 0.01 0.69

15% 1.0 4.02 1.33 1.70 0.54

12% 1.5 1.49 0.68 1.49 0.66

$10 �1.0 �1.00 0.70 �0.98 0.68

$20 �1.5 1.53 1.31 �0.77 0.55

$2500 2.0 �0.98 0.68 1.33 0.38

$5000 3.0 0 – 2.31 0.42
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by deleting covariates in this example. However, it is still in the spirit of regulari-
zation without much attention to details and incidentally essentially corresponds to a
ridge-regression approach (Hoerl and Kennard 1970).

To illustrate further, Fig. 1 depicts the joint posterior of coefficients associated
with “Visa” and “$5,000 credit limit” obtained from one of the 1000 simulated data
sets. It illustrates a strong one-to-one trade-off between the “Visa” and “$5000
credit limit” coefficients (compare the 45-degree downward sloping solid line
through the origin). When the draw of the “Visa”-coefficient suggests an exceed-
ingly positive preference for Visa relative to the baseline brand Mastercard, the
“$5,000 credit limit “-coefficient suggests a pronounced distaste for the $5000
credit limit relative to the baseline, and vice versa. Without the prior, this distribu-
tion would collapse to a line with equal support for all coefficients from
(βVisa = � 1, β$5, 000 = 1) to (βVisa = 1, β$5, 000 = � 1), and consequently
zero support for any finite set of coefficients. This line is the graphical analogue to
nonidentifiability. The prior essentially allows for point identification by concen-
trating posterior support away from the endpoints (�1,1) and (1,�1). I believe
that essentially everybody would view this as a reasonable assumption after pon-
dering combinations of, say “infinite” preference for Visa with “infinite” distaste for
a credit limit of $5000.

A more elaborate prior could, for example, harness the (weak) prior preference
ordering of the levels of interest rate, annual fee, and credit limit, or specific
knowledge about the person rating the credit cards (see e.g., Allenby et al. 1995).

Finally, many marketing applications such as, for example, conjoint experiments
or the analysis of scanner panel data are characterized by a collection of small data
sets that individually are similarly problematic as the one corresponding to Table 2.
In such settings, so-called hierarchical Bayes models are useful. Hierarchical Bayes
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Fig. 1 Posterior correlation
of the “Visa” and the “$5,000
credit limit” coefficient in one
simulated data set
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models learn the form of the prior to apply to each individual data set from the
collection of data sets. In a hierarchical model, the prior that regularizes each
individual level likelihood is therefore itself an object of statistical inference (see
e.g., Lenk et al. 1996).

Even in settings where a data set formally identifies the parameters in a likelihood
function Bayes theorem (Eq. 1) implies that the prior distribution will “bias away”
the posterior from the information in the data. At least in small samples or generally
in the context of data that does not contain much information about target parame-
ters, the optimal Bayes action (see Eq. 2) may thus be different from the action that
only conditions on likelihood information. And often analysts trained in classical
frequentist statistics point out that an objective assessment of, for example, the
statistical relevance of a parameter is no longer possible once a subjectively formu-
lated prior enters the inferential procedure.

This criticism is certainly valid. However, the quest for objective inference comes
at the price of not being able to use some data sets at all, or only subject to
assumptions that likely are less defensible or further removed from a common
understanding of the DGP than can be incorporated in a prior distribution. Further-
more, when only finite amounts of data are available, the frequentist assessment of
statistical uncertainty in estimates or about models often relies on large sample
asymptotic arguments in all but simple linear models. Large sample asymptotic
arguments are certainly objective but may or may not hold in a particular application
that has to rely on finite data.

Finally, the posterior distribution from priors that have positive support over
the entire support of the parameter space as defined by the likelihood function,
i.e., are neither degenerate or constrained, will converge to the maximum likelihood
estimate as the data become more and more informative. In this sense, priors that are
neither degenerate nor constrained result in large sample consistent inferences.

Bayesian Estimation

For the purpose of inference given a particular Bayesian model, knowledge of the
marginal likelihood p(y) is not required, because as long as p(y) is finite and positive,
we have

p θjyð Þ / p yjθð Þp θð Þ (4)

i.e., the posterior distribution is proportional to the product of the likelihood times
the prior. This proportionality follows from elementary probability calculus upon
recognizing that the product of likelihood times the prior defines the joint density of
the data y and parameters θ, i.e., the conditional distribution of θ given the data y is
proportional to the joint distribution of parameters and the data.

Another way to appreciate this proportionality is to think about the graphical
representation of the posterior distribution of a scalar parameter. It is obvious that the
linear scaling of the y-axis in this graph does not matter for relative probability
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statements of the form p (θi|y) /p (θj|y), because any finite multiplicative constant
would cancel from this ratio. For the same reason, posterior Bayesian inference
given a model is invariant to rescaling the likelihood, the prior, or both by multipli-
cative constants. Similarly, the relative expected loss from two actions ak and al
given a particular model L (ak|y)/ L (al|y) does not depend on multiplicative
constants. However, to compute the expected loss in Eq. 2, we need absolute
probability statements about θ, i.e., we need to normalize the product c1p (y|θ)
c2 p(θ), where c1 and c2 are arbitrary positive “rescaling” constants.

I first discuss two examples where it is relatively obvious how to compute the
normalizing constant

Ð
c1p(y| θ) c2 p(θ) d(θ) in closed form. When the normalizing

constant is available in closed form, the posterior p(θ|y) will usually be in the form of a
known distribution. For known distributions, random number generators are
implemented as part of statistical programming languages such as, for example, R or
can be easily constructed. Based on r = 1, . . . , R draws from such a random number
generator, we can approximate the posterior expected loss inEq. 2 to an arbitrary degree
of precision and for arbitrarily complicated nonlinear loss-functions as

L ajyð Þ � 1

R

XR
r¼1

L a, θrð Þ, θr e p θjyð Þ, (5)

because lim
R!1

1

R

XR

r¼1
L a, θrð Þ ¼

ð
L a, θð Þp θjyð Þdθ by the law of large numbers

provided that L (a| y) is known to be finite (Compare this to the definition of
the (posterior) mean, i.e.,

Ð
θp(θ|y)dθ and its estimator from a sample θ1, . . . ,

θr, . . . , θR, i.e., 1
R

PR
r¼1 θ

r ). This condition will always hold if the loss function
evaluates to finite values over the definitional range of θ, formally
�1 < min

θ
L a, θð Þð Þ � max

θ
L a, θð Þð Þ < 1, or more generally if nonfinite L(a, θ)

is an event of probability measure zero.
I then move to models where the posterior distribution cannot be computed in

closed form and introduce Gibbs sampling facilitated by data augmentation and the
Metropolis-Hastings algorithm as solutions to Bayesian inference in this case.

Examples of Posterior Distributions in Closed Form

Beta-binomial model. Consider a Bernoulli experiment that yields identically,
independently (iid) distributed observations yi taking one of two values, say “1”
and “0” with probabilities θ and 1 – θ. Repeating the Bernoulli experiment n times
results in s ¼

Pn
i¼1 yi “1 s” and n�

Pn
i¼1 yi “0 s”. The probability of observing s in

n trials given θ is then

p sjn,θð Þ ¼ n
s

� �
θs 1� θð Þn�s ¼ Γ nþ 1ð Þ

Γ sþ 1ð ÞΓ n� sþ 1ð Þ θ
s 1� θð Þn�s (6)

where Γ is the Gamma-function (The relation Γ(n + 1) = n! provides some useful
intuition for the Gamma-function).
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As we will see, a convenient prior for the unobserved p (yi = 1)= θ is in the form
of a Beta density:

p θja,bð Þ ¼ Γ aþ bð Þ
Γ að ÞΓ bð Þ θ

a�1 1� θð Þb�1 (7)

The parameters a and b can be interpreted as the number of “1 s” and “0 s” in a
hypothetical prior experiment and serve to express prior beliefs about θ. However,
all real valued a,b> 0 result in proper priors for the probability θ over its definitional
range, i.e.,

Ð 1
0 p θja,bð Þdθ ¼ 1. For example, setting both a and b equal to 1 yields the

uniform density over the unit interval expressing the absence of prior knowledge
about what θ-values are more likely than others. Setting a and b equal to the same
value larger than 1 yields a density that in the limit of a, b ! 1 degenerates to a
point mass at 0.5, which corresponds to various degrees of prior belief strength about
θ being equal to 0.5. The mean and mode of the Beta density are given by a/ (a + b)
and (a� 1) / (a + b� 2). Therefore, a> b (a< b) expresses prior beliefs that θ> 0.5
(θ < 0.5). Finally, for 0 < a, b < 1, the Beta density takes a bathtub shape that piles
up mass at the borders of the parameter space 0 and 1.

Conditional on the data y1,. . ., yn, the binomial coefficient that forms the first factor
in Eq. 6 is a fixed constant. Similarly, the normalizing constant of the Beta density,
i.e., the first factor on the right hand side of Eq. 7 is fixed for a given choice of a,b.

Defining c1 = (Γ (n + 1))�1 Γ (s + 1) Γ (n � s + 1) and c2 = (Γ (a + b))�1 Γ (a)
Γ (b) and making use of the proportionality in Eq. 4, we thus have

p θja, b, s, nð Þ / c1p sjn, θð Þc2p θja, bð Þ
/ θs 1� θð Þn�sθa�1 1� θð Þb�1 ¼ θsþα�1 1� θð Þn�sþb�1 (8)

Comparing the rightmost expression in Eqs. 8 to 7, we see that this product
is in the form of a (non-normalized) Beta density with parameters ~a ¼ sþ a and
~b ¼ n� sþ b, and therefore

p θja, b, s, nð Þ ¼
Γ ~a þ ~b
� �

Γ ~að ÞΓ ~b
� � θ~a�1 1� θð Þ~b�1 (9)

The fact that the posterior distribution in Eq. 9 is of the same known distributional
from as the Beta-prior makes the Beta-prior very convenient in the context of a
binomial likelihood function. Technically, the Beta-prior is the conjugate prior to the
binomial likelihood.

Moving from Eqs. 6 and 7 to Eq. 8 we dropped all multiplicative constants from
the likelihood and the prior that do not depend on θ and then normalized the result
from Eq. 8 to arrive at Eq. 9. As discussed following Eq. 4 above, we can do so for
the purpose of inference given a particular model that consists of a specific likeli-
hood function and prior. I will address the role of these model-specific constants in
the context of formal comparisons between different models further below.

Finally, a useful exercise for first time acquaintances with Bayesian inference is to
simulate binomial data, for example, using R’s binom command, or simply by
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making up n and s, and then simulate from the posterior in Eq. 9 using R’s rbeta
command for different specifications of a and b. Observe how the posterior changes
as you use more or less (informative) data and more or less informative priors.

Another intellectually useful exercise is to think about different finite amounts of
Bernoulli data that either consists of only “1 s” (or only “0 s”). Clearly, the
maximum-likelihood estimate of the data generating probability is one (zero) in
this case, and a purely data-based assessment of uncertainty in this estimate is
impossible. A question at the core of statistical decision theory then is the following:
Is a decision maker better off taking the maximum likelihood probability estimate of
one (zero) for granted, or should he rather base his decisions on a proper posterior
distribution? (Obtained using a proper prior distribution with positive support over
the uniform interval.) A general answer to this question, which we will not attempt to
prove here, is that any proper prior will translate into better decisions than taking the
maximum likelihood estimate for granted. The only exception is the case where prior
knowledge itself implies a deterministic process.

Normal-Normal model. The second example is a normal regression likelihood
with a known observation error variance coupled with a normal prior for the
regression coefficients. This example is of limited direct practical value. However,
it showcases another important conjugate relationship. Moreover, this model serves
as a useful building block for Bayesian inference in the binomial probit model
discussed later, and numerous other models. Consider the following regression
model and implied likelihood function

yi ¼ x
0
i βþ ei ei e iidN 0,1ð Þ

p y1, . . . , ynð Þ ¼ 1ffiffiffiffiffi
2π

p
Yn

i¼1
exp � 1

2
yi � x

0

i β
� �2� �

,
(10)

and a multivariate normal prior distribution for the k regression coefficients
corresponding to the entries in xi, i.e.,

p βj β0,Σ0
� �

¼ 2πð Þ�k=2 Σ0
		 		�1=2

exp � 1

2
β� β0
� �0 Σ0

� ��1
β� β0
� �� �

: (11)

Defining y = (y1,. . ., yn)0 and X = (x1,. . ., xn)0 the posterior distribution is then
proportional to (see Eq. 4):

p βjy, β0,Σ0
� �

/ exp � 1

2
β� β0
� �0 Σ0

� ��1
β� β0
� �� �Yn

i¼1

exp � 1

2
yi � x

0

i β
� �2� �

/ exp � 1

2
β� ~β
� �0

X0Xþ Σ0
� ��1

� �
β� ~β
� �� �

exp � ~s
2

� �

/ exp � 1

2
β� ~β
� �0

X0Xþ Σ0
� ��1

� �
β� ~β
� �� �

,

(12)
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where

~β ¼ X0Xþ Σ0
� ��1

� ��1
X0yþ Σ0

� ��1
β0

� �
(13)

~s ¼ y� X0 ~β
� �0

y� X0 ~β
� �

þ ~β � β0
� �0 Σ0

� ��1 ~β � β0
� �

(14)

See Rossi et al. (2005) or Zellner (1971) for the details of the transformations in
Eq. 12 and note that the posterior mean ~β in Eq. 13 will converge to the ordinary least
squares ormaximum likelihood estimate as the sample size (the information in the data)
increases, for all nondegenerate prior settings (i.e., |Σ0|> 0). Smaller (larger) variances
inΣ0 put more (less) prior weight behind the prior guess β0. For a well-defined ordinary
least squares estimate β̂ (a well-defined inverse of X0X), we can write Eq. 13 as

~β ¼ X0Xþ Σ0
� ��1

� ��1
X0X X0Xð Þ�1X0yþ Σ0

� ��1
β0

� �

¼ ~β ¼ X0Xþ Σ0
� ��1

� ��1
X0Xβ̂ þ Σ0

� ��1
β0

� �

which illustrates that the posterior mean ~β is a weighted convex combination of the
ordinary least squares or maximum likelihood estimate β̂ and the prior mean β0,
where the weights are information from the data in X0X and the amount of prior
information (Σ0)�1, respectively. Thus, the posterior mean will be somewhere “in
between” the ordinary least squares estimate and the prior mean.

When combining the normal likelihood (Eq. 10) with the normal prior (Eq. 11) in
Eq. 12, we dropped the multiplicative constants 1ffiffiffiffi

2π
p and (2π)�k/2|Σ0|�1/2 from the

likelihood and the prior, respectively. Again, this is fine as long we are only
interested in inference given this specific model. Upon recognizing that the last
line of Eq. 12 is the so-called kernel of a multivariate normal distribution (the kernel
of a distribution drops all factors that do not directly depend on both unobserved
parameters and the data or variables the distribution is for) and thus using

Ð
exp � 1

2
β� ~β
� �0

X0Xþ Σ0
� ��1

� �
β� ~β
� �� �

dβ ¼

¼ 2πð Þk=2 X0Xþ Σ0
� ��1

			
			�1=2

(15)

we obtain the joint posterior distribution of the k regression coefficients in closed form:

p βjy, β0,Σ0
� �

¼ 2πð Þ�k=2 X0Xþ Σ0
� ��1

			
			1=2 exp � 1

2
β� ~β
� �0

X0Xþ Σ0
� ��1

� �
β� ~β
� �� �

¼ N βj ~β, X0Xþ Σ0
� ��1

� ��1
� �

(16)
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We can directly sample from this distribution using, for example, the command
rmvnorm in the R-package mvtnorm (Genz et al. 2018) or the faster version rmvn
available in the R-package mvnfast (Fasiolo 2016). The bayesm (Rossi et al.
2005) routine corresponding to this model is breg.

Posterior Distributions Not in Closed Form

Next, I discuss the model defined by the combination of a binomial probit likelihood
and a multivariate normal prior for the regression coefficients (see Eq. 11). Bayesian
inference for this model is relatively much more challenging than for the two models
discussed already because the normalizing constant of the posterior distribution is
not available in closed form. The binomial probit likelihood is, similar to the
binomial likelihood in Eq. 6, a DGP for independently distributed observations yi
taking one of two values, say “1” and “0”. The probit likelihood defines the
probability of observing yi = 1 as a function of covariates xi and (probit-)regression
parameters β as follows:

pðyi ¼ 1jβÞ ¼ Φðx0i βÞ ¼
ðx0iβ
�1

N ðzj0,1Þ dz (17)

pðyi ¼ 0jβÞ ¼ Φð�x0i βÞ ¼
ð1
x0iβ

Nðzj0,1Þ dz (18)

Thus, observations y = (y1, . . . , yn)0 are not identically distributed but provide
information about β exchangeably. “Exchangeably” essentially means that we don’t
need to keep track of the order or sequence of the data for proper inference.
Exchangeability here is a consequence of conditional independence given the data
generating parameters and observed covariates (see e.g., Bernardo and Smith 2001),
conditional on covariates X = (x1, . . . ,xn)0. The data y then have probit likelihood:

pðyjβÞ ¼
Yn
i¼1

�
Φðx0iβÞ

�yi�
Φð�x0iβÞ

�1�yi

¼
Yn
i¼1

�ðx0iβ
�1

N ðzj0,1Þ dz
�yi
�ð1

x0iβ
Nðzj0,1Þdz

�1�yi
(19)

By Eq. 4, the posterior distribution of β is proportional to:

pðβjy,β0,Σ0Þ/exp �1

2
ðβ�β0Þ0ðΣ0Þ�1ðβ�β0Þ

� �Yn
i¼1

�
Φðx0

iβÞ
�yi�

Φð�x
0

iβÞ
�1�yi

(20)

As already mentioned, the normalizing constant of the right hand side in Eq. 20
cannot be computed in closed form and we thus cannot derive the posterior
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distribution directly, unlike in the previous examples. I will introduce Gibbs sam-
pling as one solution to Bayesian inference in this model. To this end, an alternative
interpretation of the probit likelihood suggested by the integral on the right hand side
of Eq. 17 will be useful. Taking advantage of the symmetry of the normal distribu-
tion, we can rewrite:

pðyi ¼ 1jβÞ ¼
ðx0iβ
�1

N ðzj0,1Þdz ¼
ð1
0
Nðzjx0

iβ,1Þdz (21)

pðyi ¼ 0jβÞ ¼
ð1
x0iβ

Nðzj0,1Þdz ¼
ð0
�1

N ðzjx0iβ,1Þdz (22)

and interpret the binomial probit model as a random utility model in which latent
utilities zi are independently normally distributed with means x0iβ and standard
deviations equal to 1. A latent utility draw zi from Nðx0iβ,1Þ larger than 0 generates
an observed yi = 1 and a draw smaller than 0 an observed yi = 0, i.e., yi = 1 (zi > 0).
This is exactly equivalent to generating a y-observation using the probability in
Eq. 21 as the parameter of a Bernoulli distribution (Draw a random uniform number
u from the interval [0, 1], e.g., using runif (1) in R and compare to the probability
in Eq. 21. Set yi = 1 (yi = 0) when u is smaller (larger) than this probability or use

the R-command rbinom) because, e.g., lim
R!1

1

R

XR

r¼1
1 zr > 0ð Þ ¼ Ez1 z > 0ð Þ ¼

ð1
0
N zj x0β,1ð Þdz.

If we had access to the latent utilities z= (z1, . . . ,zn)0 that generated the observed
binomial data y= (y1, . . . ,yn)0, we could comfortably rely on the closed form results
in Eq. 16 for Bayesian inference. Conditional on the data generating z, we would in
fact learn more about the regressions coefficients than we ever could from the
corresponding y.

Conversely, if we knew the regression coefficients β that generated the data, we
could make an informed guess about the corresponding data generating z. Based on
the y-data, we know that z that correspond to observed 1’s must have been larger
than zero and those corresponding to observed 0’s smaller than zero. Based on β and
the random utility interpretation of the probit likelihood, we know that the zi came
independently from Nðx0i β,1Þ. Putting these insights together, we arrive at the
following conditional distribution for a zi corresponding to observed yi = 1, and
that for a zj corresponding to observed yj = 0 given β:

pðzijβ,yi ¼ 1Þ ¼ N ðzijx0iβ,1Þ 1ðzi > 0ÞÐ1
0 Nðzjx0iβ,1Þdz

¼ T Nðzijx0iβ,1,0,1Þ (23)

pðzijβ,yj ¼ 0Þ ¼
N ðzjjx0jβ,1Þ1ðzj < 0ÞÐ 0

�1 N ðzjx0jβ,1Þ dz
¼ T Nðzjjx

0
jβ,1,�1,0Þ (24)

Here 1(�) is an indicator function that evaluates to one it its argument is true and
else to zero, andT N a,b,c,dð Þ is short for a normal distribution with mean a, variance
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b, truncated below c, and above d. We can simulate from these distributions using a
trick known as the inverse CDF-transformation (see e.g., Rossi et al. 2005), or rely
on the command rtruncnorm in the R-package truncnorm (Mersmann et al.
2018) which builds on Geweke (1991).

Based on the results in Eq. 16 the conditional distribution of β given the z and
the y is:

p βjz,y,β0, Σ0
� �

¼ p βjz,β0,Σ0
� �

¼ N ~β, X0Xþ Σ0
� ��1

� ��1
� �

, (25)

where

~β ¼ X0Xþ Σ0
� ��1

� ��1
X0zþ Σ0

� ��1
β0

� �
(26)

Note that once we condition on the z in Eq. 25, the y are no longer required as
conditioning argument. A particular set of z transmits all the information, and in fact
more information than contained in the y, to β (I will discuss general rules for the
derivation of conditional distributions later and for now concentrate on what can be
achieved based on conditional distributions).

Gibbs sampler. Our goal is thus to derive the marginal posterior distribution p
(β|y, β0, Σ0) that is free from the extra, but virtual information about β that comes
with each particular set of z we may condition on in Eq. 25. However, as we already
know, this posterior is not available in closed form. A convenient solution to this
problem is the Gibbs sampler. The Gibbs sampler allows us to generate draws from p
(β, z|y, β0, Σ0) based on knowledge ofp zj y, βð Þ ¼

Qn
i¼1 p zijβ, yið Þ and p (β|z, β0, Σ0),

i.e., conditional distributions only. Once we have draws from p (β, z|y, β0, Σ0), each
draw of β in that sample is a draw from our target distribution p (β|y, β0, Σ0) (Recall
that the joint distribution p (β, z|y, β0, Σ0) can be decomposed into the product of the
marginal distribution p (β|y, β0, Σ0) and the conditional distribution p (z|y, β) by
elementary probability calculus. If we have access to a sample from the joint
distribution, drawing a β with no regard to the companion z and then looking at
the companion z in the sample is equivalent to drawing from p (β|y, β0, Σ0) and then
from p(z|y, β)).

The Gibbs sampler is an application of the fact that the joint distribution p (β, z|y,
β0, Σ0) is uniquely determined by corresponding complete sets of conditional
distributions (Besag 1974). The correspondence between the conditional distribu-
tions p (β|z, β0, Σ0) and p (z|y, β) and the joint posterior distribution is illustrated in
Eq. 27 which is an instance of the Hammersley-Clifford theorem. For clarity of
notation, I abbreviate the subjective prior parameters β0, Σ0 to “•” in the following.

p β,zjy,•ð Þ ¼ p βjz,•ð Þp zjy,•ð Þ

¼ p βjz,•ð Þ
Ð p βjz, •ð Þ

p zjy,βð Þ dβ
� ��1 (27)
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Proof:

p zjy,βð Þp βjy,•ð Þ ¼ p βjz,•ð Þp zjy,•ð Þ
p βjy,•ð Þ
p zjy,•ð Þ ¼

p βjz,•ð Þ
p zj y, βð Þ

Ð p βjy,•ð Þ
p zjy,•ð Þ dβ ¼

ð
p βjz,•ð Þ
p zj y, βð Þ dβ

1

p zjy,•ð Þ ¼
ð
p βjz,•ð Þ
p zj y, βð Þ dβ

(28)

Based on r = 1, . . . , R draws from p (β|z, •), we can therefore estimate the
marginal distribution:

p zjyð Þ ¼
ð
p βjz,•ð Þ
p zjy, βð Þ dβ

� ��1

� 1

R

XR
r¼1

1

p zj y, βrð Þ

 !�1

(29)

and thus compute the joint distribution p (β, z|y, •) based on only knowledge of the
conditional distributions p (z|y, β) and p (β|z, •). The Gibbs sampler which builds on
this fundamental relationship proceeds as follows:

1. Based on a starting value for β draw z from p(z|y, β) as given in Eqs. 23 and 24.
2. Use the most recent draw of z as conditioning argument in p(β|z,•) (Eq. 25) and

draw a new β.
3. Use the most recent draw of β as conditioning argument in p(z|y, β) (Eqs. 23 and 24)

and draw new z.
4. Return to step 2, until completing R cycles through step 2 and step 3, and then

stop.

Each completed cycle through steps 2 and 3 delivers a pair (β, z)r where
r = 1, . . . ,R indexes the cycle or iteration number of the Gibbs-sampler. Under
rather general conditions for the conditional distributions involved, these pairs will
represent draws from the joint distribution after some initial iterations, and indepen-
dent of the choice of starting value. The initial iterations serve to “make the Gibbs
sampler forget” the arbitrary starting value in step 1 above. This is often referred to
as the “burn-in” period of the Gibbs-sampler. Intuitively, the choice of starting value
does not matter, because the Gibbs sampler will forget it, no matter which value was
chosen (However, the choice of starting value may influence how many iterations it
takes before the Gibbs sampler converges, i.e., delivers pairs (β, z)r in proportion to
their joint posterior density in a finite sample of R draws. Another practical concern
for the choice of starting values is the numerical stability of the techniques used to
draw from the conditional distributions).

Steps 2 and 3 above are often referred to as “blocks of the sampler.” Note that
step 2 itself consists of n-subblocks that each draw from the conditional
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distribution of a particular zi. However, because all zi are conditionally indepen-
dent, i.e., p zj y, βð Þ ¼

Qn
i¼1 p zijβ, yið Þ (see Eqs. 23 and 24), step 2 effectively draws

from the joint conditional posterior distribution of z. Similarly, step 3 draws from
the joint conditional posterior distribution of all elements in β.

To further strengthen the intuition for the Gibbs sampler, it is useful to think about
each iteration as an exploration of the joint distribution in some neighborhood
defined by the respective conditioning arguments. By the notion of sampling and
updating of conditioning arguments, the Gibbs sampler is, however, not going to
stay in this neighborhood but will move away from it and eventually return.

Each time it returns to some fixed neighborhood of β-values, for example, it will
do so from a different constellation of z. Returns from z-constellations that are closer
to this β-neighborhood in the sense of Eqs. 25 and 26 will occur more often than
returns from z-constellations that are further away. Thus, looking at pairs (β, z)r in
this neighborhood, it is impossible to distinguish between moves “from β to z” and
moves “from z to β,” and this will be true of every β-neighborhood and z-neighbor-
hood supported by the posterior distribution. In addition, by successively sampling
from conditional distributions which are, by definition, proportional to the joint
distribution, the Gibbs sampler is going to spend relatively more (fewer) iterations in
areas of higher (lower) density under the joint distribution.

In other words, successive pairs (β, z)1 , . . . , (β, z)r , . . . , (β, z)R produced by
iterations of the Gibbs sampler are locally dependent in the sense that pairs produced
in successive iterations are more similar to each other than pairs produced further
apart from each other, where distance is measured in iteration counts of the Gibbs
sampler. However, all pairs provide exchangeable information about the joint pos-
terior distribution. We can therefore use the output from the Gibbs sampler to
approximate posterior expected loss (see Eq. 5) and any aspect of the posterior
distribution we may be interested in by the corresponding expectation using the
Gibbs output. For example, the posterior probability that a particular regression
coefficient is larger than zero, i.e.,P βk > 0jy,•ð Þ ¼

Ð1
0 p βk jy,•ð Þwould be estimated

from the Gibbs output as 1
R

PR
r¼1 1 βrk > 0

� �
Note that we control the degree of

accuracy of these approximations by the length of the Gibbs sample R.
The particular Gibbs sampler described here is implemented as routine

rbprobitGibbs in the R-package bayesm (Rossi et al. 2005) and dates back
to Albert and Chib (1993). The routine comes with an example that illustrates input
and output (Another bayesm routine, rbiNormGibbs, nicely illustrates how the
Gibbs sampler explores a two-dimensional joint distribution by successively sam-
pling from the corresponding two conditional distributions).

Data augmentation. In this application of the Gibbs sampler, the interest really is
on the marginal posterior distribution of probit regression coefficients, i.e., p(β|y, •),
and Gibbs sampling from the joint posterior distribution of β and z is just a means to
obtaining the marginal distribution of interest. Drawing from p(z|y, β) is therefore
referred to as “data augmentation” in the literature. Data augmentation often helps
transform Bayesian inference problems that involve “unknown” distributions, i.e.,
distributions without a normalizing constant in closed form, into problems that only
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involve sampling from distributions with known normalizing constants through
conditioning. Canonical examples for the successful application of this technique
are the multinomial probit model (McCulloch and Rossi 1994), the multivariate
probit model Edwards and Allenby (2003), mixture models (see e.g., Allenby et al.
1998; Frühwirth-Schnatter et al. 2004; Lenk and DeSarbo 2000; Otter et al. 2004),
and hierarchical models in general.

From the perspective of Gibbs sampling, there is no distinction between
(unobserved) aspects of the data, unobserved parameters, or any unobservable we
can derive a conditional distribution for, within the confines of the Bayesian model
under investigation. However, before one gets too excited about the possibilities of
inference about any unobservable, it is useful to reflect about how much we can learn
about β and z from the data in this example.

While it is possible to attain perfect posterior knowledge about β in this model in
the limit of an infinitely large sample, it is impossible to ever learn the particular set
of z’s that generated the data. This information is lost forever when moving from the
data generating z to the observed y based on the indicator function yi= 1(zi> 0). We
have one observation yi to learn about each zi. This observation only set identifies zi,
i.e., indicates if zi < 0 or zi > 0. In addition Nðx0iβ,1Þ which can be viewed as a
hierarchical prior for the zi cannot degenerate, i.e., cannot deliver a perfect prediction
by the definition of the probit likelihood. Any finite valued x0i β allows for yi = 1 and
yi = 0, even if one of the two outcomes is extremely unlikely.

As such, we are severely limited in what we can learn about the data generating z no
matter how many probit observations become available or what subjective prior
parameters β0 and Σ0 we use. Thus, it is generally useful to distinguish between
unobservables that can be consistently estimated in a particular model and unobserv-
ables that cannot, before further using the output from the Gibbs sampler. Here
“consistently”means that we can think of amounts of data, i.e., likelihood information,
or a subjective prior setting that translates into a degenerate posterior distribution which
concentrates all its mass in one point. For example, it would be foolish to believe that
using the posterior distribution of z could somehow further improve decisions informed
by the data y and the model at hand, which depend on p(β|y), only.

Blocking. One could replace step 2 in the Gibbs sampler above by a Gibbs
cycle through the full conditional distributions of each element βk. in β, i.e.,
p(βk | β�k, z, •), where β�k is short for all but the k-th element (These conditional
densities are easily derived from the joint conditional normal distribution in Eq. 16
using linear regression theory).

Because any corresponding complete set of conditional distributions uniquely
determines the joint distribution, this alternative sampler again delivers draws from
the same joint posterior distribution p(β, z|y, •). However, the local dependence
between successive pairs (β, z)1, . . . , (β, z)r, . . . , (β, z)R produced by iterations of
this alternative Gibbs sampler is relatively higher. This is because two successive
cycles through p (βk|β�k, z, •) for all k-elements deliver draws of β that are more
similar in expectation than two draws from p(β|z,•), which are independently
distributed.
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Replacing a cycle like that through p (βk | β�k, z, •) for all k-elements by a direct
draw from the corresponding conditional joint distribution, in this case p (β|z, β0, Σ0),
in a Gibbs sampler is referred to as “blocking,” or “grouping” (e.g., Chen et al. 2000).
In general, blocked Gibbs samplers deliver more additional information about the
posterior distribution per incremental iteration than unblocked samplers, which is
intuitive considering direct iid-sampling from the joint posterior distribution as the
theoretical limit of blocking. As such, blocked samplers also deliver pairs (β, z)r in
proportion to their joint posterior density in a finite sample based on fewer iterations,
converge faster from arbitrary starting values.

Another technical aspect is the order in which to successively draw from the
blocks of a Gibbs sampler. The theory of Gibbs sampling implies that the order
does not matter and in fact a random ordering is easiest to motivate theoretically
(see e.g., Roberts 1996, p. 51). However, in our particular example, repeated draws
from step 2, i.e., p(β|z, •), or step 3, i.e., p(z|y, β), without switching to the
respective other block in between are a perfect waste of time because these
draws are conditionally iid. Furthermore, randomly switching to step 2 before
updating all elements of z in step 3 is inefficient because step 2 pools information
across all z. The updated pooled information is then “redistributed” across all z
when drawing from p (z|y, β) in step 3.

Conditional posterior distributions. Next I show how to derive the full
conditional distributions that define the Gibbs sampler for the probit model
above (see also Gilks 1996). Recall that by specifying a prior distribution and a
likelihood function, we implicitly specify the joint distribution of unobservables
and the data (see Eq. 1). Starting from the joint distribution of the data and
unobservables in our example, i.e.,

p y,z, βjβ0,Σ0
� �

¼ p y1, . . . , yn, z1, . . . , zn, β1, . . . , βK jβ0,Σ0
� �

we can derive any conditional distribution of interest using elementary probability
calculus. Omitting the conditioning arguments β0 and Σ0 for clarity of notation we
have for example

p z1j y1, . . . , yn, z2, . . . , zn, β1, . . . , βKð Þ

¼ p y1, . . . , yn, z1, . . . , zn, β1, . . . , βKð ÞÐ
p y1, . . . , yn, z1, . . . , zn, β1, . . . , βKð Þdz1

(30)

which does not look simple or useful yet. However, based on an understanding of
how the model operates as a DGP, we can greatly simplify this expression. It is in this
sense that Bayesian inference exactly reverses the steps that we believe generated the
data.

Recall the latent utility interpretation of the probit likelihood function. Given β,
latent utilities z are generated independently from NðXβ,InÞ ¼

QN
i¼1 Nðx0iβ,1Þ.

Then the signs of the elements in z independently determine the data y according
to indicator functions yi= 1 (zi> 0) for all i= 1, . . . , n. Based on this understanding
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of the conditional independence relationships in the DGP, we can rewrite and
simplify Eq. 30 as follows:

p z1j y1, . . . , yn, z2, . . . , zn, β1, . . . , βKð Þ

¼ p β1, . . . βKð Þ
Qn

i¼1 p yij zið Þp zij β1, . . . , βKð ÞÐ
p β1, . . . , βKð Þ

Qn
i¼1 p yij zið Þp zij β1, . . . , βKð Þdz1

¼ p β1, . . . , βKð Þ
Qn

i¼2 p yij zið Þp zij β1, . . . , βKð Þp y1j z1ð Þp z1j β1, . . . , βKð Þ
p β1, . . . , βKð Þ

Qn
i¼2 p yij zið Þp zij β1, . . . , βKð Þ

Ð
p y1j z1ð Þp z1j β1, . . . , βKð Þdz1

¼ p y1j z1ð Þp z1j β1, . . . , βKð ÞÐ
p y1j z1ð Þp z1j β1, . . . , βKð Þdz1

¼ p y1j z1ð Þp z1j β1, . . . , βKð Þ
p y1j β1, . . . , βKð Þ

/ p y1j z1ð Þp z1j β1, . . . , βKð Þ / p z1j y1, β1, . . . , βKð Þ
(31)

The last line in Eq. 31 follows from the fact that both y1 and β1,. . .,βK are
conditioning arguments, i.e., fixed (for the moment). A useful interpretation of the
final result, and in fact a way to derive the result almost instantly, is that the (conditional)
posterior of z1 is proportional to the “likelihood” of z1 i.e., p y1j z1ð Þ ¼ 1 zi > 0ð Þy11
zi < 0ð Þ1�yi times a “prior probability” of z1, i.e., pðz1jβ1, . . . ,βKÞ ¼ N ðz1jx01βÞ. In
other words, the (conditional) posterior is proportional to the probability of everything
that directly depends on z1, i.e., the probability of z1’s “children,” times the probability
of z1 given everything z1 directly depends on, i.e., z1’s “parents.” (The terminology
“children” and “parents” is owed to the representation of joint distributions and their
conditional independence relationships in the form of directed acyclic graphs (see e.g.,
Pearl 2009, p. 12))

Using the same logic, we can derive the full conditional density of, e.g., the first
element in β:

p β1j y1, . . . , yn, z1, . . . , zn, β2, . . . , βKð Þ

¼ p β1, . . . , βKð Þ
Qn

i¼1 p yij zið Þp zij β1, . . . , βKð ÞÐ
p β1, . . . , βKð Þ

Qn
i¼1 p yij zið Þp zij β1, . . . , βKð Þdβ1

¼ p β2, . . . , βKð Þ
Qn

i¼1 p yij zið Þp β1j β2, . . . , βKð Þ
Qn

i¼1 p zij β1, . . . , βKð Þ
p β2, . . . , βKð Þ

Qn
i¼1 p yij zið Þ

Ð
p β1j β2, . . . , βKð Þ

Qn
i¼1 p zij β1, . . . , βKð Þdβ1

¼ p β1j β2, . . . , βKð Þ
Qn

i¼1 p zij β1, . . . , βKð ÞÐ
p β1j β2, . . . , βKð Þ

Qn
i¼1 p zij β1, . . . , βKð Þdβ1

¼ p β1j β2, . . . , βKð Þ
Qn

i¼1 p zij β1, . . . , βKð ÞQn
i¼1 p zij β2, . . . , βKð Þ

/ p β1j β2, . . . , βKð Þ
Yn
i¼1

p zij β1, . . . , βKð Þ / p β1j z1, . . . , zn, β2, . . . , βKð Þ

(32)
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Therefore, the full conditional posterior of β1 does not depend on the observed
data y, conditional on z. Again we find that the conditional posterior is proportional to
the product of the (conditional) prior p (β1|β2, . . . , βK) times the “likelihood,” i.e., the
probability of everything that directly depends on β1 in the DGP, i.e.,Qn

i¼1 p zij β1, . . . , βKð Þ. Note both factors in this product involve normal distributions,
and drawing all elements of β jointly from p (β1, . . . , βK|zn, . . . , zn), as in Eq. 25 is
simple if the joint prior distribution of β is multivariate normal.

Bayesian prediction. We just saw that in a Bayesian model conditional posterior
distributions derive from the joint density of the data and the parameters defined
by the Bayesian model, i.e., the combination of a likelihood function with a
prior distribution for its parameters. Now consider the problem of making predic-
tions from the perspective of expanding this joint density to include the unobserved
data response yu. In the context of our exemplary Bayesian model, we move from p
(y, z, β) to p (yu, zu, y, z, β) noting that the former is obtained from the latter by
integration with respect to (yu, zu).

p yu,zuj y1, . . . , yn, z1, . . . , zn, β1, . . . , βKð Þ

¼ p β1, . . . , βKð Þ
Qn

i¼1 p yij zið Þp zij β1, . . . , βKð Þp yujzuð Þp zuj β1, . . . , βKð ÞÐ
p β1, . . . , βKð Þ

Qn
i¼1 p yij zið Þp zij β1, . . . , βKð Þp yujzuð Þp zuj β1, . . . , βKð Þd yu,zuð Þ

¼ p yujzuð Þp zuj β1, . . . , βKð ÞÐ
p yujzuð Þp zuj β1, . . . , βKð Þd yu,zuð Þ

¼ p yujzuð Þp zuj β1, . . . , βKð Þ
(33)

For predicting a pair yu, zu conditional on β, we are thus back at data generation,
i.e., get a draw zu fromNðzujðxuÞ0βÞ and determine yu according to the sign of zu. The
predictive probability p(yu = l|β) can be simulated as 1

R

PR
r¼1 1 zuð Þr > 0ð Þ or

computed using Eq. 17.
However, predictions conditional on a particular value of β are rarely of interest or

relevant because, with finite data and nondegenerate priors, β will only be known up
to a posterior distribution. As a consequence, p (yu, y, β) 6¼ p (yu, y) where the latter is
defined as

Ð
p(yu, y, β) dβ which in turn is defined as

Ð
p(yu, zu, y, z, β)d(zu, z, β).

The corresponding predictive probability marginalized with respect to latent utility
zu and parameters β, i.e., p (yu = l|y) can be simulated as:

pðyu ¼ 1jyÞ � 1

R

XR
r¼1

1ððzuÞr > 0Þ, ðzuÞr � NðzujðxuÞ0βrÞ (34)

or more efficiently as:

p yu ¼ 1jyð Þ � 1

R

XR
r¼1

Φ xuð Þ0βr
� �

(35)
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in the sense that the approximation to p(yu = l|y) in Eq. 35 delivers the same accuracy
as that in Eq. 34 based on relatively smaller R. The sample (β1, . . . , βR) to be averaged
over is obtained by Gibbs sampling from the posterior distribution p(β|y). Note that

because of the nonlinearity of the probit likelihood,p yu ¼ 1jyð Þ 6¼ p yu ¼ 1β̂
� �

where

β̂ is some point estimate. Specifically, probabilities larger (smaller) than 0.5 will be
over- (under-) estimated if posterior uncertainty in β is ignored.

To better appreciate this generally important point, it is useful to simulate probit
data following the example given with the rbprobitGibbs routine in the R-
package bayesm, to sample from the corresponding posterior using
rbprobitGibbs, and then to simulate and compare predictions for different xu

as explained above. For a comparison with predictions at a frequentist point,
estimate the R-command glm(. . ., family=binomial(link=”probit”),. . .)
is useful.

Conditional posterior distributions in hierarchical models. Hierarchical
models estimate a distribution of response coefficients, e.g., βif gNi¼1 � p βif gNi¼1jτ

� �
from a collection of i = 1, . . . , N time series Y = (y1, . . . ,yN)’ where
yi ¼ ðyi,1, . . . ,yi:t, . . . ,yi,Ti

Þ0 . P βif gNi¼1jτ
� �

forms a hierarchical prior distribution.

The difference to a purely subjective prior distribution is that the sample of time
series observations contains likelihood information about parameters τ that index the
hierarchical prior. In other words, upon placing a subjective prior distribution on τ,
the likelihood information contained in the collection of time series will update this
prior distribution to the posterior distribution p(τ|Y).

It should be noted that in these models, marginal posteriors for individual level
coefficients, i.e., p(βi|Y) will be biased or “shrunk” towards the hierarchical prior
distribution for Ti relatively small or, more precisely, limited individual level likeli-
hood information in p(yi|βi) relative to the information about βi in the hierarchical
prior. And it is precisely this situation that motivates the use of hierarchical models in
the first place.

However, parameters τ indexing the hierarchical prior can be estimated consis-
tently, and in many marketing applications where the behavior of the particular
consumers in the estimation sample is just a means to learning about optimal actions
in the population these consumers belong to, p (τ|Υ) is the main target of inference.

The currently popular algorithms for Bayesian inference in a hierarchical model
take advantage of the following decomposition of the joint distribution of the data
and the parameters which is characteristic, if not definitive of a hierarchical model:

p Y, βif gNi¼1,τ
� �

¼ p Yj βif gNi¼1

� �
p βif gNi¼1jτ
� �

p τð Þ (36)

An important consequence of this decomposition is that, by the rules developed
earlier, the conditional posterior distribution of τ does not involve the data Y as
conditioning argument:

p τjY, βif gNi¼1

� �
¼ p τj βif gNi¼1

� �
/ p βif gNi¼1jτ
� �

p τð Þ (37)
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For many popular and useful choices of p(τ), Eq. 37 results in a conjugate update,
i.e., a conditional distribution in the form of known distribution we can directly
sample from. Perhaps the most prominent example is the model that takes
p βif gNi¼1jτ
� �

¼
QN

i¼1 N βi, β ,Vβ
� �

and uses a so-called Normal-Inverse Wishart
prior for p β,Vβ

� �
that is sometimes rather confusingly referred to as “the H

(ierarchical)B(ayes)-model.” Examples are the routines rhierBinLogit,
rhierLinearModel, rhierMnlRwMixture, and rhierNegbinRw, in the
R-package bayesm (Rossi et al. 2005) that implement this hierarchical prior (or its
finite mixture generalization in the case of rhierMnlRwMixture) for collections
of time series of binomial logit, linear, multinomial logit, and negative binomial
observations, respectively.

One interpretation of this approach towards inference for the parameters in the
hierarchical prior is that it relies on the so-called random effects βif gNi¼1 as
augmented data, similar to the augmentation of latent utilities in the probit model
discussed earlier. Different authors have argued that this approach may be sub-
optimal depending on the amount of likelihood information at the individual level
and the amount of unobserved heterogeneity in (β1, . . . , βΝ) (see e.g., Chib and
Carlin 1999; Frühwirth-Schnatter et al. 2004). However, practical alternative
approaches that apply beyond the special case of conditionally normal individual
level likelihood functions coupled with a (conditionally) normal hierarchical prior
have yet to be developed.

In the common situation where p Yj βif gNi¼1

� �
¼
QN

i¼1 p yij βið Þ and similarly
p βif gNi¼1jτ
� �

¼
QN

i¼1 p βijτð Þ, we obtain the following conditional posterior dis-
tribution for βi.

p βij yi,τð Þ / p yij βið Þp βijτð Þ (38)

p(βi|τ) acts as a usually rather informative prior for βi here. However, as already
discussed τ is not subjectively set but estimated from the data.

For many individual level likelihood functions of interest in marketing, and perhaps
most prominently so for the multinomial logit likelihood, the product on the right hand
side of Eq. 38 does not translate into a known distribution. A solution to generating
draws from distributions with unknown normalizing constants, the Metropolis-Has-
tings algorithm is discussed next. Finally, if sampling from the distribution in Eq. 38 is
computationally expensive, the combination of Eqs. 37 and 38 suggests scope for
parallel sampling from the latter for i = 1, . . . , N and then feeding back the updated
(β1, . . . , βΝ) as conditioning arguments into Eq. 37 and so on.

Metropolis-Hastings. The Gibbs sampler solves the problem posed by a (joint)
posterior distribution with unknown normalizing constant if there is a
corresponding set of conditional posterior distributions with known normalizing
constants. The Gibbs sampler is extremely powerful and in some sense universal if
one is content with approximations to the posterior on a discrete grid (Ritter and
Tanner 1992). However, a general technique to sample from distributions with
unknown normalizing constants known as the Metropolis-Hastings (MH)
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algorithm further substantially facilitates real world applications of Bayesian
inference. A practically important example in marketing is Bayesian inference
for models defined by type-I extreme value error (T1EV) likelihoods, e.g., logit-
models, coupled with normal prior distributions for the (regression) coefficients in
the likelihood.

The MH-sampler generates a dependent sample from some posterior p(θ|y)
according to the following transition rule:

α ¼ min 1,
p yjθ�ð Þp θ�ð Þq θrð Þ
p yjθrð Þp θrð Þq θ�ð Þ

� �
, θ�e q (39)

p θrþ1jy,θr
� �

¼ α θrþ1 ¼ θ�

1� α θrþ1 ¼ θr



(40)

On iteration r, the MH-sampler thus transitions from the current “state” or
parameter value θr to a new state θ* with probability α. With probability 1 – α,
the current state at iteration r + 1 equals that at iteration r, i.e., θr+1 = θr

(Compute α according in Eq. 39, preferably on the log-scale, exponentiate, and
compare the result to a draw u from a standard uniform distribution. If u < α
move to θ*, else stay at θr, to obtain θr+1). The so-called candidate value or state
θ* is sampled from the known “candidate generating” or “proposal” density q.
Note that the unknown normalizing constant p(y) =

Ð
p(y| θ)p(θ)dθ cancels

from Eq. 39.
A remarkable property of this transition rule is that it defines a Markov chain or

process with invariant or stationary distribution equal to the posterior distribution
p(θ|y). (A Markov process is a stochastic process in which the future, i.e., the (r + 1)-
th value only depends on the value attained in the r-th iteration. All values taken
before at the (r � 1)-th, (r � 2)-th, and so on iteration are irrelevant for predicting or
generating the (r + 1)-th value.) In practice, this implies that subject to rather weak
conditions for the proposal density q, repeated application of the transition rule in
Eq. 40 eventually delivers draws from the posterior distribution of the model under
investigation, independent of the choice of initial or starting value θr=0. In other
words, after discarding, say the first b values θ1, . . . , θr, . . . , θb generated by b
applications of Eq. 40 starting from θ0, we can use the remaining R � b draws as a
representative sample of the posterior distribution.

To better appreciate this point, define the parameter space countably such that we
can replace integration by summing over (a potentially infinite number of) countable
sets (This is a technicality to avoid measure theoretic complications associated with
events “of probability measure zero,” and without loss of generality. The event that a
continuous parameter takes a particular value, for example, is an event of probability
measure zero because any e-environment around that value – no matter how small –
contains uncountably infinitely many values), and consider a condition known as
“detailed balance”:
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p θijyð Þq θj
� �

α θi ! θj
� �

¼ p θjjy
� �

q θið Þα θj ! θi
� �

p θijyð Þq θj
� �

	 p θjjy
� �

q θið Þ	

min 1,
p yj θj
� �

p θj
� �

q θið Þ
p yj θið Þp θið Þq θj

� �
 !

¼ min 1,
p yj θið Þp θið Þq θj

� �
p yj θj
� �

p θj
� �

q θið Þ

 !

min p θijyð Þq θj
� �

, p θjjy
� �

q θið Þ
� �

¼ min p θjjy
� �

q θið Þ, p θijyð Þq θj
� �� �

(41)

where the last line establishes that the first two equalities hold. Now rewrite the first
line of Eq. 41 as follows:

p θijyð Þ
p θjjy
� � ¼ q θið Þα θj ! θi

� �
q θj
� �

α θi ! θj
� � (42)

Equation 42 makes apparent that the probability of proposing and accepting the
move from θj to θi relative to the probability of proposing and accepting the reverse
move in the MH algorithm is equal to the ratio of posterior probabilities of the
respective target values. Because Eq. 42 holds for all θi, θj � Θ where Θ is the
parameter space defined by the model under investigation, we have:

X
θi

p θijyð Þ
p θjjy
� � ¼

X
θi

q θið Þα θj ! θi
� �

q θj
� �

α θi ! θj
� �

p θjjy
� �

¼
X
θi

q θið Þα θj ! θi
� �

q θj
� �

α θi ! θj
� �

 !�1

X
θi

p θjjy
� �

¼
X
θj

X
θi

q θið Þα θj ! θi
� �

q θj
� �

α θi ! θj
� �

 !�1

¼ 1

(43)

Equation 43 makes intuitive that the collection of moves away from θj and
moves returning to θj by the MH sampler eventually represent the posterior
support for θj and, because this holds for all values θj, the entire posterior support.
The “eventual” part of this statement comes from the fact that we may start off the
sampler at a parameter value θj = θ0 in a region of the parameter space Θ with
extremely small posterior probability, i.e., in some extreme tail of the posterior
distribution. As the MH sampler perhaps very slowly navigates the posterior, i.e.,
using many iterations depending on the proposal density q, moving into regions of
the parameter space with higher posterior support, the draws along the path to that
region over-represent the posterior support for these draws in any finite MH
sample. This explains why the first b-iterations of the MH sampler that deliver
the sequence θ1, . . . , θr, . . . , θb from the arbitrary initial starting value θ0 need to
be discarded as burn-in for the sequence θb+1, . . . , θb+r, . . . , θR to be represen-
tative of the posterior distribution.

Convergence. Unfortunately, there is no simultaneously practical and reliable
way to assess the length of the burn-in sample b. I strongly recommend that users of
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so-called Monte-Carlo-Markov-Chain (MCMC) techniques that encompass the
Gibbs sampler, the MH sampler, as well as collections and combinations, these
techniques always take the time to check the convergence behavior of a particular
algorithm using simulated data, no matter if the algorithm was designed by someone
else or is being newly developed, coded from scratch. In this process, three addi-
tional advantages emerge from working with simulated data. First, it forces the
researcher to be absolutely clear about his understanding of the data generating
process. Second, it delivers an understanding of what informative and less informa-
tive data are. Third, it helps with assessing the influence of subjective prior choices.

The investigation of convergence behavior relies on time-series plots of posterior
quantities of interest where “time” is measured in iterations of the MCMC sampler.
We want these time series plots to look stationary, at least after projecting to the loss
from different actions. In other words, at least times series plots of L(a, θr ) need to
have converged to stationary sequences over the first b iterations of the sampler.
Obviously, the series of L(a, θr ) will converge if the series of parameter draws θr

converges. However, it sometimes may be easier to assess convergence in L(a, θr)
than in θr because the latter often is a high-dimensional object in applied work. In
addition, strong posterior dependence between elements of the parameter vector θ
may mask convergence to a stable predictive distribution. Interesting examples are
“fundamentally over-parameterized” models in the sense that even an infinite
amount of data only likelihood-identifies lower dimensional projections of the
parameters (see e.g., McCulloch and Rossi 1994; Edwards and Allenby 2003;
Wachtel and Otter 2013) (As discussed in section “Bayesian Essentials” above, a
proper prior distribution effectively guarantees that the posterior distribution is
proper, independent of what can be identified from the likelihood). However, strong
posterior dependence between elements of θr is not limited to fundamentally over-
parameterized models.

If a MCMC explores the posterior distribution quickly (“mixes well”), it will
yield a representative sample of the posterior distribution in fewer iterations than a
MCMC that explores the posterior distribution more slowly (“does not mix well”).
The mixing-behavior of a MCMC has implications for the required length of the
burn-in sample b. If a chain mixes well, we can choose vastly different starting
values and we will quickly lose the ability to distinguish among chains that use
different starting values based on summaries of draws. The information in the draws
from the posterior all chains converge to will swamp the initial differences between
chains. Reliable formal tests of convergence implemented in the R-package CODA
(Plummer et al. 2006), for example, build on this idea. However, when a chain mixes
well, the researcher will (almost always) see this when exploring the posterior
sample generated by the MCMC graphically. And because chains that mix well
converge quickly, this limits the need for formal testing. In applied work, it thus is a
priority to make sure that the MCMC employed mixes well. This brings us back to
the role of simulated data in the development and testing of numerically intensive
inference routines such as MCMC. I will give practical examples further below.

Construction of proposal densities The proposal density q needs to be known in
the sense that we need to generate draws from it. In general, we also need to be able
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to evaluate the proposal density, i.e., to compute q(θ) when computing α in Eq. 39.
However, normalizing constants can be omitted because they cancel from the ratio in
α. The best proposal density possible is the posterior distribution itself. Setting
q(θ) = p(θ|y) the acceptance probability α becomes

α ¼ min 1,
p yjθ�ð Þp θ�ð Þp θrjyð Þ
p yjθrð Þp θrð Þp θ�jyð Þ

� �
θ�e p θjyð Þ

¼ min 1,
p yjθ�ð Þp θ�ð Þp yjθrð Þp θrð Þp yð Þ
p yjθrð Þp θrð Þp yjθ�ð Þp θ�ð Þp yð Þ

� �

¼ min 1,
p yð Þ
p yð Þ

� �

¼ 1

(44)

However, the reason for using the MH sampler in the first place is that we cannot
directly sample from the posterior distribution (Note that one can think of the Gibbs
sampler as a cycle through MH steps with conditional proposal densities equal to the
conditional posterior distributions). Nevertheless, it is sometimes possible to con-
struct proposal densities as close approximations to the posterior distributions. An
example is the routine rmnllndepMetrop in the R-package bayesm (Rossi et al.
2005) that uses a normal approximation to the likelihood to construct a multivariate
t-distributed proposal centered at a penalized maximum likelihood estimate.

An obvious requirement for the proposal density is that the parameter set
over which the proposal density q has positive support Θq is equal to, or a superset
of the parameter set over which the posterior distribution has positive support, i.e.,
Θp(θ| y) 
 Θq. If the proposal density q is such that parameter values that have
positive support under the posterior distribution can never be reached, an MH
sampler using this proposal density cannot possibly deliver draws that are represen-
tative of the posterior distribution.

Conversely, if the proposal density extends beyond the support of the posterior,
i.e., Θp(θ| y) � Θq, proposals to move into a region of the parameter space that is not
supported under the posterior will simply be rejected. The corresponding acceptance
probability α is equal to zero (see Eq. 39).

A related, less obvious but nevertheless practically important requirement for the
proposal density is that it should have more mass in its tails relative to the posterior
distribution. The reason is that a concentrated proposal density may effectively fail to
navigate the entire posterior distribution in a way similar to a proposal that is only
defined over a subset of the parameters space. A tricky aspect of thin tailed proposal
densities, and concentrated in an area where the posterior distribution is relatively
flat, is that time series plots of any finite number of MH draws may fail to indicate
that the sampler has not converged, i.e., the plots may indicate convergence over a
range of parameters that is not representative of the entire posterior distribution.

A simple recipe to specifying a proposal that necessarily has more mass in the
tails relative to the posterior distribution is to define q as a random walk (RW), i.e.,
θ* = θr + ϵ with q (ϵ) defined such that q (ϵ) = q(�ϵ) for all θ� � Θq. This recipe
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works for continuous and discrete distributions, and both for multivariate and
univariate posterior distributions, in principle. Based on a RW proposal, the MH
acceptance probability α simplifies to

α ¼ min 1,
pðyjθ�Þpðθ�ÞqðθrÞ
pðyjθrÞpðθrÞqðθ�Þ

� �
, θ� ¼ θr þ ϵ,ϵ � q

¼ min 1,
pðyjθr þ ϵÞpðθr þ ϵÞqðθ� � θrÞ
pðyjθ� � ϵÞpðθ� � ϵÞqðθr � θ�Þ

� �

¼ min 1,
pðyjθr þ ϵÞpðθr þ ϵÞqðϵÞ
pðyjθ� � ϵÞpðθ� � ϵÞqð�ϵÞ

� �

¼ min 1,
pðyjθ�Þpðθ�Þ
pðyjθrÞpðθrÞ

� �

(45)

However, in many applications, the dimensionality of the parameter space is too
large for a RW proposal that attempts to move all parameters simultaneously in one
“big”MH step to work well. Conditional independence relationships in the DGP can
be exploited to break one big MH step into a collection of MH steps of smaller
dimensionality following the same logic that we used earlier to decompose the joint
posterior distribution into a set of more manageable conditional posterior distribu-
tions for the Gibbs sampler.

In fact, the MH sampler delivers draws from conditional posterior distributions
automatically if we propose to only change an individual element of the parameter
vector, say θk:

α ¼ min 1,
p yj θr�k , θ

�
k

� �
p θr�k , θ

�
k

� �
q θrð Þ

p yjθrð Þp θrð Þq θr�k , θ
�
k

� �
 !

, θ�k e q θk j θ�kð Þ

¼ min 1,
p θ�k jy, θr�k

� �
q θrk j θr�k

� �
q θr�k

� �
p θk jy, θr�k

� �
q θ�k j θr�k

� �
q θr�k

� �
 !

¼ min 1,
p θ�k jy, θr�k

� �
q θrk j θr�k

� �
p θk jy, θr�k

� �
q θ�k j θr�k

� �
 !

(46)

The second line in Eq. 46 follows from the application of Bayes’ theorem (see
Eq. 1 and note that normalizing constants

Ð
p yj θr�k , θk
� �

p θr�k , θk
� �

dθk cancel) and
the decomposition of the joint proposal density into a conditional times a marginal.
However, it is wasteful not to exploit conditional independence relationships that
often vastly simplify the computation of the ratio in Eq. 46 for particular conditional
posterior distributions (see e.g., the conditional posterior distribution in Eq. 31).

Moreover, unobservables that are conditionally independent a posteriori should
always be drawn in separate MH steps, upon introducing the respective conditioning
argument. It would be wasteful to constrain the sampler to either accept a joint move
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of all these unobservables to the respective candidate values or to reject the entire
move and to repeat all respective values from iteration r. The conditional posterior
p zjy, βð Þ ¼

Qn
i¼1 p zijβ, yið Þ discussed earlier in the context of the binomial probit

likelihood serves as an example.
The practical advantage of working with full conditional distributions as the basis

for MH-RW sampling is that the proposal densities qk (ϵ) are univariate. As a
consequence, we only need to determine the concentration of these distributions
around ϵk= 0, which corresponds to θ�k ¼ θrk. When attempting to make multivariate
proposals with the goal to move more than one element of the parameter vector in
one step, a simple multivariate RW proposal of the form q ϵð Þ ¼

QK
k¼1 q ϵkð Þ may

suggest moves into directions with minimal support under the posterior which will
result in θr + 1 = θr for many iterations. Thus, setting up an MCMC as a repeated
cycle through conditional MH steps facilitates the definition of suitable proposal
densities. This is analogous to conditioning leading to known distributions in the
Gibbs sampler, which can be viewed as a special case of MH sampling (see Eq. 44).

For continuous parameters the default choice for qk (ϵ) is N 0, σ2k
� �

where the
parameter σ2k is subject to “tuning” by the analyst. For an integer parameter
ϵ = (η + 1) s could be used, where η is distributed Poisson with tuning parameter
λ, and s takes values from {�1,1} with probability 0.5 (For strictly categorical
parameters with no ordering among their values, the notion of a random walk is not
defined. However, because of the finite prior support of such parameters, it is
possible to use discrete uniform proposal distributions. Because all values have the
same probability under a uniform distribution, the proposal distributions again
cancel from the ratio in the acceptance probability α).

The tuning parameter implicitly specifies an average size of ϵ and thus an average
distance between θ�k and θ

r
k (also known as the step-size of the proposal distribution),

ϵ small in absolute value result in θ�k close to θrk that are more likely accepted, i.e.,
θrþ1
k ¼ θ�k than ϵ large in absolute value that will more likely result inθrþ1

k ¼ θrkwhen
applying Eq. 40. If the number of total iterations R to run the MH sampler were of no
concern, any setting of the tuning parameters that results in nondegenerate qk (ϵ)
would result in valid posterior inferences based on applications of Eq. 40.

However, both ϵ that are too small on average and ϵ that are too large on average
will result in MH samplers that require a larger number of total iterations R to deliver
the same amount of information about the posterior distribution than “optimally
sized” ϵ. The situation is analogous to studying a population based on sampling.
Larger samples result in more reliable inference and some sampling techniques result
in higher statistical efficiency than others based on the same number of observations.
Here, the population is the posterior distribution, the proposal density plays the role
of the sampling plan, and importantly the sample size R is under our control, within
the limits set by computational speed and time.

When the tuning parameter is set such that ϵ is too small on average, the MH
sampler will explore the posterior in local neighborhoods extensively and navigate
the entire posterior over many, many small steps creating “large swings” such that
time series plots look like those of financial indices that can move into one direction
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for extended periods of times, in this case potentially for tens of thousands of
iterations. The consequence is that the chain may appear as if it does not converge
to a stationary distribution at all.

When the tuning parameter is set such that ϵ is too large on average, the chain will
remain at the same value for many iterations and may fail to move at all, i.e., never
accept to setθrþ1

k ¼ θ�k. However, if it at least moves sometimes, such a chainwill arrive
at a region of relatively large posterior support in large jumps and tend to stay there. In
that sense, ϵ that are too large – provided that the chain moves at all – are the lesser evil.
However, any reliable statements about posterior uncertainty based on a finite number
of MH draws require decently tuned proposal densities. In practice, some experimen-
tation is required that again is supported by the analysis of simulated data.

To illustrate, I simulated 500 observations from a binomial-probit model with
data generating parameter vector β = (�3, 2, 4). The first coefficient is an intercept
and the remaining two are slope coefficients for two randomly uniformly distributed
covariates (see the Appendix for the corresponding R-script). The script calls a
simple, stylized RW-MH-sampler for a binomial probit model coupled with a
multivariate normal prior for the probit coefficients implemented in plain R (see
the function rbprobitRWMetropolis in the Appendix).

I ran the MCMC for 200,000 iterations using a weakly informative prior and
initializing the chain at βr=0 = (0,0,0). Fig. 2 shows MCMC-traces of β for four
different q ϵð Þ ¼

QK
k¼1 N 0, σ2k

� �
, i.e., σk = 0.001, σk = 0.005, σk = 0.2, and finally

σk = 3 for all k = 1,2,3. These step-sizes translate into average acceptance rates α of
RW-proposals of 99%, 97%, 25%, and 0.05% (see Eq. 45). The black, red, and green
MCMC-traces correspond to the first, second, and third element of the parameter
vector, respectively.

The top-left plot in Fig. 2 depicts the MCMCs that use the smallest step-size
investigated here. It presents an example of an MCMC-trace from a sampler that has
not converged to delivering samples from the posterior distribution. All three traces
exhibit a trend away from zero over the entire course of the 200,000 iterations the
sampler was run. Looking at the y-axis, we see that the individual traces are nowhere
near the data generating values and reflective of the starting values, even in the last
iteration. In an application to real data, we would not now what the data generating
parameter values are to compare. However, upon seeing something similar to the
top-left plot, we would conclude that the sampler has not converged to a stationary
distribution yet. Thus, summaries of the full set or any subset of the 200,000 draws in
the top-left plot do not represent the posterior distribution.

The traces in the top-right plot are with a step-size σk that is five times larger than
that in the top-left plot. We see that the three traces appear to converge to stationarity
around iteration 50,000 or so, and we could use summaries of the last 150,000 draws
to learn about the posterior distribution. With an even larger σk= 0.2, convergence to
the stationary distribution is much quicker (see the bottom-left plot). Finally, when
we use σk = 3, the largest MH step-size investigated here, we see that the MCMC
relatively quickly jumps into the neighborhood of the data generating β, but sticks to
the same parameter value, often for thousands of iterations.
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From theory we have that all four MCMC chains investigated here will eventually
represent the posterior distribution p(β|y) equally well, when run for an infinite
number of iterations. The concept of an infinite number of iterations is not helpful
in practice. However, to illustrate convergence of traces even with poorly tuned MH-
steps, I ran each chain for 400,000 more iterations. Figure 3 depicts MCMC-traces
obtained by stringing together the first 200,000 iterations from Fig. 2 with the
subsequent 400,000 for a total of 600,000 iterations. It can be seen that all four
MH-samplers converge eventually, even the sampler that uses σk = 0.001.

However, convergence of the MCMC to its stationary distribution is a necessary
but not a sufficient criterion for high-quality inferences about the posterior distribu-
tion based on any finite sample of MCMC draws. To illustrate this point, Fig. 4
zooms into the last 50,000 iterations of the 600,000 total iterations from each
sampler. Intuitively, the collection of draws in the bottom-left contain most infor-
mation about the posterior, followed by that in the top-right. It is harder to order the
collection of draws in the top-left and the bottom-right according to their information
content by visual inspection.

Table 6 summarizes the traces depicted in Fig. 4 numerically, i.e., the last 50,000
draws from each chain. We see reasonable agreement between the chains operating
with step-sizes of 0.005, 0.02, and 3 in terms of posterior means. However, the
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Fig. 2 MH-sampling – different step-sizes, 200,000 iterations
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chains with step-sizes of 0.005 and 3 underestimate the posterior standard deviations
relative to that with a step-size of 0.2 based on the last 50,000 draws (The posterior
standard deviations of MCMC draws measure the posterior uncertainty in the
knowledge about the parameters to be estimated. The analogy to frequentist standard
errors applies. However, while reasonable estimates of frequentist standard errors
maybe hard to come by in finite samples, posterior standard deviations are well
defined automatically by virtue of using proper priors. In addition, based on a sample
from the posterior distribution, posterior standard deviations of functions of param-
eters are easily computed as the standard deviation of functional values computed at
each draw from the posterior). The chain with step-size 0.001, which required about
350,000 draws to converge to stationarity (see the top-left plot in Fig. 3), results in
different means and dramatically smaller posterior standard deviations when looking
at the last 50,000 draws.

Table 7 reports analogous summaries, but now based on the last 250,000 draws
(compare Fig. 3). Based on these five times larger samples from the posterior, we see
reasonable agreement between chains with step-sizes 0.005, 0.2, and 3 both in terms
of posterior means and posterior standard deviations. This again illustrates that
MCMC will “always work,” if we only run the chains for long enough. However,
it also illustrates that some MCMCs deliver more information about the posterior
holding the number of iterations fixed than others, and that a valid MCMC chain can
be practically useless if it explores the posterior too slowly.
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Finally, I illustrate the notion of exploring the posterior distribution more quickly
(more efficiently) and more slowly (less efficiently) by comparing the RW-MH-chains
with step-sizes 0.005, 0.2, and 3 to each other, and to posterior draws from the Gibbs-
sampler that relies on data-augmentation discussed earlier (rbprobitGibbs in the
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Fig. 4 MH-sampling – different step-sizes, last 50,000 of 600,000 iterations

Table 6 Posterior means and standard deviations from the last 50,000 iterations

Step-size

Mean Standard deviation

β0 β1 β2 β0 β1 β2
0.001 �2.32 1.41 3.28 0.06 0.05 0.09

0.005 �2.86 1.85 3.84 0.16 0.25 0.21

0.2 �2.89 1.89 3.83 0.24 0.26 0.30

0.3 �2.85 1.87 3.82 0.17 0.18 0.25

Table 7 Posterior means and standard deviations from the last 250,000 iterations

Step-size

Mean Standard deviation

β0 β1 β2 β0 β1 β2
0.001 �2.28 1.34 3.23 0.10 0.10 0.13

0.005 �2.92 1.90 3.89 0.23 0.27 0.29

0.2 �2.88 1.88 3.83 0.24 0.26 0.30

3 �2.90 1.94 3.82 0.23 0.23 0.32
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R-package bayesm). I focus on the first slope coefficient (the red trace in the figures
above), and compute means and standard deviations from batches of 1000 consecutive
draws starting from iteration 50,001 until iteration 600,000. The histograms in Figs. 5
and 6 summarize the resulting distributions of 550 (= (600,000–50,000)/1000) batch
means and batch standard deviations for RW-MH-chains with step-sizes 0.005, 0.2,
and 3 and the Gibbs-sampler.

Assuming the true posterior standard deviation (from a hypothetical infinite
run of the MCMC) to be about 0.26 (see Table 7), we would expect the
batch means to be distributed normally around the true mean with standard deviation
:26=

ffiffiffiffiffiffiffiffiffiffi
1000

p
� :008 simply because we cannot learn the exact mean of a non-

degenerate posterior distribution from a finite sample. This translates into a 5-σ
interval around the mean with a length of about 0.08. Any excess variation in batch
means is evidence of the inefficiency of the employed sampling technologies relative
to a hypothetical iid-sampler. From the x-axes in Fig. 5, we can see that batch means
are distributed much more widely. Intuitively, a single 1000-iterations batch from
each of the MCMCs is less informative about the posterior (more likely to summa-
rize information from only parts of the posterior) than 1000 draws from a hypothet-
ical iid-sampler. In addition, if someone had to bet on the inference from a randomly
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drawn single batch, he would prefer a draw from the Gibbs-sampler (in the bottom-
right), followed by a draw from the RW-MH-sampler with step-size 0.2 (in the top-
right). The decision between step-sizes 0.005 and 3 is less clear. However, from the
wider distribution of batch means, it is obvious that MCMCs with these step-sizes
explore the posterior less efficiently.

Finally, the batch standard deviations in Fig. 6 again identify the Gibbs-sampler
as most efficient, followed by the RW-MH-chain with step-size 0.2. A randomly
drawn batch of 1000 consecutive draws from these samplers is likely to yield a
posterior standard deviation close to the posterior standard deviation estimated from
all 600,000 � 50,000 = 550,000 draws. In addition, the top-left plot in Fig. 6
demonstrates that each and every single 1000 consecutive iterations batch from the
chain with step-size 0.005 substantially underestimates the posterior standard devi-
ation. In contrast, the chain with the (too) large step-size of 3 often suggests no
posterior uncertainty at all – when no proposal is accepted in the batch – but does not
uniformly underestimate the posterior standard deviation. This again suggests that
chains with step-sizes that are too small are potentially more misleading than chains
with step-sizes that are too large.
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The examples discussed here nicely showcase that the emphasis in applied work
should be on using, devising sampling schemes that mix well, before even consid-
ering the formal assessment of convergence. In a sense, it is almost always obvious
from a graphical inspection of MCMC-trace plots whether a sampler that mixes well
has converged or not.

For first time acquaintances with MH sampling I suggest the following additional
coding exercises to develop an intuition for MH-sampling based on personal
experience:

1. Change the function rbprobitRWMetropolis in the Appendix to cycling
through MH-steps that update individual elements of the parameter vector one at
a time from their conditional posterior distributions. Experiment with tuning RW-
proposals for each element of the parameter vector independently.

2. Obtain a copy of the “plain R” version of rbprobitGibbs (version 2.2–5 of
bayesm available from the CRAN-archives), replace the part that generates latent
utilities z in line 141 with RW-MH steps, and verify with simulated data that this
new algorithm works. The setup is generally interesting, because it is a toy
version of a hierarchical model with MH-updates at the lower level and conjugate
updates of parameters that form the hierarchical prior.

3. Modify this sampler such that you propose candidate values z�i from their
(hierarchical) prior distribution Nðx0iβ,1Þ. Note that the proposal and the prior
distribution will cancel from the ratio in the MH-acceptance probability α.
You will likely see that this sampler does not converge to a posterior distribution
p (β|y) anywhere near the data generating values, even though the time series of
β1, . . . , βr, . . . , βR suggests immediate convergence and superior mixing! This is
an example of the drawbacks of a (collection of) proposal densities that do not
have enough mass in their tails.

Recent developments. An important recent development in the context of
making numerically intensive Bayesian analysis more practical is the No U-turn
Sampler (NUTS) by Hoffman and Gelman (2014) which is a self-tuning Ham-
iltonian-Monte-Carlo sampler (see e.g., Neal 2011). This technique has been
implemented in Stan (Carpenter et al. 2017) which interfaces with many
popular software environments including R, Python, Matlab, and Stata,
for example.

The basic principle of Hamiltonian-Monte-Carlo (HMC) is to leverage Hamilto-
nian dynamics for a more effective exploration of the posterior. In physics, Hamil-
tonian dynamics describe the change in location and momentum of an object by
differential equations. The solutions to the differential equations yield the location
and the momentum of an object at any particular point in time.

In HMC, the locations correspond to value of the q-element parameter vector to
be estimated. Each location is associated with a potential energy and the statistical
analogue is the negative of log-posterior evaluated these values (Thus, the posterior
mode is the point of lowest potential energy we would gravitate to in the absence of
“extra” kinetic energy that enables movements away from this point). The analogue
to the momentum comes from expanding the parameter space by p additional
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parameters (where p = q), the negative log-density of which is the statistical
analogue of kinetic energy (Thus, again the mode of this density is the point (the
momentum vector) with the lowest kinetic energy). Usually, these additional param-
eters are assumed to be standard normally distributed. However, it should be noted
that the p additional parameters and their density are purely technical devices to
complete the Hamiltonian. Similarly, proposal distributions in the context of MH-
sampling are technical devices to accomplish MH-sampling.

The algorithm first draws a p-element “momentum” vector from standard normal
distributions. The momentum vector both defines the direction of the movement
away from the current location (parameter value), and the maximum distance that
can be realized, as explained next. HMC obeys the principle that the total energy, i.e.,
the sum of the potential and the kinetic energy is constant in the closed system
described by the Hamiltonian, when deriving a new location (and a new momentum)
at any point in time (see Eq. 2.12 in Neal 2011). Here time refers to some arbitrary
time point after the onset of the momentum that generates a movement away from
the current location.

The location-change is a function of the change in kinetic energy and the momen-
tum-change a function of the change in potential energy. Note that the change in
potential energy corresponds to the gradient of the negative log-posterior, and the
change in kinetic energy to the gradient of the negative log-density of auxiliary
momentumvariables respectively, in statistical applications. If the differential equations
describing the change in position and momentum could be solved exactly, one could
solve for the location that is furthest away from the current location that can be reached
in the direction of the current draw of the momentum, given its associated kinetic
energy, define this as the new location, draw a new momentum vector, and so on.

It is useful to contemplate how such a procedure would explore the posterior. With a
fixed distribution of momentum vectors (and corresponding kinetic energies), it would
tend to move away more slowly from a pronounced posterior mode, i.e., in smaller
steps in expectation, because of the steep increase in potential energy (defined as the
negative of the log-posterior) around this mode. Here, the expectation is with respect to
the fixed distribution of momentum vectors (and corresponding kinetic energies). Only
outlying momentum vectors would supply sufficient kinetic energy to move far into
directions of (much) higher potential energy. Conversely, it would tend to move more
quickly, i.e., in larger steps in expectation, through areas of high-potential energy (small
values of the log-posterior), and in the direction of low potential energy, in expectation.
It is therefore somewhat intuitive that such a procedure would result in direct draws
from the posterior that could represent the posterior effectively based on a relatively
small number of draws. In contrast to RW-MH-sampling, the distance between two
successive draws from this procedure would automatically reflect the concentration of
the posterior at every value of the parameter space.

However, in practice, the solutions to the differential equations defining the
Hamiltonian dynamics need to be approximated in discretized time. Again, time
here refers to the time after the onset of the momentum that generates a movement
away from the current location, i.e., the current parameter value. A discrete approx-
imation that can be tuned to high accuracy (relative to the exact solution) is leapfrog
integration. At each iteration of the HMC, L leapfrog steps that each correspond to a

760 T. Otter



discrete time step of length ϵ are performed. Ideally, the number of steps L and the
length of each step ϵ are chosen so that the new location (a new parameter value) is
as far away as possible from the current parameter value, given the current draw of
the p-element momentum vector and its associated kinetic energy, while keeping the
approximation error low. Any remaining approximation error is controlled in a MH-
step that compares the value of the Hamiltonian at the new position and the
momentum at this position to the value of the Hamiltonian at the old position and
the momentum vector that initiated the movement to the new position (In other
words, the potential energy at the new location and the (remaining) kinetic energy
are compared to the potential energy at the old location and the kinetic energy that
brought about the movement to the new location). By the law of conservation of
energy in the closed system described by the Hamiltonian, the Hamiltonian would
evaluate to the same value if the discrete time approximation were exact.

NUTS automatically tunes L, ϵ, and additional parameters that rescale the kinetic
energy in different dimensions of the log-posterior to arrive at a highly effective
HMC-sampler that does not normally require user intervention. Thus, the researcher
can fully concentrate on specifying the model, i.e., the likelihood and the pior,
knowing that high quality numerical inference from the implied posterior is available
through NUTS. A limitation is that the gradient of the log-posterior needs to be
defined, which excludes discrete variables as direct objects of inference. However, in
many models, discrete latent variables are introduced as augmented data, such as in
models defining a discrete mixture of distributions. In these cases, NUTS could be
used to sample from the posterior marginalized with respect to discrete latent vari-
ables. Based on the marginal posterior, the posterior distribution of discrete latent
variables can be easily derived.

To numerically illustrate the performance of NUTS, I revisit the binomial probit
example discussed earlier. I run the NUTS implemented in Stan for 600,000
iterations and compute 550 batch means and batch standard deviations of the first
slope coefficient (the red trace in Figs. 2 to 4) from the last 550,000 iterations (see
Fig. 7). A comparison between Fig. 7 and Figs. 5 and 6 shows that a randomly drawn
batch of 1000 consecutive iterations from NUTS is likely to be a better representa-
tion of the posterior than a randomly drawn batch of 1000 consecutive iterations
from the samplers discussed earlier, including the Gibbs-sampler. However, it should
be noted that each NUTS-iteration is more computationally intensive than one
iteration of the MH-sampler investigated. The computational intensity of Gibbs-
sampling relative to NUTS in this model depends on the sample size, where larger
samples are likely to favor NUTS because of the need to augment latent utilities for
all observations when Gibbs-sampling.

Model comparison

In the introduction, I mentioned the possibility of determining the dimensionality of
a flexibly formulated model using the Bayesian approach. I also alluded to the
possibility of making comparisons across different models for the same data,
where models may arbitrarily differ in terms of likelihood functions, prior

Bayesian Models 761



specifications, or both. Here, I will briefly describe the basic principles to this end.
Specifically, I will show how the Bayesian approach can deliver consistent evidence
for a more parsimonious model. As usual, consistency means convergence to the
data generating truth as the sample size increases (When the set of models compared
does not contain the model that in fact corresponds to the data generating truth,
consistency means convergence to the model that is closest to the data generating
truth in a predictive sense).

This contrasts with the classical frequentist approach, where we can only “fail to
reject” relatively simpler descriptions of the world, i.e., more parsimonious theories
and models in comparison to more complex models. I personally see this as a
drawback of the classical frequentist approach because theory aimed at understand-
ing the underlying causal mechanisms of observed associations generally thrives on
establishing that particular (direct) causal effects do not exist.

The Bayesian approach towards comparing between two or more alternative
models builds – as one may expect – on Bayes’ theorem. Consider a set of models
M1, . . . , MK formulated for the same observed data y. Note that this encompasses
the possibility that models use different sets of covariates, different likelihood
functions, different priors, or may be calibrated including additional or even different
data y0, as long as they define a predictive density for the same y (For example, Otter
et al. (2011) show how to derive a marginal likelihood for demand data in a model
that specifies a joint density for supply side variables (that enter the demand model as
conditioning arguments) and demand data). Bayesian model comparisons then rest
on the posterior probabilities of a model given the (focal) data (Eq. 47).

Pr Mjjy
� �

¼
p yjMj

� �
Pr Mj

� �
PK

k¼1 p yjMkð ÞPr Mkð Þ
(47)

Here Pr(Mk) is the subjective prior probability that model k is the true model
which is often chosen to be 1/K in the absence of better knowledge, and p(y|MK) is
the so-called marginal likelihood of the data given model k defined as

Ð
pk(y|θ)pk(θ)

dθ. The subscript k indicates that the likelihood and the prior and thus the “content”
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Fig. 7 No U-Turn-sampling – distribution of batch means and batch standard deviations

762 T. Otter



of θ can be model dependent. If Pr(Mk) can be reduced to one and the same constant
for all models under consideration, this constant can obviously be ignored in Eq. 47.
Then, the comparison between any two models k and j in the set can be based on so-
called Bayes’ factors, defined as ratios of marginal likelihoods (Eq. 47).

BFk,j ¼
p yjMkð Þ
p yjMj

� � (48)

By convention, Bayes Factors larger 3 count as weak but sufficient evidence in
favor of the model in the numerator; Bayes Factors larger 20 count as strong
evidence (Kass and Raftery 1995). I will comment more on this convention later.

For example, it would be perfectly alright to compare model k with marginal
likelihood

Ð
pk(y|θ)pk(θ)dθ to a model j that introduces observed conditioning argu-

ments (predictors, covariates) X, i.e.,
Ð
pj(y|X, θ)pj(θ)dθ, or to include model i that

uses additional data y0 for calibration in the comparison, based on
Ð
pi (y|θ)pi(θ|y

0)dθ
(However, note that

Ð
pi(y, y

0|θ)pi(θ)dθ 6¼
Ð
pi(y|θ)pi(θ| y

0)dθ. The former is a
marginal likelihood for the data (y, y') and not for the data y. Marginal likelihoods
for different models can only be directly compared as long as they pertain to the
same data). A useful intuition for marginal likelihoods is that they reduce radically
different, per se incomparable “stories” about what may have generated the data to
densities for the data, which are directly comparable in the same way as we can
compare predictions for the same event completely independent of the consider-
ations that gave rise to the prediction.

However, we still need to establish the intuition for how Bayesian model com-
parisons can possibly consistently support the more parsimonious model. I will do
this by returning to the regression example from Eq. 10. Recall that we were able to
derive the posterior distribution analytically in this example (see Eq. 16). Exploiting
this fact, we obtain an analytical expression for the marginal likelihood of the data
under this model as follows:

p yjβ0,Σ0
� �

¼
p yjβð Þp βjβ0,Σ0

� �
p βjy, β0,Σ0
� �

¼

1ffiffiffiffiffi
2π

p
Yn

i¼1
exp � 1

2
yi � x0iβ
� �2� �

2πð Þ�k=2 Σ0
		 		�1=2

exp � 1

2
β� β0
� �0 Σ0

� ��1
β� β0
� �� �

2πð Þ�k=2 X0Xþ Σ0
� ��1

			
			1=2exp � 1

2
β� ~β
� �0

X0Xþ Σ0
� ��1

� �
β� ~β
� �� �

¼ Σ0
		 		�1=2

X0Xþ Σ0
� ��1

			
			�1=2

exp �~s
2

� �

(49)

Here, we exploited the fact p(y| β0, Σ0)p(β| y, β0, Σ0) = p(y| β)p(β| β0, Σ0),
by elementary rules of probability. Also note that with the intent to eventually
compare across models defined by different likelihoods and priors, we kept track
of all normalizing constants that we conveniently ignored before, when deriving
the posterior distribution in Eq. 16. Specifically, we previously ignored the factors
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1=
ffiffiffiffiffi
2π

p
and (2π)�k/2|Σ0|�1/2 in the likelihood p(y|β) and the prior p(β|β0, Σ0),

respectively.
Recall that ~s in the last line of Eq. 49 is a deterministic function of the subjective

prior parameters β0, Σ0, and the data y (see Eq. 14). For all nondegenerate prior
choices, ~s is going to be dominated by the term y� X0 ~β

� �0
y� X0 ~β
� �

, where ~β
converges to the maximum likelihood or ordinary least squares estimate as more data
become available (assuming regular X).

Now consider the comparison between two models. Model M0 happens to
employ the p-column X-matrix that collects all covariates that systematically
influenced y, when the data was generated – the true model. Model M1 uses a
model matrix that features the same p covariates in X plus s additional covariates in
Xs that did not contribute to the variation in y, when the data was generated. The
Bayes’ factor BF0,1 is then:

BF0,1 ¼
p yjM0ð Þ
p yjM1ð Þ

¼
Σ0
0

		 		�1=2
X0Xþ Σ0

0

� ��1
			

			�1=2
exp �~s0

2

� �

Σ0
1

		 		�1=2
X,Xsð Þ0

�
X,Xs

�
þ Σ0

1

� ��1
			

			�1=2
exp �~s1

2

� �
(50)

where Σ0
0 and Σ0

1 are of dimension p 	 p and (p + s) 	 (p + s), respectively. In the
limit of more and more data, ~s0 and ~s1 will converge to the same value, as the data
determine that the elements in ~β1 that correspond to Xs are equal to zero. Then, the
limit of the ratio in Eq. 50 only depends on:

ðjðX,XsÞ0ðX,XsÞ k X0Xj�1Þ1=2

¼ ðnpþsjn�1ðX,XsÞ0ðX,XsÞ k n�1X0Xj�1n�pÞ1=2
� ns=2

which is easily seen to converge to infinity in the limit of more andmore data (larger n),
for regular (X,XS) (The expressions n�1 (X, XS)0 (X, XS) and n�1X0X define
covariance matrices that will converge to fixed matrices in the sample size n for
covariates with finite variance). Thus, the Bayes’ factor can in fact produce infinitely
strong evidence for the more parsimonious model, if it is the data generating
mechanism.

If in contrast M1 were the true model, or just closer to the truth in this case, the
coefficients in ~β1 that correspond toX

s do not converge to zero. As a consequence,~s0
would grow faster in n than ~s1 , and SF0,1 would converge to zero (Note that exp

�~s0þ~s1
2

� �
¼ exp n �~s0=nþ~s1=n

2

� �
converges to zero faster than ns/2 grows because of the

exponential function, where �~s0=nþ ~s1=n converges to the true difference in
average squared errors between M1 and M0). Thus, the Bayes’ factor can both
produce increasing evidence for the more parsimonious model, when the constraints
imposed by this model hold exactly, and increasing evidence against it, when they do
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not (consider BF1,0 instead of BF0,1 in this case) (In this case, the conventional
classifications of weak and strong evidence in favor of the model in the numer-
ator of the Bayes’ factor often align with the usual cut-off values for rejecting a
more constrained model based on p-values). In contrast, p-values can reliably
reject a parsimonious model but are incapable of producing increasing evidence
for such a model. By construction, the probability of rejecting a true, more
parsimonious model in favor of a larger, over-parameterized model is equal to
the chosen significance level data in repeated applications of the frequentist
testing procedure, and independent of the sample size (the amount of information
in the data).

Numerical Illustrations

A Brief Note on Software Implementation

Researcher interested in adopting the Bayesian approach nowadays have quite some
choice regarding different software and available implementations of the Bayesian
approach. More recently, established products for data analysis such as SPSS,
STATA, or SAS have started to include options for Bayesian estimation of well
established “standard” statistical models such as ANOVA and generalized linear
regression models (Advanced users can certainly use these tools to estimate “their
own” models too, and STATA specifically emphasizes this possibility). In contrast,
WINBUGS is an example of an attempt to automate Bayesian inference, with the idea
that the user should be able to exclusively concentrate on the specification of a model
– likely outside of the set of “standard” statistical models implemented elsewhere –
aided by a graphical user interface.

Much if not the vast majority of “Bayesian-papers” published in marketing to
this day have relied on coding up the model and the (invariably) MCMC-routine
to perform Bayesian inference “from scratch,” starting with some example code
and taking advantage of components that repeat themselves across different
models, e.g., conditionally conjugate updating of parameters indexing hierarchi-
cal priors. The programming languages used in this context include compiled
languages such as C or Fortran, and interpreted languages such as Matlab,
R, and Gauss. Here, the former are by construction less interactive when coding
and the latter slower in the execution of code “that works.” Recently, Rcpp
(Eddelbuettel and François 2011; Eddelbuettel 2013) emerged as an extremely
useful compromise between the speed of compiled and the coder-friendliness of
interpreted languages.

I am currently relying heavily on Rcpp in my own research. However, I view
the advent of the No U-turn Sampler (NUTS) by Hoffman and Gelman (2014) as
implemented in Stan (Carpenter et al. 2017) as a major breakthrough towards
the goal of focusing on the specification of innovative models (almost)
exclusively.
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A Hierarchical Bayesian Multinomial Logit Model

At least in marketing, no treatment of Bayesian modeling would be complete
without illustrating the benefits from a hierarchical Bayesian model in the context
of large N, small T data. I consider the stylized case of multinomial logit choice from
choice sets with two inside alternatives, say brands A and B, and an outside option
with expected utility normalized to zero. The utility of the two inside alternatives
stems, in addition to alternative specific constants, from a uniformly distributed
covariate x, i.e., UAit = βAi + βixAit + eAit and UBit = βBi + βixBit + eBit. Here,
i = 1, . . . , N indexes heterogeneous individuals and t = 1, . . . , T choice occasions.
Population preferences are distributed according to:

βi ¼
βAi
βBi
β

0
@

1
A � N

:3
�2
�1

2
4

3
5,

3 �2:99 0
�2:99 3 0

0 0 :1

2
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3
5

0
@

1
A

Thus, brand A is slightly preferred to the outside good on average, whereas brand B
is less attractive than the outside good to the average consumer in thismarket. However,
there is a fair amount of heterogeneity in brand preferences in thismarket. For example,
about 12.4% of consumers in this market prefer brand B to the outside good and around
43% prefer the outside good to brand A at x = 0. Moreover, consumers that have an
above average preference for brand A are likely to have a below average preference for
brandB in this market, as per the strongly negatively correlated brand coefficients in the
population (ρ ¼ �:997). The tastes for the covariate x are relatively more homogenous
and only consumers in the extreme tail of the preference distribution exhibit a higher
preference for larger values of x in this population. I simulateN=2,000 individuals from
this population and have each individual make T = 5 choices from complete sets that
randomly vary in the x-values for brandsA andB, both across t = 1,. . .,Tand i = 1,. . .,N.
I use this data to calibrate a Bayesian hierarchical MNL-model. I rely on the default
subjective prior distributions implemented in bayesm’s estimation routine rhierMnIR
wMixtureand run this RW-MH-samplerwith automatic tuning of proposal densities for
100,000 iterations saving every 10th draw (inbayesm : R ¼ 100; 000; keep ¼ 10).
The complete posterior is a 6009-dimensional object (3 means plus 3 variances plus 2
covariances plus 2000 times 3 individual level random effects). Because of the high
dimensionality of the posterior, saving every draw from a long MCMC run can easily
produce an object that taxes a computer’s RAM heavily. Saving every keep-th draw
increases the information content in a posterior sample limited by a computer’s RAM.
For a maximum number of draws than can be saved, we can increase the number of
MCMC-iterations R , when we simultaneously increase the number of iterations
between parameters to be saved ðkeep� 1Þ. The information content in the resulting
sample is increased because saved draws separated by keep� 1MCMC iterations will
tend to bemore independent from each other, replicate less of the information contained
the preceding draw saved.

Figure 8 exhibits individual level posteriors for individuals 3, 99, and 2000 in our
simulated panel data. For this purpose, I use the last 9000 draws of the 10,000 draws
I saved. The three rows in Fig. 8 correspond to βA, βB, and β, respectively. Each
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Fig. 8 Individual level posterior distributions
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individual’s posterior is depicted in two different ways in two adjacent columns of
Fig. 8, each. The first column summarizes marginal posterior densities using density
plots obtained by Gaussian-kernel-smoothing. The second column shows the
MCMC-trace plot of draws underlying the density plots in the respective first
column. Green solid bars indicate data generating parameter values. Red-dashed
bars indicate individual level maximum likelihood estimates obtained from numer-
ical maximization of the likelihood function using the R-function optim (I report
numerical estimates regardless of the existence of a finite maximum likelihood
estimate given the 5 choices from a specific individual and the corresponding design
matrices). If no red-dashed bar is showing, this indicates that the maximum likeli-
hood estimate falls outside of the range of parameter values plotted. To still give an
impression of maximum likelihood estimates, the MCMC-trace plots in the respec-
tive second columns have the maximum likelihood estimates in the title.

Looking at the maximum likelihood estimates and comparing them to the green
bars, we can see that they are extremely inaccurate. Clearly, individual level poste-
rior inference benefits tremendously from the information in the hierarchical prior
distribution that the model learns by pooling information across the 2000 consumers
in our simulated short panel.

Finally, Fig. 9 illustrates how the hierarchical Bayesian MNL-model recovers the
joint distribution of preferences for brands A and B in the population of consumers.
We recognize the strongly negative relationship between preferences for brands A and
B in the population (However, the posterior mean correlation of �0.88 (0.037)
overestimates the data generating correlation of�0.997, which can be traced back
to the finite information in the data available for calibration and the subjective priors
for population level parameters employed here. See the documentation of
rhierMnlRwMixture for details). Thus, if a particular individual level likelihood
is only informative about the preference for brandA (B), the corresponding preference
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Fig. 9 Joint posterior
distribution of {βAi} and {βAi}

768 T. Otter



for brand B (A) can be inferred rather accurately from the hierarchical prior distribu-
tion. Dashed lines in Fig. 9 indicate posterior population means, that nicely recover
the data generating values from the information in all N	 T choice observations. The
code to replicate this illustration is again available in the Appendix.

Note that we estimated the model that was used to generate the data here. In
applications, it is very likely that some or all subjective choices that go into the
formulation of the model result in systematic differences from the data generating
mechanism, including the choice of the hierarchical prior distribution that was (implic-
itly) chosen to be multivariate normal in this illustration. However, it is also clear that
even misspecified hierarchical prior distributions can strike a beneficial bias-variance
trade-off in applications where individual level maximum likelihood estimates are
extremely noisy or may not exist at all. In fact, this bias-variance trade-off is at the
source of the inroads Bayesian hierarchical models have made into applications in
marketing. For a discussion of how to imbue hierarchical prior distributions with
subjective knowledge about ordinal relationships, see Pachali et al. (2018).

Mediation Analysis: A Case for Bayesian Model Comparisons

In this section, we borrow from Otter et al. (2018). Mediation analysis has
developed in psychology, as a tool to empirically establish the process by which
an experimental manipulation brings about its effect on the dependent variable of
interest. An important distinction in this context is that between full and partial
mediation at a causal theory level. I will not discuss the related model specification
questions here but focus on the fact that if an experimentally manipulated cause X
and a measured consequence Y become independent when conditioned on a
measured mediator M, evidence for (full) mediation is established (This is because
conditional independence would only result in very particular essentially zero
probability circumstances from models where full mediation is not the causal
mechanism at work. Results that do not establish some form of conditional
independence, which are often interpreted as “partial mediation,” actually are
ambiguous with regarding their interpretation (Otter et al. 2018)). The original
test for mediation proposed by Baron and Kenny (1986) builds on the connection
between full mediation and conditional independence and tests conditional mean
independence. Their test rests on the following set of regression equations, where
t’s denote intercepts (see also Fig. 10).

X
a

b

Y
c

X Y

M

a b

c∗

Fig. 10 Mediation according
to Baron and Kenny (Baron
and Kenny 1986)
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Y i ¼ t1 þ cX i þ eY ,i (51)

Mi ¼ t2 þ aX i þ eM,i (52)

Y i ¼ t3 þ c�X i þ bMi þ e�Y ,i (53)

The first equation regresses Yon the randomly assigned experimental variable X. A
statistically significant coefficient c establishes empirical support for the total effect
from X to Y (see Fig. 10, Panel a). Because of random assignment of X, the coefficient
c necessarily measures a causal effect. The second equation regresses M on X. A
statistically significant coefficient a establishes empirical support for the effect fromX
to M that is again causal by experimental design. The third equation regresses Y on
randomly assigned X and on observedM. Finding that the effect from X on Yvanishes,
when conditioned on M (i.e., that there is no direct effect c*), unequivocally estab-
lishes (full) mediation as the causal data generating model (see Fig. 10, Panel b) (In
the limit of an infinite amount of data, the estimate of c* will only converge to exactly
zero under full mediation. The only alternative process that yields c*= 0 in the limit
features M as a joint cause of X and Y without another connection between X and Y.
This process is ruled out a priori, when X is experimentally manipulated). Usually,
empirical support for the hypothesis of c*= 0 is established based on p-values larger
than some subjectively chosen significance level. An obvious drawback of this
approach is that p-values, by construction, fail to measure the strength of empirical
support for conditional independence, which in turn establishes full mediation. Based
on p-values, we can only “fail to reject” the null-hypothesis.

Next, I illustrate the differences between the classical and the Bayesian approach
in the context of c* = 0 using a sampling experiment. I thus consider the case of full
mediation as DGP. Accordingly, I set t2 = t3 = 1, a = 4, c* = 0, b = 0.5, and
σM = σY* = 1 in Eqs. 52 and 53 and generate artificial data sets of different sizes:
N1 = 50, N2 = 200, as well as N3 = 2000 (Xi is drawn from a uniform distribution
for each i � , . . . , N}). I conduct 1000 replications for each data set size
and compute Bayes’ factors defined as ratios of marginal likelihoods of the model
M0 : Y i ¼ t3 þ bMi þ e�Y ,i and the model M1 : Y i ¼ t3 þ c�X i þ bMi þ e�Y ,i. Note
that the former is more restricted than the latter and implies that the coefficient c* is
equal to zero in the latter model (see Otter et al. (2018) for the computational details
and R-scripts).

Table 8 illustrates the distribution of estimated Bayes Factors over the 1000
simulation replications testing the hypothesis of c* = 0. The results in Table 8
verify that the Bayes Factor correctly favors M0 over M1 for the vast majority of
sampling replications. Importantly, this table also illustrates that the Bayes Factor
provides increasingly stronger evidence for M0 (i.e., c* = 0) as the sample size
increases.

The classical testing framework based on p-values fails to measure the strength of
evidence in favor of c*= 0. In line with how they are defined, p-values are uniformly
distributed over sampling replications in the interval of (0,1) (see Table 9). The
probability of observing a p-value smaller than the specified significance level is
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equal to this level, and independent of the sample size, when the null-hypothesis is
actually true. In contrast, the probability of obtaining a Bayes Factor larger than 20 in
support of c* = 0 increases in the sample size and, for example, approaches one for
N = 2000 (see Table 8).

Thus, when the data generating process implies conditional independence
(c* = 0), the Bayesian approach is the superior measure of empirical evidence for
this process, compared to the approach based on p-values.

Conclusion

Writing a chapter like this, one certainly involves many trade-offs. I have chosen to
emphasize general principles of Bayesian decision-making and inference in the hope
of interesting and exciting readers that have an inclination towards quantitative
methodology and are serious about improving marketing decisions. The promise
from a deeper appreciation of the Bayesian paradigm, both in terms of its founda-
tions in (optimal) decision-making and in terms of its computational approaches are
better tailored quantitative approaches that can be developed and implemented as
required by a new decision problem, or for the purpose of extracting (additional)
knowledge from a new data source.

A drawback of this orientation is that the plethora of existing models that are
usefully implemented in a fully Bayesian estimation framework, including common
place prior distributions, are not even enumerated in this chapter. However, I believe
that the full appreciation of individual, concrete applications requires a more general
understanding of the Bayesian paradigm. Once this understanding develops, that for
different individual models follows naturally.

Cross-References

▶ Finite Mixture Models
▶ Fusion Modeling

Table 9 Distribution of p-values in simulation

Pr(p-value) > 0.01 Pr(p-value) > 0.05 Pr(p-value) > 0.10

N = 50 0.99 0.96 0.90

N = 200 0.99 0.96 0.90

N = 2000 0.99 0.96 0.90

Table 8 Distribution of Bayes’ factors in simulation

Pr(BF) > 3 Pr(BF) > 20 Pr(BF) > 100

N = 50 0.94 0.04 0.00

N = 200 0.97 0.71 0.00

N = 2000 0.99 0.93 0.43
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▶ Panel Data Analysis: A Non-technical Introduction for Marketing Researchers
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Appendix

MCMC for Binomial Probit Without Data Augmentation

Simulate data, call MCMC routine, plot MCMC-traces. This R-script sources a
RW-MH-sampler for the binomial probit model (see teh following script), simulates
probit data, and runs the code with different step-sizes (standard deviations of ϵ).

# may need to install these packages first

library ( bayesm )

library ( latex2exp )

# needs to be in R's working directory

source (' rbprobitRWMetropolis .r')

# function to simulate from binary probit

simbprobit = function (X, beta ) {

y= ifelse ((X%*% beta + rnorm ( nrow (X))) <0 ,0 ,1)

list (X=X,y=y, beta = beta )

}

nobs =500 # number of simulated observations

X= cbind ( rep (1, nobs ), runif ( nobs ), runif ( nobs ))

beta =c( -3 ,2 ,4) # data generating parameters

nvar = ncol (X)

simout = simbprobit (X, beta )

# probit responses

y= simout $y

R =200000 # length of MCMC sample

# data list to passed to MCMC routine

Data = list (X= simout $X,y= simout $y)

Mcmc = list (R=R, keep =1)

# prior mean set to zero, prior variances set to 100

Prior = list ( betabar = double ( nvar ),A= diag ( rep (.01, nvar )))

out _1= rbprobitRWMetropolis ( Data =Data, Mcmc =Mcmc,
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Prior =Prior, stepsize =.001)

out _2= rbprobitRWMetropolis ( Data =Data, Mcmc =Mcmc,

Prior =Prior, stepsize =.005)

out _3= rbprobitRWMetropolis ( Data =Data, Mcmc =Mcmc,

Prior =Prior, stepsize =.8)

out _4= rbprobitRWMetropolis ( Data =Data, Mcmc =Mcmc,

Prior =Prior, stepsize =3)

windows ()

par ( mfrow =c (2,2))

matplot ( out _1$ betadraw, type ='l',xlab = “, ylab = “,

main = TeX ('$\cr epsilon $-standard⌴deviation⌴=⌴.001 ')); grid ()

matplot ( out _2$ betadraw, type ='l',xlab = “, ylab = “,

main = TeX ('$\cr epsilon $-standard⌴deviation⌴=⌴.005 ')); grid ()

matplot ( out _3$ betadraw, type ='l',xlab = “, ylab = “,

main = TeX ('$\cr epsilon $-standard⌴deviation⌴=⌴.8 ')); grid ()

matplot ( out _4$ betadraw, type ='l',xlab = “, ylab = “,

main = TeX ('$\cr epsilon $-standard⌴deviation⌴=⌴3')); grid ()

MCMC function. The following function implements a simple RW-MH-sampler
for the binomial probit model coupled with a multivariate normal prior. All regres-
sion parameters are updated simultaneously in one MH-step.

rbprobitRWMetropolis <- function (Data, Prior, Mcmc, stepsize )

{

require ( bayesm )

# because of the use of lndMnv to evaluate the log - density of a ...

# ... multivariate normal distribution

y = Data $y

nvar = ncol (X)

nobs = length (y)

betabar = Prior $ betabar

A = Prior $A

R = Mcmc $R

keep = Mcmc $ keep

betadraw = matrix ( double ( floor (R/ keep ) * nvar ), ncol = nvar )

loglike = double ( floor (R/ keep ))

beta = c( rep (0, nvar ))

priorcov = chol2inv ( chol (A))

rootp = chol ( priorcov )

rootpi = backsolve (rootp, diag ( nvar ))

# intialize log - likelihood at starting value

oldloglike =
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sum ( pnorm (0, (X%*% beta )[ as. logical (y)], 1, log .p= TRUE ))+

sum ( pnorm (0, (-X%*% beta )[!as. logical (y)], 1, log .p= TRUE ))

# compute non - normalized log - posterior at starting value

oldlpost = oldloglike + lndMvn (beta, betabar, rootpi)

naccept = 0

for ( rep in 1:R) {

betac = beta + rnorm ( nvar )* stepsize # random walk proposal

# compute probit log - likelihood at proposed value

cloglike =
sum ( pnorm (0, -(X%*% betac )[ as. logical (y)], 1, log .p= TRUE ))+

sum ( pnorm (0, (X%*% betac )[!as. logical (y)], 1, log .p= TRUE ))

# compute non - normalized log - posterior at proposed value

clpost = cloglike + lndMvn (betac, betabar, rootpi )

# compute log - ratio of non - normalized posterior at proposed ...

# ... and old value

ldiff = clpost - oldlpost

alpha = min (1, exp ( ldiff )) # acceptance probability

if ( alpha < 1) {

unif = runif (1)

}

else {

unif = 0

}

if ( unif <= alpha ) {

beta = betac

oldloglike = cloglike

oldlpost = clpost

naccept = naccept + 1

}

if ( rep %% keep == 0) {

mkeep = rep / keep

betadraw [mkeep, ] = beta

loglike [ mkeep ] = oldloglike

}

}

# betadraw is the matrix containing draws from the posterior

# rateaccept is the relative frequency of accpeting proposed moves ...

# ... from oldbeta to betac

# loglike is the log - likelihood ...

# ... evaluated at the current MCMC state ( beta )

return ( list ( betadraw = betadraw, mkeep =mkeep,
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rateaccept = naccept /R, loglike = loglike ))

}

Stan probit definition file. This file that is called as StanProbit.stan by
the R-script immediately below defines a binomial probit model with a multivariate
normal prior for Stan. According to the model, the data are independently
Bernoulli distributed with probabilities implied by the probit-link, parameters,
and covariates.

data {

int N; // number of observations

int K; // number of covariates

int < lower =0, upper =1> y[N]; // information

matrix [N,K] X; // design matrix

}

parameters {

vector [K] beta ; // beta coefficients

}

model {

vector [N] mu;

beta ~ normal (0, 100);

mu = X* beta ;

for (n in 1:N) mu[n] = Phi (mu[n ]);

y ~ bernoulli (mu );

}

Calling Stan from R to estimate a binomial probit model. This R-script calls
Stan to sample from the posterior of the binomial probit model coupled with a
multivariate normal prior defined in the file above.

# may need to install the rstan package first

require ( rstan ) # load the rstan package

# see sripts above for nobs, nvar, simout objects

prob _ data = list (N=nobs ,K=nvar ,X= simout $X,y=as. vector (

simout $y))

rstan _ options ( auto _ write = TRUE )

options (mc. cores = parallel :: detectCores ())

stanfit _ probit = stan ( file =" StanProbit . stan ",data = prob _

data,

pars = c(" beta "), chains = 1,

iter = 600000, warmup = 1000)

# Make draws available for posterior analysis in R

out _ StanProbit = extract ( stanfit _ probit )
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HB-Logit Example

This code generates MNL-data from a hierarchical model, estimates an HB-logit
model, and compares selected individual level posteriors to the corresponding
maximum likelihood estimates.

genXy <- function (betai ,p,T){

## generate multinomial logit choices

# alternative specific constants

# ... this assumes p=3 ( two inside brands, one outside choice )

X= kronecker ( rep (1,T), matrix (c(1 ,0 ,0 ,0 ,1 ,0) , ncol =(

length ( betai ) -1)))

# add the continuous covariate

X= cbind (X, runif (T*p))

index = seq (p,p*T,p)

X[index ,]=0 # outside good

Xbeta =t( matrix (X%*%betai , nrow =p))

index = cbind (1:T, max . col ( Xbeta ))

maxl = Xbeta [ index ]

logsumel = log ( rowSums ( exp (Xbeta - maxl ))) + maxl

logprob = matrix (Xbeta - logsumel , nrow =T)

y= double (T)

for (t in 1:T){

y[t]= sum ( cumsum ( exp ( logprob [t ,])) < runif (1))+1 ## draw

from the CDF of probs

}

return ( list (y=y,X=X))

}

p=3 # number of alterantives in each choice set

T=5 # number of repeated measurements, i.e., choice sets or choices

# generate panel data for MCMC analysis

N =2000 # number of individuals in the panel

# population mean preference

betap =c(.3 , -2 , -1)

# variance - covariance of preferences in the population

Vbeta = matrix (c(3 , -2.99 ,0 , -2.99 ,3 ,0 ,0 ,0 ,.1) , ncol =3)

# just for demonstration to make sure we all get ...

# ... the same result date and results

set . seed (66)

# draw individual specific preferences from MVNormal distribution

betai = betap +t( chol ( Vbeta ))%*% matrix ( rnorm (N* length (

betap )), ncol =N)

lgtdata <- vector (" list ", N)
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T=5 # number of choices per individual

betaMLE = betai

betaMLE [ , ]=0

for (i in 1:N){

outgen = genXy ( betai [,i],p,T)

# For Bayesian analysis using rhierMnlRwMixture ...

# ... you need to organize your data in list format as ...

# ... in the command line below

# y :: vector of choice outcomes of length T or ...

# ... T_i in case different panel units provide different numbers

of choices

# X :: A (p*T) rows x length ( beta [,i]) columns model matrix ;

# the first ( second ) p rows correspond to the first ( second )

choice set, and so on.

# Each alternative is represented by one row in X.

# The numbers in y point to which 'row ' was chosen from a

particular choice set

lgtdata [[i ]]= list (y= outgen [[1]], X= outgen [[2]])

out = optim ( par = betai [,i], fn=llMNL, gr=NULL, y= outgen [[1]],

X= outgen [[2]], p=p, hessian = FALSE, control = list ( fnscale =
-1))

betaMLE [,i]= out $ par # collect MLE estimates

}

# load the bayesm package into the workspace

# (if this gives you an error, ...

# ... you need to install the package first )

library ( bayesm )

# run the Bayesian hierarchical model

outMCMC = rhierMnlRwMixture ( Data = list (p=p, lgtdata = lgtdata

),

Prior = list ( ncomp =1), Mcmc = list (R =100000, keep =10))

# posterior of individual specific coefficients

betaimc = outMCMC $ betadraw

index =1001:10000

# may need to install this first

library ( latex2exp )

M=c (3 ,99 ,2000) # plot betai posterior for consumers in M

jpeg ( filename =" ILposteriors880 . jpg ", quality = 100 , width =
880 , height = 480)

# windows ()

par ( mfcol =c( length ( betap ), length (M)* 2))
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for (i in M){

plot ( density ( betaimc [i ,1, index ]),

xlab = TeX ('$\cr beta _{A}$'), ylab = "⌴", main = paste ("panel -

unit⌴", i))

abline (v= betai [1,i], col ='green ', lwd =5, lty =1 )

abline (v= betaMLE [1,i], col ='red ', lwd =5, lty =2 )

plot ( density ( betaimc [i ,2, index ]),

xlab = TeX ('$\cr beta _{B}$'), ylab = "⌴", main ="⌴")
abline (v= betai [2,i], col ='green ', lwd =5, lty =1 )

abline (v= betaMLE [2,i], col ='red ', lwd =5, lty =2 )

plot ( density ( betaimc [i ,3, index ]),

xlab = TeX ('$\cr beta $'), ylab = "⌴", main ="⌴")
abline (v= betai [3,i], col ='green ', lwd =5, lty =1 )

abline (v= betaMLE [3,i], col ='red ', lwd =5, lty =2 )

plot ( betaimc [i ,1, index ], type ='l',

xlab ="⌴", ylab = TeX ('$\cr beta _{A}$'), main = paste (" MLE :

⌴", round ( betaMLE [1,i ])))

abline (h= betai [1,i], col ='green ', lwd =5, lty =1 )

abline (h= betaMLE [1,i], col ='red ', lwd =5, lty =2 )

plot ( betaimc [i ,2, index ], type ='l',

xlab ="⌴", ylab = TeX ('$\cr beta _{B}$'), main = paste (" MLE :

⌴", round ( betaMLE [2,i ])))

abline (h= betai [2,i], col ='green ', lwd =5, lty =1 )

abline (h= betaMLE [2,i], col ='red ', lwd =5, lty =2 )

plot ( betaimc [i ,3, index ], type ='l',

xlab ="⌴", ylab = TeX ('$\cr beta $'), main = paste (" MLE : ⌴",
round ( betaMLE [3,i ])))

abline (h= betai [3,i], col ='green ', lwd =5, lty =1 )

abline (h= betaMLE [3,i], col ='red ', lwd =5, lty =2 )

}
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Abstract

Conjoint analysis is one of the most popular methods to measure preferences of
individuals or groups. It determines, for instance, the degree how much con-
sumers like or value specific products, which then leads to a purchase decision. In
particular, the method discovers the utilities that (product) attributes add to the
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overall utility of a product (or stimuli). Conjoint analysis has emerged from the
traditional rating- or ranking-based method in marketing to a general experimen-
tal method to study individual’s discrete choice behavior with the choice-based
conjoint variant. It is therefore not limited to classical applications in marketing,
such as new product development, pricing, branding, or market simulations, but
can be applied to study research questions from related disciplines, for instance,
how marketing managers choose their ad campaign, how managers select inter-
nationalization options, why consumers engage in or react to social media, etc.
This chapter describes comprehensively the “state-of-the-art” of conjoint analysis
and choice-based conjoint experiments and related estimation procedures.

Keywords

Preference measurement · Choice experiments · Conjoint analysis · Conjoint
measurement · Tradeoff analysis · Choice-based conjoint · Adaptive conjoint ·
Utility function · New product development · Revealed preference · Incentive-
aligned mechanisms · Willingness-to-pay · Market simulation

Introduction

Assume that an electronics company wants to enter the market for ebook readers.
The company has already developed a working prototype with the basic function-
ality. However, consumers did not yet consider buying this specific product
according to a survey, but continue to buy a (more expensive) competitor’s product
instead. The manufacturer therefore would like to know which attributes of an ebook
reader are valued by consumers and which specific attributes they need to improve.
Given limited budgets, they can only modify their product in one or two attributes,
depending on the manufacturing costs, so that they need to reveal which attributes
are most important. Moreover, they would like to know how price-sensitive con-
sumers are and how much they are willing to spend for an ebook reader. Finally, they
also need an estimate of the achievable market share to reach the final decision if
they should market their product or not.

These questions and related ones can be addressed with preference measurement.
The aim of preference measurement is to discover the degree how much consumers
like or value (i.e., derive a utility from) specific products, which then leads to a
purchase decision. Conjoint analysis, as one of the most popular methods within
preference measurement, assumes that products are attribute bundles. Accordingly,
an ebook reader is considered as a bundle of screen technology, screen size, screen
resolution, storage size, brand name, price, etc. The method tries to discover the
utilities that each attribute (and attribute level, respectively) adds to the overall
utility of the product by systematically varying specific levels of the attribute. It is
a decompositional method, meaning that it elicits consumers’ overall utilities for
experimentally varied product concepts and then decomposes the overall utility
into the attributes’ utilities (so-called “partworth utilities” or just “partworths”)
via statistical procedures. In line with this description, the American Marketing
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Association (2015) defines conjoint analysis as a “statistical technique in which
respondents’ utilities or valuations of attributes are inferred from the preferences
they express for various combinations of these attributes.”

As a result, conjoint analysis provides researchers with a utility function that
translates the specific attribute levels of a product into consumers’ preferences. This
utility function serves multiple purposes; it can explain consumers’ actual purchase
decisions and predict their choices given changes to the product configuration, i.e.,
modification of attributes. In this regard, it is the basis for a multitude of relevant
marketing applications, for example:

– New product development and innovation, e.g., which product concept
will be preferred by consumers? (e.g., Page and Rosenbaum 1992; Urban and
Hauser 1993)

– Pricing, e.g., how much are consumers willing to pay and how much are
improvements in products attributes allowed to cost? (e.g., Miller et al. 2011)

– Branding, e.g., how much value can be attributed to the brand of a product? (e.g.,
Sattler 2005)

– Market segmentation, e.g., are there different market segments that differ in terms
of certain preferred product attributes? (e.g., Teichert 2001b)

– Market scenarios, e.g., what is the effect of a new product entry on the market
shares of the incumbents? (e.g., Burmester et al. 2016)

Conjoint analysis is not limited to applications in marketing, but can be generally
applied when individuals need to make a decision regarding multiattributive objects.
It is also a popular method in other areas, such as transportation (e.g., Hensher 1994),
litigation (e.g., Eggers et al. 2016), agriculture (e.g., Lusk and Schroeder 2004), or
health economics (e.g., De Bekker-Grob et al. 2012). Due to its broad area of
applications, conjoint analysis has advanced to a widely respected method since its
introduction into marketing in the 1970s. Overviews of its popularity can be found in
Green and Srinivasan (1978, 1990) as well as in empirical studies conducted, for
example, by Wittink et al. (1994), Voeth (1999), Sattler (2006), and Orme (2016).

Conjoint methods differ in terms of how the overall utilities are elicited. Tradi-
tional approaches use ratings of single product concepts (rating-based conjoint),
ratings of pairs of products, or rankings of a selection of products (ranking-based
conjoint). Currently, the most popular conjoint approach with over 80% of applica-
tions (Orme 2016) is based on choices among several product concepts, i.e., choice-
based conjoint (CBC; also termed discrete choice experiments; Haaijer and Wedel
2003; Louviere and Woodworth 1983). Using choices as the dependent variable has
become popular because they mimic consumers’ behavior when they are making
purchase decisions.

Continuing the example case mentioned above, assume that the manufacturer of
the ebook reader is currently producing a black ebook reader with a 6-in. E Ink
display and 4 GB storage. They are exploring different options to improve their
product, e.g., identified via qualitative research or pretests: (1) increasing the storage
from 4 GB to 8 GB, (2) increasing the screen size from 6 to 7 in., or (3) changing the
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case color from black to white. Accordingly, there are (2^3) eight different options
they could potentially offer, resulting from the different combination of attribute
levels (Table 1).

Although one could assume that more storage is better so that 8 GB models are
preferred to 4 GB models, this is not necessarily true for screen size since consumers
might either value a small (and less bulky) product or a larger (and more readable)
screen. There is also no a priori preference order for color. Hence, it is not known
beforehand which option would be the most preferred one. Moreover, it might not be
profitable to offer an 8 GBmodel if the increase in preference, and therefore demand,
is only marginal and does not justify the additional manufacturing costs. Thus,
conjoint analysis is a suitable method to solve this decision problem.

Traditional conjoint analysis (e.g., rating-based conjoint) would present each of
the products in Table 1 to a consumer in a survey and ask for his/her preference, e.g.,
on a rating scale from 0 (“not at all preferred”) to 10 (“very much preferred”). The
partworth utilities for the attribute levels can then be derived by using the ratings as a
dependent variable in a regression model in which the attribute levels serve as
independent variables (e.g., as dummy variables). Although ratings can be consid-
ered an acceptable manifestation of preferences, they do not mimic consumers
behavior in the marketplace. Moreover, it is often questionable how the ratings
can be translated into actual choices (Teichert 2001a).

These issues are among the reasons why CBC approaches have become popular.
They offer respondents a selection of product alternatives in a choice set (also called
“choice task”) and ask for their most preferred option (Fig. 1). This procedure is
repeated across multiple sequential choice sets, each presenting alternatives that are
systematically varied by an experimental design. The decisions within a choice set
often require a trade-off between attributes. For example, if a consumer prefers larger
screens (as in option 1 in Fig. 1) and more storage (as in option 2), she/he needs to
determine how important each of these attributes really is in order to reach a decision
between option 1 and option 2, while also considering color. These decisions
increase the realism of the tasks as trade-off decisions are very often required in
the marketplace, e.g., when a higher quality is offered for a higher price. Another
element that increases the realism of CBC is that it is possible to include a so-called
no-choice option (also termed “none option” or “outside good”), which can be

Table 1 List of potential ebook readers (2^3 design)

Concept Storage (GB) Screen size (in.) Color

1 4 6 Black

2 4 7 Black

3 4 6 White

4 4 7 White

5 8 6 Black

6 8 7 Black

7 8 6 White

8 8 7 White
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chosen if none of the alternatives are acceptable. In this example, the no-choice
option could also be termed, e.g., “With these options I would keep reading books on
paper,” so that a threshold can be identified which indicates the utility that is needed
to make consumers switch from traditional books to an ebook reader.

The higher degree of realism of CBC experiments leads to the expectation that
CBC exhibits a higher validity compared to traditional, metric conjoint analysis.
However, not all studies find significantly better results for CBC compared to
traditional conjoint analysis, although the direction of the effects is as expected
(Chakraborty et al. 2002; Elrod et al. 1992; Moore 2004; Moore et al. 1998; Vriens et
al. 1998). A disadvantage of CBC experiments is that choices among alternatives are
nominal and generate less information than, e.g., rating each alternative separately.
Therefore, CBC requires collecting a multitude of sequential choice sets, which
might invoke respondent fatigue and could serve as an explanation for those findings
in which CBC is not predicting significantly better than rating or ranking-based
conjoint.

The traditional conjoint approaches (e.g., rating and ranking-based conjoint) and
CBC can be classified as static because they do not adapt to the responses that the
consumer has given in the survey. To make the information collection more efficient,
adaptive procedures dynamically adjust to the preferences of the respondents. They
are typically based on a hybrid approach that combines a decompositional and a
compositional method. Compositional approaches (e.g., the self explicated method)
ask respondents directly about their preference for attribute levels and the relative
importance of the attributes, e.g., via rating scales (Srinivasan and Park 1997). This
input can then be used as a first estimate of the consumer’s preferences in order to
show product concepts in the conjoint procedure that are meaningful to the individ-
ual respondent or that generate most information about the respondent’s preferences.
The rating-based Adaptive Conjoint Analysis (ACA, Johnson 1987) and Adaptive
CBC (ACBC, Sawtooth 2014) follow this idea. Other adaptive approaches from the
machine learning literature dynamically anticipate each respondent’s utility based on
previous answers, i.e., either ratings (Toubia et al. 2003) or choices (Toubia et al.
2004, 2007). Hybrid individualized two-level CBC (HIT-CBC, Eggers and Sattler
2009) uses a compositional approach in order to ask for the best and worst levels for

Which of these ebook readers do you prefer?

Storage:

Screen size:

Color:

Option 1 Option 2 Option 3

4 GB 8 GB I would not buy any
of these7 inch 6 inch

White Black

Please assume that these two options do not differ in terms of other attributes, i.e., both 
option have a self-lit E Ink display with 758x1024 pixels resolution, WiFi, and 3 weeks battery 
life. They both support multiple formats (PDF, EPUB) and connect to major book distributors.  

Fig. 1 Exemplary choice set of a CBC experiment
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each attribute and adjusts the CBC part to these two extreme levels only. Thus, it can
be seen as a compositional approach in which the attribute importance is derived by a
conjoint experiment.

In newer conjoint analysis approaches, respondents interact with each other,
following the principles of barter markets (Ding et al. 2009), auctions (Park et al.
2008), or poker games (Toubia et al. 2012). Preferences can then be inferred
from these transactions. Figure 2 summarizes the evolution of conjoint analysis
approaches.

It should be noted that the above-mentioned example of ebook reader attributes is
a very simple case that is used for illustration only. Typically, conjoint studies apply
more complex scenarios with more attributes, including price, and additional levels
per attribute. Therefore, as an extended example, we will introduce additional
attribute levels and a fourth attribute: price. The list of attributes and levels for the
extended example is given in Table 2. Because of the popularity of CBC approaches,
the remaining chapters will focus on these approaches.

Fig. 2 Evolution of conjoint analysis approaches

Table 2 Attributes and levels for the extended example

Attribute Level 1 Level 2 Level 3 Level 4

Storage 4 GB 8 GB 16 GB n.a.

Screen size 5 in. 6 in. 7 in. n.a.

Color Black White Silver n.a.

Price €79 €99 €119 €139
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Model

Conjoint applications assume a (purchase) decision model in which consumer
preferences, i.e., utilities, are the central element of the choice process. The assump-
tion is that specific product attributes determine the individual utility evaluations and
these, in turn, form the basis for the observed choice behavior (Fig. 3). This requires
two interdependent models: a utility model and a choice model, which translates
utilities into multinomial choices.

The literature on preference measurement or conjoint-related literature is often
equivocal in their terminology. Throughout this chapter, we will use the following
terminology (with alternative formulations noted in parentheses): We measure the
utility (= preference, need, liking, worth, value) of a consumer (= respondent,
individual, subject) for a specific product or service (= alternative, stimulus, object,
option, profile) that consists of different attributes (= factors, dimensions), each
having specific attribute levels (= characteristics, features).

Utility Model

The basis for the utility model in a choice context is random utility theory (RUT),
which states that the overall utility U of consumer c for a product i is a latent
construct that includes a systematic component V and an error component e, i.e.,
Uci = Vci + eci (McFadden 1981; Walker and Ben-Akiva 2002). The stochastic error
term catches all effects that are not accounted for and can include, e.g., respondent
fatigue, omitted variables, biases in the data collection, or unaccounted heterogene-
ity (Louviere and Woodworth 1983).

The theory assumes that a consumer chooses the product from a set of alternatives
that exhibits the highest utility. Since the overall utility is influenced by a stochastic
component, it is only possible to state a probability that this consumer would choose
the product. Consequently, the probability p that a consumer chooses product i from
a set of products S = {i, j} is (Train 2009):

pi ¼ p Ui > Uj

� � ¼ p V i � V j > ej � ei
� �

(1)

According to Eq. (1) a consumer is more likely to choose product i if the utility of
i is larger than the utility of j. This requires that there is a positive residual from the
difference in systematic utilities and that this residual exceeds the influence of error.
Consequently, only differences in product attributes are considered, e.g., if con-
sumers need to choose between two ebook readers and both devices are black then

Product 
attributes

Utility model Utility 
evaluation

Choice model Observed
choice

Fig. 3 Elements of a purchase decision model
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color does not affect the decision. Generally, any constant value can be added to the
utility functions and it will not affect the outcome, which is why choice-based
utilities are interval-scaled and choice models do not have a general regression
constant (constants, if any, need to be alternative-specific).

The systematic utility V represents the function that translates the product
attributes and their levels into partworth utilities. The estimated utility Vi for a
product i with N attributes can be divided into two subfunctions ψ and fn as follows
(Teichert 2001a):

V i ¼ Ψ f 1 v1ið Þ, f 2 v2ið Þ, . . . , f N vNið Þ½ � (2)

with

vni: Partworth utility of attribute n in product i, n = 1, 2, . . ., N
fn: Evaluation function of attribute n, n = 1, 2, . . ., N
ψ: Function to combine partworth utilities across attributes

Evaluation Function for Attribute Levels
The function fn in Eq. 2 describes how levels of attribute n are evaluated. The
basic idea is that at least one attribute level represents the ideal point for the
consumer (or at least the most preferred level from the available attribute levels).
Differences to this ideal point lead to a loss in utility. Figure 4 depicts three potential
functional forms.

The vector model assumes that increasing (decreasing) the attribute level leads to
a proportional positive (negative) effect in utility. Hence, the ideal point is positive
(negative) infinity. This model would be appropriate when assuming, e.g., that
increasing the screen size of an ebook reader from 5 to 6 in. leads to the same
positive utility difference as upgrading the screen from 6 to 7 in. The vector model
uses the actual numeric values of the attributes and just one utility parameter to
represent the partworth utility:

vin ¼ βn � X inm (3)

X 

β

Vector model
X 

β

X 

β

Ideal point model Partworth model

Fig. 4 Alternative functional forms for the evaluation of attribute levels
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with,

vin: partworth utility for attribute n in product i
βn: utility vector for attribute n
Xinm: numeric value of level m of attribute n in product i

The ideal point model does not assume a linear slope of the utility function as the
vector model but assumes diminishing (or increasing) marginal utilities. For exam-
ple, although consumers might in general prefer larger screens for an ebook reader,
very large sizes will become impractical so that utilities will decrease again when
increasing the size from an (individually perceived) ideal point further. Likewise,
when an ebook reader already has a very large storage, it can be expected that
increasing the storage further leads to a diminishing marginal utility for the con-
sumer. The ideal point model thus considers not only the numeric value of the
attribute level, e.g., its screen size, but also its squared term:

vin ¼ βn1 � X inm þ βn2 � X 2
inm (4)

with,

vin: partworth utility for attribute n in product i
βn1: utility vector for attribute n
βn2: utility vector for the squared value of attribute n
Xinm: numeric value of level m of attribute n in product i

The partworth model estimates separate partworth utilities for each level of the
attribute, i.e., there is no assumed functional relationship between the attribute
levels. This model is required for qualitative, nominal attributes, e.g., color, but
can also be applied to quantitative, numeric attributes. If the choice sets include a no-
choice option, this option is also represented by a separate partworth that measures
the attractiveness of not choosing any of the alternatives. The partworth model is
typically based on dummy-coding (or effect-coding) techniques, which requires
M�1 variables to represent an attribute with M levels:

vin ¼
XM�1

m¼1

βnm � X inm (5)

with,

vin: partworth utility for attribute n in product i
βnm: partworth utility for level m of attribute n
Xinm: dummy variable with value 1 if product i features level m of attribute n,

otherwise 0

Regarding the number of parameters that these models require for the estimation,
the vector model is the most parsimonious as it only uses one parameter per attribute.
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The ideal point model is based on two parameters. The partworth model requires
setting one attribute level as the reference level, which is left out of the estimation so
that it requires M � 1 parameters.

The partworth model can be considered conservative since it does not require a
prior specification or theory about the slope of the partworth utility function. If more
than two attribute levels are present, it uses the most number of parameters and
therefore provides the best model fit (by sacrificing degrees of freedom). It is
therefore not surprising that the partworth model is predominantly used in conjoint
analysis and is partly also considered as a constitutive element (Shocker and
Srinivasan 1973).

Function to Combine Partworth Utilities Across Attributes
The function ψ in Eq. 2 determines how to combine partworth utilities across
attributes. Conjoint analysis assumes a compensatory utility model. In a linear
additive utility model, the overall systematic utility Vi of a product i is the sum of
the partworth utilities vin of its attributes n = 1, . . ., N:

V i ¼
XN
n¼1

vin (6)

Complex functions can be modeled as extension to this base model, e.g., inter-
action effects between attributes. Interaction effects occur when the utility evaluation
of one attribute level depends on the level of another attribute. For example,
consumers might prefer a white color for ebook readers with large screens but
black for readers with smaller screens.

Interaction effects can be modeled as additional effects in the linear additive base
model by including separate partworth utilities for the cross product of two attri-
butes. The overall utility for a product is then represented as the sum of the partworth
utilities of both the main effects and the interaction effects:

V i ¼
XN
n¼1

vin þ
XM�1

m¼1

XM 0�1

m0¼1

βIAnm,n0m0 � X inm � X in0m0 (7)

with,

βIAnm;n0m0 : Interaction effect between level m of attribute n and level m0 of attribute n0;
m = 1, 2, . . ., M; m0 = 1, 2, . . ., M0

X inm;X in0m0 : Dummy variable with value 1 if product i features level m (m0) of
attribute n (n0), otherwise 0

Interaction effects increase the complexity of a model. For this reason, they are
predominantly added if theory or prior assumptions about them exist. However,
being able to measure interaction effects with conjoint analysis is a major advantage
compared to other survey techniques, e.g., compositional approaches.
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Choice Model

Choice models can be differentiated according to the assumptions about the stochastic
error component (see Train 2009 for an overview). In most applications, the error is
assumed to be independent and identically distributed (iid) as extreme value type, i.e.,
Gumbel. This assumption leads to a logistic distribution of the differences of error terms
and the multinomial logit (MNL) model (McFadden 1981; Hensher and Johnson 1981;
Louviere et al. 2000). Accordingly, choosing an object i from a choice set with S
alternatives is represented by the MNL model in terms of choice probabilities p:

p ijSð Þ ¼ exp V ið ÞX
j� S

exp V j

� � (8)

The MNL model results in an S-shaped relationship between utility difference
and choice probability (Fig. 5).

An alternative to the Gumbel distribution is the assumption of a normal distribu-
tion of the error term, which results in a multinomial probit model (Haaijer et al.
1998). The probit model requires multiple integrals and complex estimation pro-
cedures. Because of the compact form of the logit function (see Eq. 8), the MNL
model is predominantly applied in CBC analyses (Haaijer and Wedel 2003).

Procedure for Conducting Discrete Choice Experiments

Identification of Attributes and Attribute Levels

The prerequisite – and most relevant step – for conducting conjoint analyses is to
identify the relevant determinants of consumers’ choices, i.e., product attributes and
their levels. The selection of attributes and levels should reflect the products on the

0.0 

0.5 

1.0 

-5.0 -3.0 -1.0 1.0 3.0 5.0 

C
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e 
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ob
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Utility difference between products

Fig. 5 S-shaped function of
the multinomial logit model
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marketplace and should affect consumers’ preferences. Otherwise, the validity of the
model can be questioned. In general, the selection of attributes has to fulfill the
following requirements (Green and Srinivasan 1978, 1990; Orme 2002):

– Attributes should be relevant, i.e., they should influence consumers’ utility. In
order to identify relevant attributes qualitative surveys, e.g., focus groups or depth
interviews can be used.

– Attributes should discriminate, i.e., they should be able to differentiate between
the competitive offerings on the marketplace.

– The number of attributes should be manageable. CBC experiments typically
use less than seven attributes. Using more attributes greatly increases the com-
plexity of the experimental design and requires high cognitive capabilities of the
respondents.

– Attributes should not be interrelated, i.e., they should measure independent aspects
of the product. If attributes are interrelated, then certain combinations might be
highly unrealistic and confusing to the respondents. However, if, e.g., higher
storages typically go along with higher prices, it is possible to consider these
attributes as independent and analyze “what-if” scenarios. It should be noted that
this requirement does not preclude potential interaction effects, i.e., although the
attributes are independent, it does not mean that the preferences for them are as well.

After setting the attributes, their levels need to be determined. Regarding the type
and number of levels, the following requirements should be considered (Green and
Srinivasan 1978, 1990; Orme 2002; Teichert 2001a):

– The levels should span a range that is larger than in reality, but not substantially,
in order to be able to cover potential future scenarios.

– Levels that have an ambiguous meaning should be avoided. For example, instead
of using levels “large” and “small” for screen size, it is better to use specific
values because they are free from interpretation. Moreover, specific values allow
using a vector or ideal point model for estimation.

– The number of levels should be kept low because the complexity of the exper-
imental design will increase exponentially with more levels. Consider the exam-
ple in Table 1 with 2^3 = 8 combinations. If three levels per attribute were used
instead there are already 3^3 = 27 potential options. Conjoint experiments can
consider complex designs, however, most applications use an average of three to
four levels per attribute.

– When setting the number of attribute levels, it should also be considered if the
linearity or nonlinearity of the utility function (e.g., an ideal point model) should
be tested, which then requires at least three levels. For testing interaction effects,
it would be preferable (but not required) to use just two levels in order to keep the
number of interaction effect parameters low.

– The number of levels should be balanced across attributes. Otherwise, the
number-of-levels effect can occur, which leads to an artificially higher relevance
of attributes that have more levels (Eggers and Sattler 2009; Verlegh et al. 2002).
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– Levels should be generally acceptable. Unacceptable levels would otherwise
invalidate the assumed compensatory utility model.

– Attribute levels are assumed to be mutually exclusive. For example, if an attribute
“extra features” is added to the ebook reader setup with the levels “waterproof”
and “integrated music player,” the reader can only have one of these levels.
If it is also interesting for the researcher to analyze preferences for both
features in combination, this combination should be added as a separate level
(an alternative would be to define each extra as a separate attribute with the levels
“yes” and “no”).

Creating the Experimental Design

The experimental design determines which combinations of attribute levels are
presented to the respondent as stimuli (factorial design) and how these stimuli are
allocated to choice sets (choice design). It represents the independent variable matrix
for the analysis. To estimate the main effects of the attributes – and potentially
interaction effects between them – the experimental design needs to make sure that
these effects can be identified.

Criteria to evaluate the efficiency of an experimental design are (Huber and
Zwerina 1996):

– Balance, i.e., each attribute level is presented an equal number of times
– Orthogonality, i.e., attribute levels are uncorrelated
– Minimal overlap, i.e., alternatives within a choice set are maximally different
– Utility balance, i.e., alternatives within a choice set should be equally attractive so

that there should not be dominated or dominating alternatives

Balance and orthogonality refer to the factorial design, while minimal overlap and
utility balance relate to the choice design.

Factorial Design
The set of all potential stimuli, i.e., every combination of attribute levels, leads to a
full factorial. With N attributes and M1 levels for attribute 1, M2 levels of attribute 2,
and MN levels of attribute N, the size of the full factorial consists of all permutations
M1 * M2 * . . . * MN. Table 1 shows a full factorial of the 2^3 design. Full factorials
are always balanced, i.e., the attribute levels occur an equal number of times (here,
four times), and orthogonal, i.e., each pair of attribute levels is balanced (here, each
pair occurs twice).

A full factorial is only required if all main effects and all potential interaction
effects should be estimated. The 2^3 design with three binary attributes A, B, C
allows to estimate the three main effects, the three two-factor interaction effects
(A*B, A*C, B*C), as well as the three-factor interaction (A*B*C). This is demon-
strated in Table 2, in which the attribute levels are effect-coded (first level = 1,
second level = �1). The interaction levels result from multiplying the levels of the
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underlying main effect attributes. As can be seen, the resulting interaction levels are
not identical to any other column, i.e., are independent, and are also balanced and
orthogonal so that they can be identified.

Since the full factorial increases exponentially when more attributes and/or more
attribute levels are added, its size quickly becomes hard to handle in an experimental
survey. For example, the extended example with three three-level attributes and one
four-level attribute consists of 3^3 * 4 = 108 potential alternatives. Moreover, very
often three-factor interaction effects can be neglected and not all two-factor interac-
tion effects may be required. In general, smaller factorials, i.e., fractional factorials,
still allow estimating main effects and selected interaction effects (Addelman 1962).

The idea of creating a fractional factorial design is demonstrated with an example.
Consider that a fourth binary attribute D would be added to the simple example in
Table 3. The full factorial would then increase to 2^4 = 16 stimuli. A fractional
design assumes that at least one of the interaction effects between the attributes A, B,
and C would be zero so that it can be replaced with the main effect of D, e.g.,
D = A*B, i.e., each level of the interaction between A and B becomes the new level
of D. The fractional factorial then consists of the 8 entries in Table 2 and columns A,
B, C, as well as D = AB. The factorial was reduced to 8 stimuli, i.e., by 50%
compared to the full factorial. Nevertheless, it is still able to identify all main effects,
i.e., the design is still balanced and orthogonal. As a downside, however, the
interaction effect between A and B cannot be estimated as it is confounded with
the main effect of D.

Fractional factorials are documented for the most common experimental designs
(e.g., Sloan 2015) or can be generated via software (e.g., SAS or SPSS). The
efficiency of the fractional design can be tested easily by checking the correlation
matrix of all assumed main and interaction effects. If there are no or only minor
correlations, then the design is orthogonal and the parameters can be identified
without bias.

For traditional rating- or ranking-based conjoint procedures, it is sufficient
to evaluate the factorial design. CBC methods require an additional step of
allocating alternatives of the factorial design to specific choice sets, i.e., to evaluate
the choice design.

Table 3 Main and interaction effects of a full factorial 2^3 design

Stimulus

Main effect Interaction effects

A B C AB AC BC ABC

1 �1 �1 �1 1 1 1 �1

2 �1 �1 1 1 �1 �1 1

3 �1 1 �1 �1 1 �1 1

4 �1 1 1 �1 �1 1 �1

5 1 �1 �1 �1 �1 1 1

6 1 �1 1 �1 1 �1 �1

7 1 1 �1 1 �1 �1 �1

8 1 1 1 1 1 1 1
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Choice Design
Choice experiments require that the factorial is subdivided into choice sets with a
selection of alternatives. Creating an optimal choice design involves complex
algorithms based on combinatorics. For example, even with the simple example

and a 2^3 full factorial, there are
8
2

� �
¼ 28 different choice sets with two

alternatives. The complexity increases with the size of the factorial, e.g., in the

extended example there would be
108
3

� �
¼ 205,156 potential choice sets of size

three. The challenge lies in selecting those choice sets that provide the most
information about the respondents’ preferences. The efficiency criteria minimal
overlap and utility balance help reducing the size of the list of potential choice sets
(Huber and Zwerina 1996).

Minimal overlap requires that the alternatives within a choice set are maximally
different, i.e., have different attribute levels (Sawtooth 1999). It is based on the idea
that an attribute that exhibits the same level for each alternative within a set does not
affect the choice (see Eq. 1). A choice design with minimal overlap can be created
for the simple example when the first four entries in the full factorial in Table 1 are
coupled with their fold-over, i.e., opposite level. Accordingly, concept 1 (4 GB, 6 in.,
black) would be coupled with concept 8 (8 GB, 7 in., white) to create one choice set;
concept 2 would be coupled with concept 7, etc., so that in total four choice sets with
minimal overlap are created.

The idea of selecting choice sets that are utility balanced is that alternatives are
allocated to a choice set that are equally attractive (Huber and Zwerina 1996).
Contrarily, a choice set that features a dominating or dominated alternative provides
no new knowledge since the choice can be anticipated. However, dominating
alternatives can only be identified if there is a priori knowledge about the respon-
dents’ preference structure or if respondents’ preferences are anticipated during the
experiment with adaptive conjoint approaches (see above).

Because of the complexity of creating an optimal choice design, computer
algorithms are recommended. For example, SAS or Sawtooth offer algorithms to
create optimal choice designs and analyze their efficiency.

Decision Parameters
Relevant decision parameters for the experimental design also concern the number
of stimuli per choice set and the number of choice sets.

Each choice task should be manageable for the respondent, which favors showing
only a few alternatives per set (Batsell and Louviere 1991). On the other hand, more
alternatives increase the information of each choice. Therefore, two to five stimuli per
choice set aremost common (Meissner et al. 2016). Using eye-tracking data,Meissner et
al. (2016) show that the number of alternatives also affects search patterns. It is therefore
advisable to use a choice set size that is similar to the typical size of a consideration set
when consumers make purchase decisions. In product categories in which consumers
frequently have to choose from a multitude of alternatives, e.g., toothpaste in supermar-
kets, choice sets could also include a larger number of alternatives (Hartmann 2004). The

Choice-Based Conjoint Analysis 795



selection of the number of alternatives should also consider the number of attribute
levels since using a number of alternatives that is a subset of the number of levels
provides statistical benefits (Zeithammer and Lenk 2009).

Apart from the number of alternatives per choice set, the number of choice sets
needs to be considered when selecting an optimal design. More choice sets lead to a
higher reliability of the parameters. However, from a consumer perspective, more
choice sets induce fatigue so that respondents tend to make more errors or even
switch their decision strategy, e.g., focusing more on the price attribute (Johnson and
Orme 1996), which is counterproductive. Consistently, results concerning the pre-
dictive validity depending on the number of choice sets indicate that the marginal
benefit of additional choice sets declines (Sattler et al. 2004; Teichert 2001a). A
review of articles published in the Journal of Marketing Research between 2000 and
2017 shows that most researchers make a compromise between statistical reliability
and consumer fatigue so that most applications (14 out of 42) have used 11–15 sets.
Slightly fewer studies (13 out of 42) have used ten sets or less. The number of
applications decreases with more choice sets, i.e., nine studies used 16–20 choice
sets, five applications 21–25 sets, and one study more than 25.

Implementation into Questionnaire

The implementation of the CBC experiment into a questionnaire requires decisions
regarding the presentation of stimuli, integration of a no-choice option, collecting
additional choices per choice set, applying incentive alignment mechanisms, and
adding holdout choice sets.

Presentation of Stimuli
Most CBC interviews are computer-based since they facilitate handling complex
experimental designs. Moreover, having more than two alternatives per choice set
puts high cognitive burden on respondents, e.g., when described via telephone
interviews. Computer-based interviews are beneficial because they allow
implementing attribute levels or overall stimuli as multimedia information. Instead
of using text only it is possible to depict the size of the ebook reader screens as a
pictogram or to show actual ebook readers in different colors. When certain func-
tionalities, e.g., page-turn effects, are included as attributes, these could be show-
cased with instructional videos (e.g., following the idea of information acceleration,
Urban et al. 1996). Eggers et al. (2016) demonstrate that the more realistic the
experiment can be made compared to what consumers see in the marketplace, i.e.,
investing in “craft,” the higher is the validity of the results, which might also change
the managerial implications from the results compared to studies that rely on
defaults, e.g., text-only descriptions of the stimuli.

No-Choice Option
An advantage of CBC experiments compared to metric (rating or ranking-based)
conjoint analyses is that respondents can indicate that they prefer none of the
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presented alternative. This none (or no-choice) option increases the realism since it
does not force a decision if the alternatives are unacceptable so that consumers
would not buy any of them or switch stores in reality (Haaijer et al. 2001). Recent
approaches suggest asking for the no-choice option separately, i.e., sequentially after
each choice set (“dual response none”; Brazell et al. 2006). In the dual response
procedure respondents are first asked to select the most preferred option (excluding
no-choice) in a forced-choice task and, sequentially, whether they would purchase
the selected product concept in a second step (Brazell et al. 2006; Wlömert and
Eggers 2016).

This procedure allows observing the preferred alternative even if it is not
acceptable to be purchased. At the same time, consumers have no possibility to
opt out of difficult decisions. Moreover, Wlömert and Eggers (2016) show that the
increased salience of the no-choice option leads to more realistic predictions of
adoption shares.

The no-choice option plays a central role when calculating (absolute) willingness-
to-pay (see section “Market Simulations”). Implications from these analyses are
limited if consumers show extreme response behavior and never or always choose
the none option. To avoid these extremes, Gensler et al. (2012) present an adaptive
approach that dynamically adjusts the price levels downwards whenever the respon-
dent selected the no-choice option and upwards whenever the respondent selected an
alternative. Schlereth and Skiera (2016) address this issue by proposing a separated
adaptive dual response (SADR) procedure. They adjust the dual response procedure
so that the forced choice and purchase question are not presented within the same
task but are separated into sequential blocks. Presenting the block of forced choices
first allows them to approximate the utility of the alternatives and adaptively select
fewer, but more informative alternatives (not necessariliy the alternatives selected in
the forced choices) in the purchase questions thereafter.

Collecting Additional Choices per Choice Set
Recently, it was suggested to ask not only for the best option but also for the worst
option in a so-called best-worst scaling (or MaxDiff) approach (Louviere et al. 2015;
Sawtooth 2013). By assuming that worst choices are reversed best choices, both
decisions measure the same construct, i.e., preferences. Stated differently, if βnb
represents the partworth utility for attribute n based on best choices and βnw is the
partworth utility for the same attribute based on worst choices then it can be
assumed that βnb = �βnw. The choices can then be used to make the estimation
more reliable since twice as many observations exist. Collecting more choices per set
is not limited to best and worst decisions only. More choices can be used as separate
dependent variables in order to explore different aspects of consumers’ preferences.
An additional choice can be, e.g., “Which of these ebook readers would you buy for
your partner?” which might explore consumers’ gift giving behavior. In a study by
Kraus et al. (2015), the authors collected additional choices per set to analyze
managers’ perception of risk and success of different internationalization strategies.

Figure 6 shows an example of a choice set that includes best and worst choices
and a dual response no-choice option.
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Incentive Alignment
Ding et al. (2005) introduced incentive alignment mechanisms to conjoint analysis.
The basic idea of incentive-aligned (IA) mechanisms is to attenuate hypothetical bias
by influencing the type of reward that is provided to respondents. Specifically,
the reward is linked to the preferences the respondent expresses during the data
collection.

Ding et al. (2005) implemented the IA mechanism by rewarding the respondent
with the alternative that she/he selected in a randomly selected choice task (including
the no-choice option). In this way, each choice might constitute the potential reward
so that respondents are motivated to answer truthfully. If the study features a price
attribute, then respondents are required to actually purchase the product for the price
shown. Payment is typically achieved by providing the respondents with a budget. If
the respondent selected the no-choice option, she/he gets the full budget as a
monetary reward. If she/he selected a product for a price €X, she/he will get the
actual product plus the remaining change (i.e., initial budget minus €X).

Ding (2007) proposed an alternative IA approach in which respondents are
informed before completing the choice tasks that their choices will be used to infer
their willingness-to-pay (WTP) for one specific product concept (see sections
“Willingness-to-Pay” and “Market Simulations” for details about calculating
WTP). Under this WTP-based mechanism, incentive alignment is achieved by
obliging participants to purchase this specific product concept at a randomly
drawn price if this random price is less or equal to the WTP inferred from the
CBC experiment. This approach integrates the incentive compatible Becker-
Degroot-Marschak (BDM) auction procedure (Becker et al. 1964, see also
Wertenbroch and Skiera 2002) with CBC analysis. Ding (2007) shows theoretically

Which of these ebook readers is your most preferred option and which option is the least attractive?

Storage:

Screen size:

Color:

Would you actually buy your most preferred option if it was available?

Prize:

Option 1 Option 2 Option 3

Best option:

Worst option:

4 GB 8 GB 16 GB

6 inch 7 inch 5 inch

Silver

€99 €119 €139

Black White

Yes

No

Please assume that these options do not differ in terms of other attributes, i.e., all options have a self-lit E Ink 
display with 758x1024 pixels resolution, WiFi, and 3 weeks battery life. They support multiple formats (PDF, 
EPUB) and connect to  major book distributors. 

Fig. 6 Choice set with best and worst choices and dual response no-choice option
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that truthful answers constitute the Bayesian Nash equilibrium for participants in
such applications as long as the respondents do not know the configuration of the
product that is used as a reward prior to the study.

Dong et al. (2010) introduced and validated a third variant of IA conjoint
experiments which involves predicting a rank ordering of the possible rewards
based on estimated preferences. Eventually, the reward that is predicted to be ranked
first is given to the respondent. Again, respondents are motivated to answer truth-
fully and keep the impact of error small in order to be rewarded with their most
preferred product.

It has been shown that incentive-aligned (IA) data collection procedures substan-
tially increase the predictive performance of conjoint choice experiments compared
with traditional CBC analysis (Ding 2007; Ding et al. 2005; Dong et al. 2010) so that
their application is recommended. However, one drawback of incentive alignment is
that their application is limited to contexts where at least one concept of the research
object can be rewarded after the experiment. This may not be feasible in many
instances, for example, when the research object is an innovative product and not yet
available on the market.

Holdout Choice Sets
A holdout choice set is a choice task that mimics a regular choice set but that is not
used in the estimation. The answers given in the holdout choice set provide a
benchmark for the (internal) predictive validity of the estimation results. The better
the preference estimates are able to predict the actual choices made in the holdout
sets the higher the predictive validity. Validity can be assessed with different
measures. The hit rate compares on an individual level if the predicted most
preferred alternative based on the estimates equals the alternative actually chosen
in the holdout set, i.e., a hit meaning a correct prediction. The hit rate is then the
mean value across all respondents. The mean absolute error (MAE), as an alternative
measure among others, considers the absolute differences between predicted and
actual choice shares for each alternative in the holdout set (e.g., Moore et al. 1998).

Estimation

Since choices from choice sets typically do not provide enough information to estimate
reliable utilities at the individual level, they require some level of aggregation (see
Frischknecht et al. 2014 for an alternative approach). The estimation procedure
described here is based on the maximum likelihood procedure. It aggregates all choices
from all respondents and produces one set of utilities that represent all consumers, i.e., it
neglects consumer heterogeneity (see section “Advanced Estimation Techniques” for
advanced estimation procedures without this assumption).

We will use the MNL model for describing the estimation in more detail. The
estimates are based on the extended ebook reader example. The (simulated) data are
based on 200 respondents who answered 10 choice sets, each showing three product
alternatives plus a no-choice option.
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Coding
The estimation of partworth utilities requires transforming the attribute levels
according to a dummy (or effect) coding technique. When applying a partworth
utility model to an attribute with M levels, M � 1 dummy-coded variables are
needed to represent this attribute in the estimation. Each variable represents one
attribute level and can take the values 1 or 0 depending on whether the attribute level
was shown or not. The Mth attribute level (or any other level) is left out since it can
be expressed as a linear combination of the other variables and cannot be estimated
separately. The partworth utility of this reference level is set to 0. The partworth
utilities of the remaining attribute levels need to be interpreted in relation to this
level. Thus, it matters for the interpretation which level represents the reference.

Conjoint experiments are frequently coded using effect-coding. Effect-coded vari-
ables (Louviere et al. 2000), as an alternative to dummy-coding, are zero-centered so
that the sum of partworth utilities across all levels of the attribute is zero, i.e., positive
partworth utilities indicate higher preferences for that level compared to the average
partworth utility across all levels of the attribute. Therefore, positive or negative values
do not necessarily mean that these levels are perceived as positive or negative on an
absolute level but only compared to the mean of the levels that were included in the
experimental design. The reference level, which is left out of the estimation, can be
recovered by calculating the partworth utility that is needed so that the average across
all utilities is zero. Effect-coding therefore provides a partworth utility value for each
attribute level, and it is irrelevant which level is set as the reference.

Effect-coding can be accomplished by setting the reference level to�1, instead of
0 as in dummy coding. Table 4 shows an example of effect-coding two attributes
with M = 3 and M = 4 levels. Figure 7 shows an excerpt of the first two choice sets
from the ebook reader dataset. In this dataset, each alternative (indicated by Alt_id)
is represented by one row such that four rows represent one choice set (indicated by
Set_id). The none option is included as one of the alternatives, which is represented
by the None variable. The columns in dark grey show the numeric values for screen
size, storage, and price, and text information for color. Effect-coding (columns in
light grey) needs two parameters each for the attributes storage, screen size, and
color, and three parameters for the effect-coded prices. This means that a partworth
model requires ten parameters in total, i.e., nine parameters for the effect-coded
variables and one variable for the none option (here, dummy coded). The column
Selected is a dummy coded variable that shows which alternative was chosen in each
choice set. It serves as the dependent variable in the estimation model.

Table 4 Effect-coding of attribute levels

Level

Effect-coded variables for M = 3 Effect-coded variables for M = 4

X1 X2 X1 X2 X3

1 1 0 1 0 0

2 0 1 0 1 0

3 �1 �1 0 0 1

4 �1 �1 �1

800 F. Eggers et al.



R
es

p_
id

S
et

_
id

A
lt_

id
   

   
  

S
to

ra
ge

N
on

e
S

el
ec

te
d

S
cr

ee
n.

si
ze

C
ol

or
 

P
ric

e

S
to

ra
ge

_
8G

B
S

to
ra

ge
_

4G
B

S
cr

ee
n.

si
ze

_
5i

nc
h

S
cr

ee
n.

si
ze

_
6i

nc
h

C
ol

or
_

bl
ac

k
C

ol
or

_
w

hi
te

W
hi

te

W
hi

te

P
ric

e_
79

P
ric

e_
99

P
ric

e_
11

9

1
1

1 1

11

1 1

11

1 1

1 1

1
1 1

1 1

1 1

1

1 1

1

1 1 1

1 1 1 1 1 1 1

2 2
2

2 2

2 33 44

4 4

0
0 0 0 0 0 0

0
0 0

00 0
0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0
000000

0 0 0 0 0

0

0000

0 0

0

0 0

0 0 0 0 0

16 1688

7 75 56 6

S
ilv

er

S
ilv

er

B
la

ck

B
la

ck

11
9

11
9 7979 99 13
9

−1 −1
−1−1

−1 −1
−1−1

−1

−1
−1

−1
−1−1

−1

0

Fi
g
.7

E
xc
er
pt

fr
om

th
e
eb
oo

k
re
ad
er

da
ta
se
t

Choice-Based Conjoint Analysis 801



Maximum Likelihood Estimation
Applying OLS procedures for the estimation is not appropriate because CBC
analyses provide nominal data. The estimation of the MNL model therefore relies
on maximum likelihood procedures. In aggregate-level analyses, all respondents are
pooled to estimate one set of partworth utilities for the entire sample (Louviere and
Woodworth 1983; Sawtooth 1999).

The maximum likelihood procedure aims at finding the set of partworth utilities
that best represents the observed choices. The likelihood function L results from
multiplying the MNL probabilities as shown in Eq. (8) across all choice sets t= 1, 2,
. . ., T and – in the aggregate-level estimation – across all respondents c= 1, 2, . . ., C
(Louviere et al. 2000):

L ¼
YC
c

YT
t

p itcj Stcð Þ (9)

with,

itc = chosen alternative in choice set t by respondent c
Stc = alternatives in choice set t presented to respondent c

The parameters can be found by maximizing the function subject to the partworth
utilities, i.e., @L@β ¼ 0.

The likelihood function lies in the interval [0, 1] and expresses the aggreggate
probability to observe the choice data given the set of estimated partworth utilities.
However, the minimum of zero is only a theoretical value as choosing randomly
between the choice options, i.e., assuming that all betas are zero, would yield a
probability of 1/S, with S being the number of alternatives in the choice set. For
example, choosing randomly between three ebook readers and the no-choice option
would give a probability of 1/4 that the choice matches the respondents preferred
option. The lowest logical value of the likelihood function is therefore (1/S)^(T*C).
Since this value is very close to zero, the optimization of the function is typically
based on the logarithm, i.e., log-likelihood function (Louviere et al. 2000). The
lowest value, and the benchmark to assess the model fit, then is T*C*log(1/S), e.g.,
for the ebook reader case with 10 choice sets with four alternatives and 200
respondents: 10*200*log(1/4) = �2772.6. The estimation model should exceed
this value significantly, i.e., have a log-likelihood value that is less negative (closer
to zero), because otherwise the partworth utilities would not predict choices better
than a random, NULL model.

Estimating the partworth utilities based on the ebook reader example yields a log-
likelihood value of �2277.8. To test if the difference in log-likelihood between the
NULL model and the estimated model is significant, a likelihood ratio test can be
applied. The test statistic is χ2 = 2 * (LL1 – LL0), with LL1 representing the log-
likelihood of the estimated model and LL0 the log-likelihood value of the NULL
model. This test statistic is distributed χ-squared with degrees of freedom (df) equal
to the difference in the number of parameters between both models. In this case, χ2 is
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2 * (�2277.8 � (�2772.6)) = 989.6, with df = 10. This test is highly significant
(p < 0.001), i.e., the estimated model predicts significantly better than the NULL
model.

Another measure to assess the goodness of fit is the Pseudo-R2 or McFadden’s
R2 = 1 � (LL1/LL0). For the ebook reader example, it is: R2 = 1 � (�2277.8/
�2772.6) = 0.178. McFadden’s R2 can be adjusted according to the number of
parameters, i.e., 1 � ((LL1 � npar)/LL0), with npar being the number of parameters.
This R2 value has a different interpretation than in linear regression models. Typi-
cally, values exceeding 0.2–0.4 are considered acceptable. Although the ebook
reader model is significantly different from the NULL model, its fit relative to this
benchmark is not exceeding the threshold of 0.2. A potential explanation for this low
fit is that consumers likely have heterogeneous preferences, e.g., towards screen size
or color, which are not acknowledged in the aggregate model and therefore increase
the error term.

The estimated partworth utilities are depicted in Table 5 (see “Appendix” for the
corresponding R code). The partworth utilities for the attribute levels are effect-
coded, which can be seen by checking that the sum across the betas is zero. The betas
for storage and price show face validity as increasing the storage (price) yields higher
(lower) utilities. There is no such trend regarding screen size as 6-in. models have the
highest utility, followed by 5-in. models and 7-in. screens. White ebook readers are
more preferred than black and silver models.

The no-choice option was dummy coded in this case, with “no-choice” equal to
one and “not the no-choice” equal to zero. As can be seen, not choosing one of the

Table 5 Estimated partworth utilities based on the aggregate-level model

Attributes Beta Standard error t-value Attribute importance

Storage 21.6%

4 GB �0.389 0.042 �9.323

8 GB �0.051 0.039 �1.322

16 GB 0.440 0.036 12.143

Screen size 22.0%

5 in. �0.049 0.039 �1.274

6 in. 0.446 0.036 12.352

7 in. �0.397 0.042 �9.528

Color 12.5%

Black �0.002 0.038 �0.059

White 0.240 0.037 6.547

Silver �0.238 0.040 �5.952

Price 43.9%

€79 0.840 0.045 18.502

€99 0.286 0.047 6.103

€119 �0.284 0.053 �5.416

€139 �0.842 0.063 �13.447

No-choice

�0.532 0.069 �7.749
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ebook readers shows a negative partworth utility so that on average (i.e., with all
attributes at their mean utility of zero), choosing one of the ebook readers provides a
higher utility and is therefore more likely than choosing none.

The partworth utilities can be transformed to be more accessible for managerial
use compared to the rather abstract units of utility. Three transformations shall be
elaborated subsequently: relative attribute importances, willingness-to-pay mea-
sures, and calculation of purchase probabilities within market simulations.

Relative Attribute Importance
The attribute importance wn of an attribute n can be calculated based on the relative
range of the partworth utilities, i.e., the difference between the most and least
preferred attribute levels related to the sum of ranges across all attributes:

wn ¼ max βnð Þ �min βnð Þ
PN
i¼1

max βið Þ �min βið Þð Þ
(10)

For example, storage exhibits a range of 0.829 (=0.440 � (�0.389)). The sum of
all attribute ranges is 3.832. The relative importance of storage is therefore 0.829/
3.832 = 21.6%. The attribute importance serves as a first indicator which attribute is
most influential in affecting respondents’ choices. However, these attribute impor-
tances only consider the extremes of the partworth utilities and not the intermediate
levels. Moreover, the importances can only be interpreted in the context of the
selected attributes and levels. Additionally, the attribute importance has to be
evaluated in the context of the ability to discriminate between market offerings
(Bauer et al. 1996). For example, most ebook readers on the market are 6-in. models.
Although the attribute is the second most important based on the range of partworth
utilities, it is less managerially relevant since most manufacturers are already
offering the most preferred size so that using this attribute level does not help to
differentiate from the competitors.

Willingness-to-Pay
The willingness-to-pay (WTP) transformation is based on the idea to analyze how
much utility is lost (gained) when the price increases (decreases) and to relate this
utility difference to the partworth utility of an attribute level. As a result, the
partworth utilities for nonprice attributes can be expressed in monetary terms
(Orme 2001).

The WTP calculation requires a vector model for the price attribute, which means
that these analyses are only meaningful if the price function is indeed linear. The
WTP for level m of attribute n can then be derived by dividing the partworth utility
for the specific attribute level by the value of the price vector:

WTPnm ¼ βnm
βp

(11)
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with,

βnm: partworth utility for level m of attribute n
βp: utility vector for the price attribute

The estimate for the price vector in the ebook reader example is �0.028, i.e., if
price increases by one Euro utility drops by 0.028 units (see Table 6 below). The
WTP values for the color attribute can then be calculated as 0.240/�0.028= €�8.57

Table 6 Estimation results of alternative modeling approaches

Attributes
Partworth
model

Vector model
for storage and
price

Ideal point
model for
screen size

Interaction effect
between screen size
and color

Log-likelihood �2277.8 �2278.3 �2278.3 �2273.3

Storage

4 GB �0.389

8 GB �0.051

16 GB 0.440

(linear) 0.067 0.067 0.067

Screen size

5 in. �0.049 �0.050 �0.044

6 in. 0.446 0.446 0.454

7 in. �0.397 �0.396 �0.410

(linear) 7.854

(squared) �0.669

Color

Black �0.002 �0.003 �0.003 �0.015

White 0.240 0.240 0.240 0.255

Silver �0.238 �0.237 �0.237 �0.240

Price

€79 0.840

€99 0.286

€119 �0.284

€139 �0.842

(linear) �0.028 �0.028 �0.028

No-choice

�0.532 �2.965 19.632 �2.984

Screen size � color

5 in. � black �0.123

6 in. � black 0.173

7 in. � black �0.051

5 in. � white 0.018

6 in. � white �0.164

7 in. � white 0.146
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for the color white, €0.07 for black, and €8.50 for silver. The interpretation of these
values is that if an ebook reader is not available in, e.g., the preferred color white
consumers would accept this drawback only if the price of the reader was, on
average, at least €8.57 cheaper. In this case, the negative utility difference of a
nonwhite reader is balanced with the positive utility difference of a cheaper price.
Vice versa, a consumer would accept paying €8.57 more for a white ebook reader, on
average. The least preferred color is silver and consumers would be willing to spend
€17.07 for upgrading from a silver ebook reader to a white product. The WTP values
can therefore be interpreted directly in terms of consumers’ incremental willingness
to pay for differences in attribute levels. Note, however, that the interpretation needs
to consider the differences in signs, i.e., attribute levels with positive utilities have a
negative WTP and vice versa.

Market Simulations
The most common ebook readers on the market, e.g., the Amazon Kindle, currently
feature 4 GB storage, a 6-in. screen, in the color black for €139. To see how likely it
is that consumers buy this product or no ebook reader at all, purchase probabilities
can be calculated by applying the MNL function (Eq. 8). These calculations
require the specification of a market scenario. A scenario consists of assumptions
about the products that are available on the market, i.e., about S, which could
include multiple products. In this example, we assume that there are two options,
the above-mentioned ebook reader and the no-choice option. On the basis of the
aggregate-level estimates, the overall utility of the ebook reader is Vi = �0.389
(4 GB) + 0.446 (6 in.) � 0.002 (black) � 0.842 (€139) = �0.787. The utility of the
no-choice option is Vj = �0.532, i.e., consumers are more likely to buy no ebook
reader compared to the one available. The purchase probability for the reader can be
calculated by applying Eq. (8):

p ijSð Þ ¼ exp �0:787ð Þ
exp �0:787ð Þ þ exp �0:532ð Þð Þ ¼ 0:437

That is, the probability that the sample buys the ebook reader is 43.7%. Market
simulations then offer the possibility to see how the market will react if the product
configuration is changed. If, e.g., the storage is increased to 8 GB, the overall utility
increases to Vi = �0.449 and the purchase probability to 0.521. Thus, this modifi-
cation would be sufficient to make consumers more likely to buy an ebook reader
compared to not buying one. Purchase probabilities can be increased further by
changing the color to white or reducing the price. These simulations therefore allow
detecting promising product modifications. Moreover, a company that wants to enter
the market can identify attractive product concepts and assess their effect on
purchase probabilities given a specific market scenario that could also consider
competitor products. Sophisticated simulation procedures also consider optimal
competitive reactions and resulting Nash equilibria (Allenby et al. 2014).

Changing the price in a market simulation, ceteris paribus, allows creating a
demand function. In the example above, the purchase probability for the ebook
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reader for €139 is 0.437. Systematically reducing the price increases the probabilities
to 0.575 for €119, 0.705 for €99, and 0.806 for €79. The resulting demand function is
depicted in Fig. 8. This function can be used to analyze the price elasticity or
constitutes an alternative way to calculate WTP. In this example, the price that
makes consumers indifferent between choosing the ebook reader and the no-choice
option can be taken as the consumers’ absolute WTP, in this case €130.

The purchase probabilities are frequently interpreted in terms of market shares.
Interpreting the predicted probabilities as market shares is ambitious because they
have to meet several assumptions (Orme and Johnson 2006). Specifically, probabil-
ities are closer to market shares:

(a) The more the experiment resembles reality, i.e., all attributes and levels that
affect buyers need to be accounted for and all competitors are included in the
market scenario (assumptions that are not met in this example).

(b) The more the real market environment matches the experiment, i.e., all offers are
available, e.g., the products are equally distributed, consumers are aware of the
available offers, and there are no switching costs between the offers.

Furthermore, predictions are closer the less consumers’ choices are influenced by
errors that are introduced by the CBC experiment. It has been shown that incentive
alignment is a suitable procedure to accomplish more valid answers so that pre-
dictions are closer to market shares (Wlömert and Eggers 2016). Moreover, it is often
beneficial to consider heterogeneity among consumers via advanced estimation
techniques.
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Modeling Alternatives
Table 6 depicts the estimation results of alternative modeling approaches. Next to the
partworth model interpreted above, it also shows an approach that uses a vector
model for storage and price, i.e., that uses their numeric values instead of its effect
codes. It can be seen that the model fit changes only marginally as the difference in
log-likelihood is only �0.5, despite using three parameters less. According to a
likelihood ratio test this difference is not significant (p = 0.793), i.e., this vector
model achieves the same fit, while being more parsimonious. The vector model
shows that utility increases linearly by 0.067 with every additional GB storage and
decreases by �0.028 with every Euro more in purchase price. As the attributes are
orthogonal, the other estimates remain largely unaffected. Only the estimate of the
no-choice option changes substantially because the numeric values of storage and
price are not zero-centered, unlike using effect-coding. This shift does not affect the
implications, however.

The third model shown in Table 6 demonstrates the estimation of an ideal-
point model for screen size. It requires two parameters, one for the linear effect
and one for the squared term. Its model fit is therefore identical to the model in
which screen size is represented by a partworth model, which also uses two param-
eters. The utility for screen size is given by the function vscreensize = 7.854 �
screensize � 0.669 � screensize2. Accordingly, the ideal point can be calculated
as @v/@screensize = 7.854 � 2 � 0.669 � screensize = 0, which shows a maximum
at 5.87 in.

Finally, the last column of Table 6 adds an interaction effect between the attributes
screen size and color. Screen size and color are both represented by two parameters
so that 2 * 2 additional parameters are required. Adding these four parameters
significantly increases the model fit (p = 0.039), i.e., there is an interaction between
these two attributes. Accordingly, consumers prefer a black ebook reader in 6 in. and
a white version in 7 in.

Advanced Estimation Techniques

The assumption of aggregate-level analyses that consumers are all identical is
usually too restrictive. Considering consumer heterogeneity with advanced estima-
tion techniques is therefore beneficial in reducing the error term. Finite mixture
(latent class) procedures assume that the sample consists of distinct segments and
estimates different utilities for these segments. Continuous mixture (hierarchical
Bayes) models are able to estimate individual-level partworth utilities by assuming
that the utilities are drawn from a common distribution, e.g., normal distribution.
As a result, partworth utilities are generated for each segment or each individual.
These values can subsequently be interpreted analogously to the procedures
described in sections “Relative Attribute Importance,” “Willingness-to-Pay,” and
“Market Simulations.”

808 F. Eggers et al.



Segment-Level Estimation
Segment-level estimation procedures, i.e., latent class estimation, are assuming that a
finite number of (homogeneous) segments can represent the heterogeneity of the
respondents in the sample. A segment-level perspective is also in line with discov-
ering market segments with distinct preferences that are an attractive target group
for a company’s market offerings (i.e., following the segmentation, targeting, and
positioning approach).

There are two general approaches for segmentation. The first approach deter-
mines segments based on socio-demographic data, e.g., separating males and
females and estimating aggregate-level preferences for each of these segments.
This a priori segmentation, however, is usually not able to detect segments that
reflect systematically different preferences towards the attribute levels. The second
approach, i.e., the latent class procedure, aims at finding segments that differ in their
choice behavior and estimates segment-specific partworth utilities. These segments
are latent, i.e., each respondent belongs to the segments with a certain probability
(DeSarbo et al. 1995). If a consumer differs in his/her choice behavior from the
partworth utilities of the respective segment, this is reflected by a lower probability
to belong to this segment (Teichert 2001b).

Before the estimation starts, the researcher needs to define a specific number of
segments. In a first step of an iterative-recursive procedure, the segment-specific
partworth utilities for the given number of segments are estimated via maximizing
the likelihood function. Afterwards, the utility functions are evaluated given the
individual respondent’s choices in order to allocate the respondents probabilistically
to the segments. This results in posterior probabilities of segment membership based
on conditional probabilities according to Bayes’ rule (DeSarbo et al. 1995). These
calculated probabilities form the basis for the iterative process of re-estimating
segment-specific utilities. This loop is repeated until only minor changes in the
probabilistic allocation of respondents to segments are observed (Sawtooth 2004).

The iterative-recursive process should be repeated for several numbers of seg-
ments. The “optimal” number of segments is not determined by the algorithm and
has to be based on information criteria, e.g., AIC, BIC, or CAIC (Wedel and
Kamakura 2000; Sawtooth 2004). Moreover, a measure of entropy should be
inspected, which reflects the accuracy of the segmentation. It is based on the
posterior membership probabilities of the respondents. The entropy can exhibit
values in the interval [0, 1] and values close to “1” indicate that the segments are
well separated, i.e., respondents can be allocated to one of the segments with almost
certainty (DeSarbo et al. 1995).

By weighing the segment-level estimates with the membership probability,
individual level estimation can be calculated. However, these values lie in the
convex hull of the segment-specific utilities so that it is questionable if they can
represent individual-level data well (Wedel et al. 1999). Applying the hierarchical
Bayes procedures is more appropriate to estimate individual-level preferences
(see next chapter).
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Applying the latent class estimation procedure with three segments to the ebook
reader case results in a log-likelihood value of �2056.6, i.e., an acceptable
McFadden’s R2 of 0.258. The entropy value of 0.948 shows a good separation
between the segments. The segment-specific partworth utilities are depicted in
Table 7 (not showing standard errors and t-values for better readability).

Based on the membership probabilities, segment 1 is the largest segment with
about 60% of the respondents. Segment 2 includes a quarter of the sample and
segment 3 follows in size with about 15%. As in the aggregate-level case, the
estimates for storage and price show face validity for each segment. Moreover, the
segmentation is able to discover segments that prefer smaller screens (segment 2)
and larger screens (segment 3). The color white is preferred by segments 2 and 3,
however, not by segment 1 that prefers black ebook readers. Finally, segment 1
shows a positive value for the no-choice option, which reflects that this segment is
more likely to choose no ebook reader compared to the other segments.

Note that in the aggregate-level analysis 6-in. screens and the color white are
preferred by the sample. The conclusion to launch this kind of ebook reader would
have been suboptimal as none of the segments prefer this product, i.e., segment 1
prefers 6-in. screens but not the color white, and segment 2 and 3 prefer white but
smaller or larger screens.

Table 7 Segment-level estimates

Attributes Segment 1 Segment 2 Segment 3

Relative segment size 0.592 0.249 0.158

Storage

4 GB �0.323 �0.544 �1.195

8 GB �0.102 0.122 �0.091

16 GB 0.425 0.422 1.286

Screen size

5 in. �0.243 0.815 �0.945

6 in. 0.859 0.011 0.108

7 in. �0.616 �0.826 0.837

Color

Black 0.302 �0.593 �0.067

White �0.240 1.246 0.259

Silver �0.062 �0.653 �0.192

Price

€79 1.009 0.920 1.423

€99 0.425 0.411 �0.195

€119 �0.318 �0.250 �0.542

€139 �1.116 �1.081 �0.686

No-choice

0.118 �2.383 �0.876
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Individual-Level Estimation
An estimation of individual-level partworth utilities with the MNL model is possible
with the hierarchical Bayes (HB) procedure. The idea of the procedure is that the
aggregate sample is used to determine the distribution of partworth utilities. The
distribution then serves as a basis to draw conditional estimates for each individual
given the respondent’s choice data. The HB model therefore consists of two coupled
layers (Lindley and Smith 1972). The first model layer describes the choice proba-
bilities given the individual partworth utilities, i.e., the MNL model (Eq. 8). The
second layer relates the respondents’ partworth utilities to each other by assuming a
multivariate (normal) distribution of the utilities with unknown mean (Arora et al.
1998).

The model parameters can then be estimated in an iterative process, e.g., with the
Metropolis-Hasting algorithm (Chen et al. 2000). Figure 9 depicts the sequence of
the HB procedure.

The researcher first needs to specify the type and parameters of the distribution of
the utilities. Based on the distribution and the observed choice data, estimates for the
individual partworth utilities are drawn in an iterative recursive process. These
utilities, in turn, affect the parameters of the distribution, which then serves as a
basis to draw a new set of individual-level partworth utilities in a next iteration. This
process runs for a large number of iterations, e.g., 20,000, until the parameters
converge. Typically, the first set of individual-level utilities draws is discarded as
“burn-in” (Sawtooth 2000). The second set of individual-level draws can be used to
make inferences about consumer preferences (Allenby et al. 1995).

Figure 10 shows the distribution of individual-level partworth utilities of the
ebook reader dataset as boxplots. The mean and median values are plausible and in
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line with the aggregate-level model. The distribution and the standard deviation
across the respondents’ utilities indicate those attributes and attribute levels that
exhibit a larger amount of heterogeneous preferences, e.g., screen size, the color
white, the highest price, or the no-choice option.

Mean Standard deviation
Storage

4 GB -0.960 0.749
8 GB -0.173 0.820

16 GB 1.134 0.731
Screen size

5 inch -0.187 1.210
6 inch 1.067 0.921
7 inch -0.880 1.151

Color
Black 0.026 0.990
White 0.445 1.260
Silver -0.472 0.668

Price
€79 2.030 0.804
€99 0.739 0.736

€119 -0.565 0.663
€139 -2.204 1.275

No-choice
-0.088 1.593
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Fig. 10 Boxplots of partworth utilities and summary statistics for individual-level preferences
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Outlook

Conjoint analysis has emerged from the traditional rating- or ranking-based method
in marketing to a general experimental method to study individual’s discrete choice
behavior with the choice-based conjoint variant. It is therefore not limited to classical
applications in marketing, such as new product development, but can be applied to
study research questions from related disciplines, e.g., how marketing managers
choose their ad campaign, how managers select internationalization options, why
consumers engage in or react to social media, etc.

This chapter aims at providing the necessary terminology of conjoint analysis and
the requirements to conduct and interpret discrete choice experiments. It also lays the
foundation to understand more sophisticated methods and models.

Given the large scope of discrete choice experiments, this attempt is also
limited. CBC taps into general theories of how individuals (or groups) choose.
These are vast theoretical and empirical grounds, which we cannot cover in detail
in this chapter. Understanding CBC models requires not only knowledge of the
statistical properties but also understanding behavioral aspects and biases, such as
context effects (e.g., compromise, attraction, similarity effects) or trade-off aversion.
While knowledge about these aspects is important when running discrete choice
experiments, CBC can likewise be used to identify these effects, e.g., by incorpo-
rating context effects (Rooderkerk et al. 2011) or by measuring price-quality heu-
ristics (Rao and Sattler 2003).

Although CBC is well developed and documented, many areas are still under
research, ranging from, e.g., optimal experimental designs, incentive alignment
procedures, to estimation techniques. It will therefore remain an active research
area with numerous managerial applications in marketing in the future.

Appendix: R Code

The R code and dataset that correspond to the ebook reader example and estimated
models can be found at: http://www.preferencelab.com/data/CBC.R. The estimation
uses the mlogit package (Croissant 2012), which needs to be installed first. A less
documented version of the R code can be found below (# indicates a comment):

# load the library to estimate multinomial choice models.

library(mlogit)

# load (simulated) data about ebook readers

cbc <- read.csv(url("http://www.preferencelab.com/data/

Ebook_Reader.csv"))

# convert data for mlogit

cbc <- mlogit.data(cbc, choice="Selected", shape="long", alt.

var="Alt_id", id.var = "Resp_id")
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### calculate models ###

### partworth model ###

ml1 <- mlogit(Selected ~ Storage_4GB + Storage_8GB +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price_79 + Price_99 + Price_119 +

None | 0, cbc)

summary(ml1)

# recover reference level estimates (effect-coding)

# Storage_16GB

-(coef(ml1)["Storage_4GB"] + coef(ml1)["Storage_8GB"])

# Screen.size_7inch

-(coef(ml1)["Screen.size_5inch"] + coef(ml1)["Screen.size_6inch"])

# Color_silver

-(coef(ml1)["Color_black"] + coef(ml1)["Color_white"])

# Price_139

-(coef(ml1)["Price_79"] + coef(ml1)["Price_99"] + coef(ml1)

["Price_119"])

# standard errors of the effects are given by the

# square root of the diagonal elements of the

# variance-covariance matrix

covMatrix <- vcov(ml1)

sqrt(diag(covMatrix))

# with effect-coding, the standard error of the reference

# level needs to consider the off-diagonal elements of the

# corresponding attribute levels

# Std. Error Storage_16GB

sqrt(sum(covMatrix[1:2, 1:2]))

# Std. Error Screen.size_7inch

sqrt(sum(covMatrix[3:4, 3:4]))

# Std. Error Color_silver

sqrt(sum(covMatrix[5:6, 5:6]))

# Std. Error Price_139

sqrt(sum(covMatrix[7:9, 7:9]))
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### Vector model ###

# Storage and Price follow a linear trend. Replacing

# parameters leads to a more parsimonious model.

ml2 <- mlogit(Selected ~ Storage +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price +

None | 0, cbc)

summary(ml2)

# likelihood ratio test

lrtest(ml2, ml1)

# incremental willingness-to-pay for storage

coef(ml2)["Storage"]/coef(ml2)["Price"]

# WTP to upgrade from a black to a white ebook reader

(coef(ml2)["Color_white"] - coef(ml2)["Color_black"])/coef(ml2)

["Price"]

### Vector model for screen size has sig. worse fit ###

ml3 <- mlogit(Selected ~ Storage + Screen.size + Color_black +

Color_white + Price + None | 0, cbc)

summary(ml3)

lrtest(ml3, ml2)

### Testing an ideal point model for screen size ###

ml4 <- mlogit(Selected ~ Storage +

Screen.size + I(Screen.size**2) +

Color_black + Color_white +

Price +

None | 0, cbc)

summary(ml4)

# same model fit because no differences in df

lrtest(ml4, ml2)

### Adding interactions between screen size and color ###

ml5 <- mlogit(Selected ~ Storage +

Screen.size_5inch + Screen.size_6inch +

Color_black + Color_white +

Price +

Screen.size_5inch * Color_black +

Screen.size_6inch * Color_black +

Choice-Based Conjoint Analysis 815



Screen.size_5inch * Color_white +

Screen.size_6inch * Color_white +

None| 0, cbc)

summary(ml5)

# likelihood ratio test

lrtest(ml2, ml5)
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Abstract

This chapter gives an introduction on how to exploit data from field experiments
and aims to provide an intuitive understanding for managers and researchers
alike. We outline the relevance and hurdles in identifying causal effects compared
to observing purely correlational associations in studies which take place in the
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real world. We further provide a framework to classify different kinds of field
experiments, such as quasi field experiments and natural field experiments. The
core of this chapter focuses on giving an understanding of three standard econo-
metric methods to exploit data from field experiments: difference-in-differences,
regression discontinuity, and instrumental variables. For each method, we provide
an intuitive understanding of the core features and its critical assumptions. We
complement those explanations with an in-depth look at one practical application
of each method in a field experiment setting and with a variety of practical
examples from recently published research. Lastly, we provide a brief overview
on how to implement each method in standard software packages such as STATA,
R, and SPSS.

Keywords

Field experiment · Quasi experiment · Natural experiment · Causality · Causal
inference · Difference-in-differences · Regression discontinuity · Instrumental
variable

Introduction

“There is two ways to get fired from Harrah’s: Stealing from the company or failing to
include a proper control group in your business experiment.” (Gary Loveman, economist
and former CEO of Harrah’s Entertainment)

Motivation

Suppose a fashion retailer decides to place a specific jeans brand right at the stores’
entrance in order to temporarily increase in-store sales. For the weeks following the
rearrangement, the retailer observes an increase in sales for this jeans brand. Clearly,
this entrance placement co-moves with an increase in sales. Nevertheless, the
question remains whether the rearrangement has caused the sales to increase or
whether the increase is due to a long list of alternative reasons. For instance, in the
weeks after the rearrangement, customer preferences for this particular brand could
have changed or competitors offering the same brand could have increased prices. A
co-movement between the two factors – change in placement and increase in sales –
is easy to observe, but claiming causality between those two factors is difficult.

Suppose now, the fashion retailer offers free shipping for all orders. Subsequently,
the amount of orders and the value per order in the fashion retailer’s online store
increase. Again, some action (i.e., the free shipping offer) is linked to some outcome.
And again, one has to be cautious to credibly claim that this action indeed caused the
outcome. Maybe the retailer simultaneously launched an advertising campaign, a
competitor filed for bankruptcy or some of the brick-and-mortar stores were tempo-
rarily closed for renovations. All those events may interfere with the free shipping
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offer and also potentially co-move with sales. So, top management of this retail chain
will once again raise the question: Which of those events caused the increase in
sales? Has it been particularly one of these actions, the interplay of various actions,
or some (unobserved) events which ultimately caused the increase in online sales?

As these rather simple examples demonstrate, managers and researchers are
typically interested in causal relationships to improve the quality of business deci-
sions. “However, data reveal only associations, which are a combination of causal
and non-causal (i.e., spurious) components” (Keele 2015, p. 102). In order to
separate those two components and establish a clear causal path between an action
and a particular observable outcome, three general conditions have to be fulfilled
(Kenny 1979):

• The cause has to precede the outcome, that is, the cause must occur before the
effect temporarily. In the fashion retailer examples, the change in placement of
jeans in the store or the free shipping offer occurred before any increase in sales
had been observed.

• Cause and effect have to co-move, that is, changes in the cause must be accom-
panied by changes in the effect. In the fashion retailer examples, this has been the
case. After each initiative (i.e., the change in placement or the free shipping
initiative), the retailer observed a co-movement between the initiative and sales.
Standard measures often used in business practice and in academic research are
contingency tables or various forms of correlation coefficients such as Pearson or
Spearman (Spearman 1904). These statistical performance measures suggest a
weaker or stronger existence of a (linear) co-movement between two variables as
well as whether the co-movement is negative or positive.

• The relation between presumed cause and effect cannot be explained by alterna-
tive reasons. Stated differently, the new placement or the free shipping initiative is
supposed to be the sole driver of any observed sales outcome. However, exclud-
ing alternative explanations with certainty has demonstrated to be difficult in both
fashion retailer examples and is indeed often the most difficult hurdle to establish
causality. A potential way out of this dilemma is drawing conclusions from data
generated via a controlled experimental design. Since such data is generated
under controlled conditions, external influences can be fully eliminated via the
design of the experiment.

In management practice, field experiments – experiments that take place in real-
world environments instead of laboratory settings – have gained much importance in
the last years. As an illustration, the solid line in Fig. 1 depicts the number of search
results for the term “field experiment” for the abstract of academic, peer-reviewed
business publications for the past 20 years. In practice, online business models are
able to vary treatments (i.e., design of marketing campaigns, product offers, or price
discounts) between randomized customer groups (i.e., A/B testing) and offline
business models try new initiatives in some business units before rolling them out
through the whole corporation (i.e., pilot studies). In any case, an experiment
requires two stages: a design stage before the experiment is implemented, including,
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for instance, the selection of the initiative as well as the number and randomization
of groups, and an examination stage after the experiment took place to analyze the
data which had been generated.

This chapter focuses on the second part. Its objective is to present, describe, and
explain different methods to analyze data generated by field experiments, thus
focusing on the examination stage after the experiment took place. Further, it follows
the approach of giving the interested reader an intuitive understanding of the
standard methods to analyze data from field experiments, often at the cost of a
detailed statistical discussion. We refer the reader to Angrist and Pischke (2009),
Antonakis et al. (2010), Verbeek (2008), and Wooldridge (2012) for a more detailed
discussion of statistical and econometric methods. Further, each section will provide
literature relevant to each method for the interested reader. For a detailed introduc-
tion on how to design and execute a (field) experiment, we refer to Bornemann and
Hattula (chapter▶ “Experiments in Market Research”) as well as Valli et al. (chapter
▶ “Field Experiments”) in this handbook.

The chapter is structured as follows: Section two clarifies the term field experi-
ment. Sections three, four, and five refer to three core methodologies to analyze data
generated by a field experiment such as the difference-in-differences methodology
(section “Difference-in-Differences Method”), a regression discontinuity design
(section “Regression Discontinuity Designs”), and an instrumental variable
approach (section “Instrumental Variables”). Section “Application of Methods in
Standard Software” provides an overview of how these three methods are

Fig. 1 Yearly number of academic, peer-reviewed publications in business and economics (via
EBSCOhost Business Source Premier) for which the respective search term is mentioned in the
article’s abstract (own illustration)
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implemented in standard software packages such as STATA, R, and SPSS and
provides a selection of data sets that are suitable for one own’s replication efforts
for each method. The last section concludes this chapter.

Field Experiments

The understanding and interpretation of what constitutes a field experiment and
where to draw the line to similar and more distinct research designs widely varies
among researchers and practitioners. Among all groups, it seems universally accepted
that an experiment represents a study design which requires at minimum two different
groups that are equal along each characteristic except for the fact that one gets access
to a treatment (i.e., the treatment group), while the other does not (i.e., the control
group). Often, this treatment is also called an intervention or manipulation in an
experiment. Any observed outcome differences are only due to this intervention,
guaranteed via a rigorous design that fulfills the conditions of causality.

Turning to the more specific case of field experiments, definitions and interpre-
tations of the term vary. Harrison and List (2004) interpret the term field as any
experimental intervention which includes a treatment that is related to the real
world, independent of whether the experiment takes place inside or outside of the
laboratory. In their taxonomy, for example, inviting managers to perform job-
related tasks in a laboratory would constitute a field experiment. Other authors
refer to field experiments as experiments that take place outside the laboratory
environment. For instance, Lourenço (2019) defines field experiments as experi-
ments which take place in the natural environment of the subjects, where
researchers are in control of the random assignment of treatment and where sub-
jects “are not aware that they are part of an experiment” (Lourenço 2019, p. 2).
Contrarily, Harrison and List (2004) would refer to those experiments as “natural
field experiments” (Harrison and List 2004, p. 1014). Notably, these definitions
also include field experiments that are not designed and implemented by firms, but
by other institutions (e.g., regulatory or governmental institutions), or occur as
natural events (e.g., extreme weather events).

Beyond these differences in academic contributions, practitioners use additional
terms to describe certain types of field experiments in different settings and business
models. The term A/B testing is often used when referring to field experiments in
online environments, meaning that, for example, one randomly selected group of
customers is presented with packaging design A and another group is presented with
packaging design B for an otherwise identical product (Goldfarb and Tucker 2014).
In traditional market research, the term pilot test describes a setting where a product
is only offered to a selected group of customers, often in one store whose customer
base reflects a representative set of all customers.

Given these differences in terminology and definitions, we suggest a broader
classification including all possible types of field experiments conducted in busi-
ness practice and research. Figure 2 characterizes four different types of field
experiments in a two-by-two matrix along the dimensions of Control over
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Treatment and Randomness of Assignment borrowing the terminology of Shadish
et al. (2002):

• Control over Treatment describes the researcher’s ability to design and have full
control over the type of treatment and the selection of subjects and circumstances.
Here, we differentiate between controlled and not controlled by experiment
designer. In the fashion retailer example, management is able to decide where and
when to place the jeans brand and whether other promotions are conducted simul-
taneously. However, sometimes the treatment is outside of the designer’s control and
is either determined by exogenous conditions (i.e., natural weather events) or by
executives at higher decision-making levels (i.e., regulatory or governmental insti-
tutions). These exogenous interventions are often simply called “shocks” (Atanasov
and Black 2016). We classify such designs as natural field experiments.

• Randomness of Assignment describes whether the experimental design classifies
subjects randomly (or not) to the treatment and the control group. Here, we
differentiate between random and nonrandom assignment. In the fashion retailer
example, the firm could randomly offer the free shipping option to some online
shop visitors (i.e., the treatment group) but not to others (i.e., the control group).
Although a nonrandom allocation may not represent a rigorous experimental
design, this type of experiment plays a significant role in research and practice
(Shadish et al. 2002). We classify such designs as quasi field experiments.

Along those two dimensions, we differentiate four types of field experiments:

• Quadrant 1 (controlled by designer, random assignment) characterizes field
experiments which satisfy the definition of Lourenço (2019). Here, the designer

Fig. 2 Classification of field experiments (own illustration)
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is able to select the treatment and can randomize this treatment across subjects.
An example for such a field experiment is Casas-Arce et al. (2017a). For this field
experiment, the authors collaborate with an insurance company and randomize
the frequency and level of detail of customer satisfaction reports provided to
independent contractors. Consequently, they can observe and measure perfor-
mance improvements for the different contractor groups and report a causal link
between the frequency and detail of reports and performance. Another example is
Bertrand et al. (2010) who partner with a consumer lender in South Africa to
randomly vary different aspects of advertising content to existing customers. The
authors can clearly identify that particular aspects of the advertising content affect
lending demand of various customer groups.

• Quadrant 2 (controlled by designer, nonrandom assignment) constitutes experi-
ments in which the designer can select the treatment but the assignment of the
treatment to subjects itself is not random. Often, the collaborating partner (i.e., a
firm or regulatory body) does not allow for true random assignment as it would be
favored to establish causality. For example, Presslee et al. (2013) are able to select
different cash and intangible rewards given to employees of a call center for a
limited time span. The authors observe the employees’ behavior with regard to
chosen goal difficulty, goal commitment, and, ultimately, performance. Never-
theless, the call center firm decided which group of employees received which
treatment and did so on the basis of the geographic location of its call centers. Due
to the lack of complete randomization, Presslee et al. (2013) point out that their
setup represents a quasi field experiment.

• Quadrant 3 (not controlled by designer, random assignment) consists of those
experiments for which the treatment is assigned randomly but not at the
designer’s control, that is, the designer does not administer the random assign-
ment by herself. Rather, the random treatment is occurring due to exogenous
causes such as extreme weather events. Those events may be floods, wild fires,
hurricanes, or heavy snowfall affecting one group of subjects differently than
others. For example, Giroud et al. (2012) exploit unexpected snowfall in the
Austrian Alps for their natural experiment in the domain of finance research, and
Michels (2017) exploits events of floods and hurricanes in the domain of financial
accounting research. In a marketing context, Shriver et al. (2013) use the plausi-
bly random variation in wind speeds on Swiss surf spots to explain the generation
of content in an online social network for wind surfers. In general, the pure
randomness of weather events may be discussed for some instances, either with
regard to self-selection into areas of particular weather conditions or with regard
to systematic climate changes; this discussion is yet beyond the scope of this more
general introduction.

• Finally, quadrant 4 (not controlled by designer, nonrandom assignment) consists
of those experiments in which the designer neither is in full control of the
treatment nor is the treatment randomly assigned to subjects. Both limitations
with regard to a rigorous experimental design may be present because the
collaborating partner is either not willing or not able to give up full control.
Especially regulatory bodies such as the European Central Bank or national tax
authorities have their own, distinct statutes and agendas when deciding for
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specific policy changes and are hesitant to implement policies “at random.” This
strongly limits the designer’s ability to conduct an ideal field experiment and
limits the opportunity to study certain questions such as the change in business tax
rates across European firms or spikes in prime lending rates for financial institu-
tions at various points in time. Nevertheless, some interesting research has been
conducted around the introduction of or changes in legislation or regulation. For
example, Goldfarb and Tucker (2011) exploit the change in privacy regulation in
the European Union as a regulatory shock to advertisers and their respective
possibility to target customers with advertisement. In this quasi-natural field
experiment, the authors are strongly concerned with the limits of their research
setting, consequently adding sophisticated statistical analyses to derive causal
statements from their results. Thinking in terms of distance from the ideal field
experiment, studies in this quadrant are certainly those where approaching cau-
sality requires additional (and often complex) statistical analyses and further,
partially untestable assumptions to mitigate concerns that other factors might be
responsible for the observed effects.

As already indicated, some researchers argue that natural experiments (quadrants
three and four) are not rigorous experiments since the designer does not have full
control which constitutes a violation of one of the key components of an experiment
(Lourenço 2019). Often, this kind of shock-based research relies on an event to
happen and requires the event to affect only a certain group of individuals without
the primary purpose of exploiting this manipulation for research (Atanasov and
Black 2016). Typically, violations of randomization are addressed via supplementary
statistical analyses and by carefully considering any interfering factor in order to
establish causality. However, despite these concerns, the term experiment is usually
not disputed. Conclusively, what distinguishes a field experiment from any other
study (potentially also conducted “in the field”) is its clear variation through a (quasi)
exogenous treatment allowing to derive a causal treatment effect.

The following sections deal with methods of how to analyze data generated by all
types of field experiments classified in Fig. 2. Since these methods do not distinguish
between the data generating process, we discuss methods that are applicable to all
kinds of field experiments. However, it will become apparent that some methods are
more suitable for some particular designs. In particular, we now refer to the differ-
ence-in-differences method (section “Difference-in-Differences Method”), regres-
sion discontinuity designs (section “Regression Discontinuity Designs”), and
instrumental variable approach (section “Instrumental Variables”).

Difference-in-Differences Method

Introduction

In any study, no matter whether it is conducted in the laboratory or in the field,
the researcher compares the observable outcome of the treatment group against the
outcome of a control group, that is, the group which is (ideally) identical to the
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treatment group but does not receive the treatment. As long as treatment and control
groups are equal along all characteristics (i.e., when the researcher was able to fully
randomize the treatment on a homogeneous group as in quadrant 1), a simple
comparison of average outcomes between the two groups is sufficient to derive the
average treatment effect (ATE). Unfortunately, for many field experiments, an ideal
control group does not exist, is impossible or too costly to observe, or its design
would violate ethical or legal boundaries.

To exploit data from field experiments which lack the perfect control group, the
difference-in-differences method relaxes the requirements for the control group from
being “practically identical” to “showing the same trend,” called “parallel” or
“common” trends assumption (Antonakis et al. 2010, pp. 1108–1109). In this
setup, the control group is not equal to the treatment group along all possible
variables but exhibits the same trend over time along the relevant dimensions prior
to the treatment (Angrist and Pischke 2009, pp. 169–172). Thus, levels may be
different but the distance between those levels stays constant over time. For example,
two customer groups exhibit different levels of product purchases (e.g., in terms of
order value) but over time both groups’ spending increases at the same rate so that
the difference in levels remains equal.

Figure 3 illustrates how exploiting this requirement allows to draw causal infer-
ences from nonequal groups within the difference-in-differences design. Before the
intervention, the treatment group and the control group are not on the same level
(e.g., in terms of number of products purchased or order value) but follow the same
trend (i.e., order value increases over time at the same rate for both groups). After the
treatment, the level of order value continues to increase at the same rate for the
control group. Yet, for the treatment group, the trend has changed and the rate
at which the order value increases is greater. In this setup, the desired difference

Fig. 3 Graphical illustration of difference-in-differences approach (own illustration)
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(2) is derived by observing the difference in order value between the two groups after
the change (3) and deducting the observed difference in order value between the two
groups before the change (1). Thus, the difference-in-differences methodology
exploits an intertemporal comparison and a cross-sectional comparison in one design
with a “treatment” dummy variable and a “temporal” dummy variable (Wooldridge
2012, pp. 452–455). This results in a two-by-two matrix in which one axis represents
the “pre” and “post” period with regard to the timing of the intervention and the other
axis represents the “treatment” and “control” units of observation (Goldfarb and
Tucker 2014, p. 9). By combining both dimensions, the desired treatment effect can
be isolated in β3 corresponding to the interaction of both dimensions, “treated” and
“post,” as presented in the stylized regression in Fig. 4.

Core Area of Application

The difference-in-differences methodology exploits two different comparisons
within one design: an intertemporal comparison and a cross-sectional comparison.
The first comparison is the intertemporal difference within the treatment group; thus,
the difference in observation before and after the treatment only for the group which
has been affected by the manipulation (Wooldridge 2012, pp. 453–455). While this
would satisfy causality condition one (cause precedes the outcome) and allows to
observe a co-movement between the observed outcome and the treatment (causality
condition two), it would not satisfy causality condition three (absence of other
interfering factors) because general time trends or other global shocks are not
accounted for. Thus, the observed outcome cannot be considered causal to the
treatment. For example, the fashion retailer switches from a fixed-pay scheme
(“pre” period) to a commission-based pay scheme (“post” period) for its shop floor
personnel and subsequently the performance of the sales people (e.g., revenue per
sales person) increases, satisfying causality condition one and two. Yet, condition
three is not satisfied because general time trends such as an economic boom or

Fig. 4 Isolation of the treatment effect in a stylized difference-in-differences regression (adapted
from Wooldridge 2012)
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shocks such as a competitor filing for bankruptcy are not incorporated, both of which
would affect the sales people’s potential to sell products and in turn affects the
retailer’s revenue.

The second difference constitutes the variation between the treatment and the
control group. Here, observable outcomes of treatment and control group are
compared for one or more points in time only after the intervention, that is, a
cross-sectional difference is exploited. For the fashion retailer, this would mean
changing the compensation scheme for its personnel in one store but leaving it as it is
at another store and comparing the subsequent performance between the two groups
after the change. While it is now possible to incorporate the difference between the
two groups (and thus a general time trend) and a co-movement between “compen-
sation scheme” and “sales made” can be observed, this approach neglects the
difference between the two groups of sales people which was preexistent before
the intervention, that is, working in two different stores (Angrist and Krueger 1999,
pp. 1298–1299). Most likely, the two stores had different levels of sales before the
change in compensation scheme due to their specific locations, product offerings, or
manager’s discretion with regard to promotions. Thus, a purely cross-sectional
comparison would again fail to meet condition three (exclusion of other factors)
and could not establish a causal relationship. In combining both differences,
intertemporal and cross-sectional, the difference-in-differences methodology allows
to draw causal inferences as long as it fulfills specific conditions (Goldfarb and
Tucker 2014, p. 9). We discuss these conditions in the subsequent section in detail
when we deal with critical assumptions of the difference-in-differences method.

A specific but important application area for the difference-in-differences method-
ology is a so-called staggered design. Here, researchers either design their field exper-
iment in a way, or exploit the fact, that the treatment does not occur to all treated
individuals or groups at the same time but is introduced step-by-step. Staggered designs
are often observed when regulations or legal directives are adopted or firms subse-
quently roll out a new policy over subjects such as business units, facilities, employee
groups, or customers. For example, contrary to anEURegulation (e.g., theGeneralData
Protection Regulation), an EU Directive has to be adopted into national law in each
member state resulting in different adoption dates for a law throughout the EU which
allows to observe the effects of the adoption at several points in time. In this setting, a
member state belongs to the control group as long as the directive has not yet come into
effect and belongs to the treatment group from that moment on when it comes into
effect. Asmore countries adopt the new law, the size of the treatment group growswhile
the size of the control group shrinks. Such a staggered design is strengthening the case
that it is unlikely that another, unobserved factor systematically drives the outcome
because the treatment effect is observable for various treatment and control group
compositions at various points in time. In this way, concerns regarding the randomness
of assignment and control over treatment aremitigated. In this fashion,Heese and Pérez-
Calvazos (2020) exploit the introduction of new flight routes between major cities
throughout the USA over several years. Similarly, Aghamolla and Li (2018) exploit the
staggered introduction of new (and enhanced) debt contract enforcement in India as an
opportunity to apply a difference-in-differences design in a natural field experiment.
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Some authors also consider event studies as a special application of difference-in-
differences designs (Atanasov and Black 2016, p. 219). Event studies generally
exploit very short time frames such as a few days before and after the treatment and
are common for research in capital markets and stock exchanges where market
reaction times are short and prices evolve quickly. In these cases, the intertemporal
difference stems from a period before and after an event happens (e.g., the announce-
ment of a CEO leave). The cross-sectional difference stems from the comparison of
the stock’s performance against the broader market, that is, a market performance
index such as the S&P500 or the Dow Jones Industrial Index. For example, in a field
experiment in cooperation with Yahoo! Finance, Lawrence et al. (2018) investigate
the influence of news coverage on the stock prices of the firms which are covered by
the news. Yahoo! Finance randomly gave earnings announcements more or less
prominent coverage on its website. Subsequent to this treatment, the authors observe
the stock price reaction in a one-day period, comparing the difference in stock price
movement and the index movement of the “post” period to the same difference of the
“pre” period. In this vain, an event study can also be regarded as an application of a
difference-in-differences design.

Critical Assumptions

The most relevant assumption for the difference-in-differences approach is the
parallel trends assumption which postulates that the treatment and the control
group do not necessarily have to be identical but have to be “very similar” or
“comparable” (Antonakis et al. 2010, pp. 1108–1109), showing “similar trends”
over time (Angrist and Krueger 1999, p. 1297). The difference between groups
with regard to the outcome variable is expected to be stable over time so it can be
assumed that they would have continued to stay in parallel had there not been the
intervention. This idea follows, yet relaxes, the idea of a counterfactual in any
experimental design according to which the control group should be identical to
the treatment group to represent the unobservable counterfactual (Atanasov and
Black 2016, pp. 218–219). Similar to the inherently unobservable true counterfac-
tual, the assumption of a parallel trend continuing after the treatment (“post”
period) cannot be tested empirically. Nevertheless, for any pair of treatment and
control group, it can be shown that both groups were moving in parallel prior to
the intervention (“pre” period) in order to plausibly state the assumption that this
trend would have continued in absence of the intervention (Goldfarb and Tucker
2014, p. 15). In order to assure parallel trends, relevant variables and covariates
need to be measured repeatedly at different points in time during the “pre” period.
Additional plausible reasoning and supporting data can strengthen that the inter-
vention was an exogenous shock in a way that assignment to treatment was as
good as random (Atanasov and Black 2016, pp. 238–241). Gill et al. (2017) use an
alternative way to ensure comparability of groups in a setting where buyers in a
market could voluntarily self-select into the treatment (i.e., using a business-to-
business app). They explicitly model the decision to become part of the treatment
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via a first-stage selection model, thus correcting statistically for systematic differ-
ences between treatment and control group before intervention.

The absence of a single suitable control group that fulfills the parallel trend
assumption lead to the development of synthetic controls (Abadie et al. 2010).
This method has become popular in economics, marketing, and other disciplines
in recent years since it is particularly useful in studying interventions that are
implemented at an aggregate level, affecting a small number of large units (such
as regions or business units). The synthetic control method is based on the idea that a
weighted combination of candidates for a control group provides a more appropriate
comparison than a single control group alone. Therefore, the control group is a
weighted combination of several control group candidates where the respective
weights are the outcome of a prediction model. Based on observable variables, the
approach fits the weighted control group to the treatment group before the treatment
takes place, thus constructing a hypothetical control, i.e., a synthetic group. In one
application, Pattabhiramaiah et al. (2019) require a control group for the readership
of the New York Times newspaper and are able to compose a weighted average of
other newspapers such as the Washington Post, the LA Times, and the Chicago
Tribune to study the effects of a paywall introduction on the newspaper’s revenue.
For further details and application areas of this approach, we refer to Abadie et al.
(2010), Abadie (2020), and Acemoglu et al. (2016).

While the parallel trends assumption is basically always addressed in research that
employs a difference-in-differences design, many other assumptions are often left
implicit (we refer to Atanasov and Black 2016, pp. 237–249 for a thorough review).
One of those assumptions addresses the issue that there must not be a second event
which has diametrically opposed effects on the treatment and the control group, that
is, events to which subjects in the two groups react systematically different based on
their group status. Armstrong et al. (2019) explicitly point out three more assumptions
with relevance to the difference-in-differences method and provide reasoning to
which extent their specific research design meets those assumptions:

• The first additional assumption beyond parallel trends postulates that the treat-
ment status of one unit should not interfere with another unit’s outcome. For
example, customer A’s status (qualified for free shipping) should not affect the
amount of money spent by another customer B. This assumption is not testable
but has to be analyzed and plausibly argued in each research setting.

• The second additional assumption demands that neither subject in the treatment
or in the control group anticipates the intervention or is affected by the treatment
prior to the intervention. This assumption might be violated in cases where
subjects can voluntarily choose to become part of a group, that is, a customer
may decide to purchase an additional item to cross the threshold of the free
shipping minimum order amount. Other examples of such violations include
changes in accounting rules, voluntary compliance with stricter environmental
standards, or customer data protection.

• Finally, the difference-in-differences method implicitly assumes perfect compli-
ance. This means all individuals in the treatment group are in fact treated. In case
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of a violation, the method estimates (just) an “intention to treat” effect. This
intention to treat effect is more conservative than the treatment on the treated
estimation because it is based on a smaller variance within the data set making it
harder to detect a statistically significant effect between treatment and control
group (see also Gassen and Muhn 2018, pp. 21–22). For the free shipping
threshold, it may occur that certain customers may either simply not recognize
that free shipping is available or at which threshold they would qualify for the free
shipping.

Despite being relevant to difference-in-differences designs in particular, the ideas
expressed in these additional assumptions are not exclusive to difference-in-differ-
ences models but can be seen as some broader requirements for conducting (field)
experiments in general (Lourenço 2019). Most field experiments implicitly consider
these assumptions by prohibiting units of observations to interact with each other, so
that the treatment is not “diluted.” For example, Casas-Arce et al. (2017a) explicitly
state that “information sharing among professionals [treated units] was not com-
mon” and Casas-Arce et al. (2017b) state that the treatment (here: introduction of a
simulation software) “was installed overnight and a memo was sent to branch
managers with instructions for its use,” assuring that the treatment could not have
been anticipated.

Application in Goldfarb and Tucker (2011)

Goldfarb and Tucker (2011) use the difference-in-differences method in their study
investigating the (potential) impact of a regulatory reform on advertisement effec-
tiveness based on the introduction of an online privacy law in 2004 by the European
Union. Before the implementation of the Privacy Regulation, firms had the ability to
broadly monitor users’ online activities and behaviors and thus were able to specif-
ically target users with advertisement based on their activities. For example, know-
ing that a user searched the terms “holiday” and “Spain” would lend itself to
promoting summer fashion or flights to Madrid. With the introduction of the Privacy
Regulation, marketers’ possibilities to collect and use such information were
severely limited, making it plausible to observe a decline in advertising effectiveness
subsequent to the introduction. Goldfarb and Tucker (2011) exploit the change in
legislation in a difference-in-differences approach in which they compare advertising
effectiveness before and after the change in regulation.

The authors are able to exploit unique data of advertising effectiveness from a
repeated survey response study conducted by a research agency between 2000 and
2008 in the EU and the USA. In this survey, the research agency measured ad
effectiveness for marketers by randomly showing ads and placebo ads to real online
users and subsequently surveying users from both groups with regard to purchase
intent of the promoted product. While in itself this (repeated) field experiment
already provides the possibility to draw causal inferences on the ad effectiveness,
the authors add another dimension, namely time, to measure the change in
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effectiveness. Hence, the treatment in this design is the implementation of the new
privacy regulation. All users who were shown personalized ads belong to the
treatment group, while all users who were shown placebo ads belong to the control
group (i.e., a cross-sectional comparison). The addition of the time dimension
accounts for the difference-in-differences design of this quasi-natural experiment.
Effectively, Goldfarb and Tucker (2011) are even able to exploit a so-called triple
difference-in-differences design with changes in three different dimensions: the
variation over time, the variation between treatment and control group within the
EU, and the differences between the EU and the USA. Using the rigorous difference-
in-differences design, their results not only suggest that the advertisement effective-
ness declined after the Privacy Regulation was put into effect but also that this
outcome is a causal result of the introduction of the Privacy Regulation (Goldfarb
and Tucker 2011, p. 70).

Table 1 provides an overview of further applications of the difference-in-differ-
ences method in business research literature exploiting various settings and exoge-
nous shocks.

Regression Discontinuity Designs

Introduction

As discussed in prior sections, field experiments are building on the critical aspect of
random assignment to the treatment. Quasi field experiments lack this requirement
due to a nonrandom assignment of the treatment. For example, in the US banking
industry, loans were granted without requesting further proof of income or collateral
as long as the applicant had a FICO score (US credit rating) of 620 points or more
(Keys et al. 2010). Thus, 620 points serve as the threshold for (not) getting a loan
without further documentation, that is, for receiving the treatment. Using the cut-off
to differentiate between treatment and control group is not per se helpful to establish
causality. The problem is that those two groups are not comparable because a credit
score is specifically designed to reflect a wide range of indicators, to differentiate
credit worthiness levels, and to facilitate credit approval decisions. However, it may
be more likely that an applicant scoring 619 is at least very similar to an applicant
scoring 621 despite having a (marginally) lower score. Regression discontinuity
designs make use of a comparison between subjects in close proximity to a threshold
that are likely to be (almost) equal in terms of characteristics else than the treatment.

Figure 5 depicts the regression discontinuity setting. The horizontal axis may
depict the credit score of applicants and the vertical axis may depict the likelihood of
receiving a loan without further documentation. Instead of showing a continuous,
functional relationship between credit score and the need to provide further docu-
mentation, the plotted distribution manifests a jump (or step) at the threshold value of
620 points (1). This arbitrary threshold divides the sample into a treatment and
control group. The bandwidth (2) describes the range in close proximity to the
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threshold of 620 points for which it is assumed that applicants are reasonably
comparable along each dimension despite being above/below the threshold value.

Core Area of Application

Regression discontinuity designs provide an opportunity for causal inference when
the assignment to the treatment is unlikely to be random for the whole sample but
may be as good as random around a certain threshold. In contrast to a difference-in-
differences approach, the regression discontinuity only refers to two different groups
and one type of variation: The difference in outcome for the treated group (right of
the discontinuity) and the outcome for the control group (left of the discontinuity).
The cut-off may be either a cross-sectional difference or an intertemporal difference
but cannot be both (as we have seen for the difference-in-differences approach in the
previous section).

Antonakis et al. (2010) exemplify this idea in a business context with leadership
training for managers, for which the effect on team performance is unclear. In an
ideal field experiment, leadership training would be offered to a randomly selected
group of managers independent of prior performance. Yet, the firm wants to spend
funds as efficiently as possible and wants to prioritize those managers for leadership
training who showed lower performance in prior periods. Thus, the firm favors
managers for the training who scored below average in their past annual evaluation.
While comparing the team performance of all managers below and above the
average performance subsequent to the training would not yield satisfactory results,
the regression discontinuity approach would compare the teams’ performance whose

Fig. 5 Graphical illustration of regression discontinuity design (own illustration)
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managers were just above and just below the average. The comparison thus is limited
to those managers who were just not granted training against those who just received
the training. In this fashion, regression discontinuity designs also demonstrate a
potential pathway to accommodating a firm’s requirement for efficient spending and
the requirements for drawing causal inferences.

Critical Assumptions

As it becomes evident, a regression discontinuity design requires a discontinuous
function, that is, the treatment should show a plausible, discrete jump in its distri-
bution. Therefore, it becomes critical to assess whether a jump in a distribution
originates from an actual discontinuity or instead represents a nonlinear relationship
around the threshold. We discuss three potential ways of verifying the plausibility of
a suspected discontinuity.

First, it can be assessed whether the jump is plausible via an understanding of the
data generation process. In the example of US credit scores and lending decisions, it is
obvious that the discontinuity is an arbitrary threshold and that individuals most likely
are unable to specifically manipulate their scores to belong to the treatment or control
group. A different case is the example of the fashion retailer’s free shipping option.
Here, the retailer may decide to offer free shipping above an order value of 40 Euro.
While this may lead to a discontinuity in the distribution of order values, this design in
itself does not qualify for a regression discontinuity approach. Here, shoppers being
close to the threshold have the discretion to become part of the treatment group (the
group of people receiving free shipping). Due to this self-selection, the treatment
neither is exogenously assigned to shoppers nor is it random, and a regression discon-
tinuity analysis will not yield causal inferences (Goldfarb and Tucker 2014, p. 23).

Second, managers and researchers can statistically test whether the comparability
assumption holds and whether subjects within a certain bandwidth around the
discontinuity are comparable in observable characteristics. For the online shopper
example, it could be useful to compare prior order values of the customers left and
right of the discontinuity or to compare characteristics such as age or method of
payment as proxies for shoppers’ socio-economic background. For a more sophis-
ticated test of self-selection and sorting behavior of subjects in regression disconti-
nuity designs, we refer to McCrary (2008).

Third, it is possible to statistically test for different data generating processes and
assess whether those are likely to be a valid origin of the observed data. While it is
often advised to test whether a higher order polynomial may have generated the
perceived discontinuity in the data, Gelman and Imbens (2019) specifically stress the
idea to use local higher order polynomials (i.e., a quadratic function) or local linear
functions instead of global higher order polynomials (e.g., sixths order) to control for
the possibility of continuous data generating processes and to avoid poor or highly
sensitive estimations.

Another crucial point in all regression discontinuity designs is the power of
statistical tests. On the one hand, the number of observations around the threshold
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is often small, thus, allowing for the possibility that single extreme values drive
findings. From this perspective, a wider bandwidth would be favorable. On the other
hand, regression discontinuity designs critically build on the assumption that sub-
jects left and right of the cut-off are comparable along observable and unobservable
characteristics. This perspective speaks in favor of a narrow bandwidth around the
threshold. Hence, widening the bandwidth around the threshold will decrease the
risk of influential outliers due to more observations, yet it will simultaneously
corrode the assumption of comparableness between treatment and control group.
Therefore, the bandwidth around the discontinuity becomes a critical aspect. A
simple and effective way of dealing with this issue is to work with different
bandwidths around the threshold value such as �1%, �2.5%, �5%, and �10% to
determine which bandwidth yields the optimal trade-off. Another solution is pro-
posed by Imbens and Kalyanaraman (2012) who suggest to select a bandwidth by
minimizing the mean squared error which is an efficient, yet economically less
intuitive solution.

Application in Flammer (2015)

Flammer (2015) addresses the question of whether the approval of a Corporate
Social Responsibility (CSR) related shareholder proposal is firm value enhancing.
She motivates her study by presenting two competing theories. On the one hand, a
resource-based view predicts that firms only engage in activities which are value
enhancing. On the other hand, agency theory argues that private managerial concerns
for reputation may motivate executives in engaging in CSR activities in order to
increase personal reputation at the cost of firm value. It should be noted, however,
that those two arguments are not mutually exclusive. The design of the field
experiment in this paper can more easily explain whether the resource-based view
holds because it insufficiently addresses the question of whether the agency expla-
nation holds in this research setting due to the shareholders voting instead of
management taking decisions.

To address her research question, Flammer (2015) exploits a discontinuity in the
data – a majority vote threshold. She collects data from publicly listed firms in the
USA concerning their relative stock market performance (cumulative abnormal
returns) as outcome variable and data on all CSR-related shareholder proposals
which were put to a vote in the annual shareholder meeting. In case a shareholder
proposal met the threshold of “50% plus one vote,” it was approved and, thus,
regarded as treated. All other proposals that did not pass the majority vote threshold
are assigned to the control group. In a second step, she isolates all those proposals
which were approved and rejected at a very thin margin (�5 percentage points
around the threshold) and investigates the share price development of those firms
subsequent to the shareholder meeting.

As outlined before, it is crucial to provide evidence that the jump in the distribu-
tion can be attributed to a discontinuity in the data. The threshold of 50% approval
provides plausible grounds. Visual inspection of the distribution of abnormal returns
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for the vote share bandwidth of 45% to 55% also reveals a jump in the distribution
around the approval threshold of 50%. Flammer (2015) further provides statistical
evidence that the discontinuity unlikely stems from a higher order polynomial data
generating process and therefore provides sufficient indication that she is in fact
exploiting a valid discontinuity in the data.

After having provided evidence for the validity of the discontinuity, she also
provides evidence regarding the second relevant requirement, the absence of self-
selection effects. To ensure that the distribution is as good as random, she first
investigates potential preexisting differences in various variables before and after
the shareholder meeting. For the full sample, that is, all firms that held a vote on CSR-
related proposals, she finds that firms “that pass a CSR proposal differ significantly
from companies that reject it” (Flammer 2015, p. 2557). This finding supports the
idea that passing a CSR proposal is not independent of other firm characteristics.
Nevertheless, when only comparing firms which narrowly pass or reject a CSR
proposal (i.e., firms within the �5% bandwidth), these differences disappear, pro-
viding plausible evidence that the passage of a CSR proposal is uncorrelated to firm
characteristics for this subsample. Unfortunately, the risk remains that the latter result
(statistically insignificant differences in the subsample) is partially driven by a smaller
sample size when considering only firms at the threshold and therefore has to be
considered with caution. Therefore, this evidence is further underscored by a formal
approach which tests for the continuity of vote shares in the data set (McCrary 2008).

Employing a regression discontinuity design, Flammer (2015) is able to provide
empirical evidence that a firm’s CSR engagement is not only positively correlated to
its financial performance but that it is likely that engaging in CSR initiatives in fact
drives firm value. Her study demonstrates how valid thresholds can be exploited to
establish causality in quasi field experiments but also demonstrates the method’s
limits: Due to the small sample size around the threshold (61 observations), the
author cautions against generalizing her findings and suggests additional studies on
this issue.

Table 2 provides an overview of further applications of the regression disconti-
nuity method in business research literature exploiting various settings and quasi-
random distributions through arbitrary thresholds.

Instrumental Variables

Introduction

While the difference-in-differences method and the regression discontinuity design
broadly lend themselves to satisfy causality condition three, the absence of interfer-
ing factors, instrumental variables may be used to solve more specific and complex
issues. In general, instrumental variables take a special role with regard to field
experiments because the method allows to embed an experiment into settings which
did not allow for causal inference because the setting did or could not provide a
(quasi) exogenous treatment, that is, when the setting was not a field experiment in
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the first place (Angrist and Krueger 1999, p. 1300). Second, instrumental variables
are used whenever simultaneity poses a challenge to causal inference (thus, violation
of condition one, cause has to precede the outcome). Third, instrumental variables
are employed specifically when unobservable variables not only drive the observed
outcome variable but also influence the presumed treatment variable. For example,
this could be the case if subjects self-select into the suspected treatment or are
noncompliant with the treatment. This influence of other factors on both treatment
and outcome variable is often referred to as “endogeneity of the treatment.”We refer
to Ebbes et al. (chapter ▶ “Dealing with Endogeneity: A Nontechnical Guide for
Marketing Researchers”) in this handbook, Roberts and Whited (2013), and Angrist
et al. (1996) for a more detailed and specific discussion about endogeneity.

Suppose a fashion retailer is aiming to increase its online store revenue by
increasing its spending on paid search ads. As it is common, the search platform,
such as Google or Yahoo!, charges the fashion retailer for every click on the paid
search result that directs a customer to the fashion retailer’s online store (pay-per-
click model). If the fashion retailer is now interested in the effectiveness of the paid
search ads to generate revenues, the retailer would observe that the ad expenses and
the online store revenues increase by some factor, for example, for every 1% increase
in ad expense, revenues increase by 0.1%. Yet, this simple observation of co-
movement would ignore that the consumer’s behavior (a click on the ad) both drives
the revenues and the expenses alike because the ad expense is not a lump-sum
payment (Blake et al. 2015). In this case, instrumental variables are addressing the
concern that the treatment cannot be clearly distinguished from other factors which
affect the outcome and the treatment itself by “replacing” the original treatment
variable with an instrumented variable, that is, an estimated variable based off an
instrument. We will present and discuss examples for valid instruments and instru-
mental variables in the context of field experiments in the following segments.

Before turning to instrumental variables in field experimental settings, it is crucial to
understand the mechanics of the instrumental variables approach. An instrument offers
exogenous variation which the actual treatment cannot provide (Angrist and Krueger
1999, p. 30). In brief, an instrument is a “third” variable which explains as much
variation in the treatment variable as possible but is exogenous to the outcome variable
of interest, except for its influence through the treatment. The instrument thus replaces
the treatment variable with estimated “cleaned, exogenous” values of the treatment
instead of actual values by estimating the treatment variable in the first stage.

This idea is depicted in Fig. 6. The first box shows the original relationship of
interest, for example, the effect of education (X) on income after graduation (Y). As
the treatment education is endogenous (i.e., future income expectations are likely to
influence education choices), an appropriate instrument (Z) is required. This instru-
ment should be valid (i.e., it explains the number of years an individual spends on
education) but exogenous (i.e., it is only related to income after graduation via
education). Such an instrument could be mandatory school attendance (Angrist
and Krueger 1991). In a first step, this instrument is used to estimate (mandatory)
years of education (bX) which in turn is used to estimate income after graduation. The
terms e and u represent the respective residuals of the performed regression whose
potential interrelation may be one reason for unobserved effects in the model.
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Core Area of Application

Instrumental variables are useful in cases in which the main research question does
not constitute a field experiment due to the lack of a (quasi) exogenous intervention
as described for difference-in-differences settings (Angrist and Krueger 1999,
p. 1300; Goldfarb and Tucker 2014, p. 26). Putting it in a more pointed way, the
second stage of the instrumental variables design is not an experiment with (quasi)
exogenous treatment because if it were, the research question would not require an
instrumental variables design in the first place but could be addressed with a
comparison of means or possibly a sophisticated difference-in-differences design.
In that sense, an instrumental variables approach implements a (quasi) natural field
experiment before the original relationship of interest is addressed. Turning to the
causality conditions, instrumental variables provide an opportunity to establish
causality in cases where either condition one (cause precedes effect) or condition
three (absence of interfering factors) is difficult to meet. In other words, in these
cases, it is difficult to isolate the effect of the treatment variable from an array of
other unobservable factors. This also includes cases in which subjects deliberately
decide to become part of the treatment group, that is, when (quasi) random assign-
ment cannot be ensured. Here, instrumental variables have become the standard
method to address this problem, developed and driven mostly by research in
economics (e.g., Angrist and Krueger 1991). Nevertheless, it has found its way
into business research as a result of stronger emphasis on causal inferences.

For any field experiment which can be considered being part of the first quadrant,
that is, the designer has full control over the treatment and the treatment is random-
ized, an instrumental variable approach is generally not necessary because the
treatment (i.e., the cause) precedes the outcome by design and ideally there are no
unobservable characteristics which influence the treatment and the outcome alike.
For natural field experiments or quasi field experiments, the issue of other (un)
observable influences becomes of increasing concern as managers or researchers are

Fig. 6 Graphical illustration of instrumental variables method (own illustration)
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lacking control over those circumstances. In most cases, potentially interfering
factors are nevertheless observable and only affect the outcome but not the treatment
and can thus be integrated into the estimation as control variables. For example,
Goldfarb and Tucker (2011) employ their difference-in-differences design on the
introduction of a new privacy law in the EU but include a range of control variables
in their estimation such as age or income of the survey participants. Furthermore, the
intervention is quasi exogenously determined by the EU regulatory body. Contrarily,
in the case of Giroud et al. (2012), the authors are not able to isolate the effect of an
increase in financial leverage from unobserved, opportunistic behavior of the hotels’
managers, which they suspect to also influence the outcome variable, the likelihood
of bankruptcy. Therefore, the authors resort to an instrument to estimate their
treatment variable. Disaggregating their study, the core question of interest does
not include an experiment because it lacks the randomized intervention from an
external body (experiment’s designer or regulatory body). Including an instrumental
variable allows the authors to exploit an experimental setting (excessive amount of
snowfall) in a first step before addressing the actual research question, making their
research design qualify as a quasi-natural field experiment.

Another case can be made for situations in which the assignment to treatment is
not random but individuals choose to become part of the treatment group, for
example, if firms voluntarily disclose nonfinancial information. In an example of
overcoming the problem of voluntary decisions by firms, Ladika and Sautner (2020)
investigate the question whether CEOs are likely to scale back investments when
they are presented with more short-term incentives. While so-called “accelerated
option vesting” by firms is generally regarded as a valid indicator for shortening top
management’s incentive horizon, doing so is a voluntary decision by the firm. Thus,
it is most likely correlated with factors which also drive investment decisions. In that
sense, one may also argue that this setting per se does not qualify as a field
experiment as the treatment is not exogenously determined. In order to mitigate
this concern, Ladika and Sautner (2020) exploit a regulation by the Financial
Accounting Standard Board (FASB) which creates a strong incentive for firms to
accelerate option vesting. Importantly, this incentive becomes effective quasi-ran-
domly for each firm at different points in time as it is tied to a firm’s fiscal year end.
Therefore, it can be used as an instrument for actual accelerated option vesting, again
“attaching” an experiment to a research question which in itself would not qualify as
a field experiment.

Critical Assumptions

Any instrument has to satisfy two fundamental criteria, the relevance condition, and
the exclusion restriction (Wooldridge 2012, p. 508):

• According to the relevance condition, the instrument must be informative about
the independent (exogenous) variable. For example, in their field experiment,
Shriver et al. (2013) investigate the relationship between social ties and the
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creation of content in an online social network. As those two concepts are
intertwined, it poses a challenge to causality condition one (cause precedes
effect). The authors choose wind speeds at the observed surfing locations as
their instrument and establish that wind speeds are informative about the blogging
behavior of surfers in their online social network. Here, wind speeds higher than
the median enable surfing at a specific location and in turn enable surfers to write
about their experience on an online platform.

• According to the exclusion restriction, the instrument must be exogenous to the
dependent variable. This means that the instrument should only affect the
observed outcome variable via the treatment. Again, Shriver et al. (2013) claim
that wind speeds in itself should have no direct effect on the likelihood of surfers
developing social ties in an online network. Stated differently, above median
winds are per se not increasing the likelihood of surfers getting and sending friend
requests in their online social network. Wind speeds should affect social ties in the
online social network only through the creation of content of past surfing
experiences.

Providing evidence that the instrument meets the relevance and exclusion restric-
tion is challenging and statistical tests can at best only strengthen the credibility of
the instrument. The relevance of instruments can be tested in the first-stage regres-
sion via the respective F-statistic of whether the instruments are jointly significantly
different from zero. As a rule of thumb, an F-statistic smaller than 10 for a single
treatment variable indicates the presence of a weak instrument, that is, that the
chosen instrument is not sufficiently relevant for the relationship of interest. Yet,
for certain cases, this rule of thumb may not be sufficient to determine the relevance
of the instrument, for example, Lee et al. (2020) demonstrate the insufficiencies
of this rule of thumb in many research applications and propose that a more sensible
F-statistic value would lie north of 100. For further details on extended testing for an
instrument’s relevance, we refer to Stock and Yogo (2005) and more recent devel-
opment for testing an instrument’s validity put forth by Sanderson and Windmeijer
(2016).

The exclusion restriction is even more difficult to assess because no single,
universal statistical test exists to date. Thus, arguing in favor of a valid instrument
which satisfies the exclusion restriction requires in-depth knowledge on the domain
and a very sound understanding of the data generating process. Therefore, authors
often caution their readers against taking results at face value. For instance, Shriver
et al. (2013) state that they “present an IV approach based on wind speeds, which
delivers estimates of causal effects under the assumption of exogeneity of these
instruments. If these assumptions are violated, the causal interpretation no longer
holds.” (Shriver et al. 2013, p. 1430).

Two further assumptions are required to sensibly employ an instrumental variable
approach: the independence condition and the monotonicity assumption. The inde-
pendence condition states that the instrument itself must not suffer from the same
property as the variable that is instrumented, namely it must not suffer from
endogeneity itself. This condition aligns with the idea of exploiting a field
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experimental setting in the first stage. Secondly, the monotonicity condition states
that the instrument must only have a one directional effect on the treatment variable.
Specifically, the instrument may partially not affect certain individuals (e.g., because
they effectively withdraw from being treated) but it must not adversely affect the
likelihood of being treated (Angrist and Pischke 2009, p. 114). Circling back to
Shriver et al. (2013), while wind speed may not affect those surfers who may have
had a “rest day” in their schedule or were sick on one of the days in the observation
period, above median wind speeds should not decrease the likelihood of surfing for
some of the surfers but it should only increase the likelihood for all surfers. This
assumption may be questioned, potentially arguing that for some extreme wind
speeds, especially beginners may be discouraged from surfing. On the other hand,
extreme winds may also encourage content creation for those beginners without an
imminent surfing experience, for example, by creating content on the extreme
weather conditions. This brief discussion again illustrates the problem of those
assumptions being mostly untestable and heavily relying on convincing argumenta-
tion and discussions. Nevertheless, meeting all the aforementioned conditions and
assumptions paves the way to deriving the local average treatment effect (LATE) in
the desired research setting.

Application in Bennedsen et al. (2007)

Bennedsen et al. (2007) pursue the research question whether choosing a family
CEO or an external CEO positively affects the financial performance of a family
firm. Choosing a CEO from the family has the advantage of insider knowledge and
greater alignment between the interests of the owning family and the CEO, which
mitigates agency conflicts. In contrast, choosing an outside CEO enables the firm to
choose a skilled manager from a larger talent pool. Thus, from a theoretical point of
view, both scenarios, a family CEO being more and being less valuable to the firm
compared to an outsider, are plausible.

Ideally, researchers have full control over the treatment and could randomly
assign a family CEO or an outside CEO to identical family firms and measure
their subsequent financial performance. Unsurprisingly, this is not feasible. Simi-
larly, it is not helpful to simply investigate the correlation between “family vs.
outsider CEO” on subsequent financial performance of all firms. This analysis
would satisfy causality condition one and two but certainly not condition three, the
absence of other influencing factors. The problem is that the choice of appointing a
CEO from the ranks of the family is endogenous to its performance, that is, some
factors influence both the appointment decision and subsequent financial perfor-
mance. Thus, the research question itself does not constitute a field experiment due
to the lack of an exogenous intervention. Therefore, Bennedsen et al. (2007)
instrument the choice of appointing a family CEO with a plausibly exogenous
variable: the gender of the CEO’s first-born child.

The authors gather financial data from privately held Danish firms and match
information on whether the CEO’s first-born child is male or female. The gender of
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the first-born is plausibly random and not influenced by their parents, especially as
techniques to identify the gender before birth were not widely employed prior to
1980 (Bennedsen et al. 2007, p. 650). Further, the gender of the first-born is
plausibly independent of firm’s financial performance. While the chance of being
born a male is 50%, the rate of family succession within Danish firms is 39% when
the first-born is male while it is only 29.4% when the first-born is female (Bennedsen
et al. 2007, p. 650). Stated differently, a male first-born has a 32.7% higher
likelihood of becoming a CEO in his parents’ company than a female first-born.
The chosen instrument satisfies both the exclusion restriction (gender being
uncorrelated to firm’s financial performance) and the relevance condition (gender
being informative about CEO appointment choice). As outlined before, an instru-
mental variable setup critically builds on plausible reasoning and extended empirical
tests to demonstrate that the relevance condition and exclusion condition are
fulfilled.

Exploiting the instrumental variable in this field experiment, the authors are able
to identify a causal relationship between appointing a family CEO and subsequent
financial performance. They find that family successions hurt firm performance: in
particular, firms with the parting CEO’s first child being male demonstrate an
average decline in operative return on assets of 0.8 to 1.2 percentage points,
statistically significant at the 5% level. Correlational analyses suggest that the
negative effect persists, meaning that firms whose performance is relatively weaker
subsequent to appointing a family CEO do not catch up to their peers in the 3 years
following the CEO succession (Bennedsen et al. 2007, p. 678).

Table 3 provides further applications of the instrumental variables method in
business research literature exploiting various settings and treatment variations. As
discussed above, applications of instrumental variables in field experimental settings
are rather rare as the method is only useful in specific situations which (by construc-
tion) are less prevalent in field experiments.

Application of Methods in Standard Software

As the presented methods to exploit data from field experiments have become
increasingly more popular and wide-spread as demonstrated in Fig. 1, this has also
materialized in their implementation in various standard software solutions. While a
manual application of each method is generally possible in STATA, R, and SPSS,
especially STATA and R often provide dedicated functions or packages to execute
the methods in a more user-friendly, easy-to-handle way. This provides the user with
a wide variety of possibilities to apply the methods tailored to the specific question at
hand. Table 4 provides an overview of the application of the methods difference-in-
differences, regression discontinuity, and instrumental variables in STATA, R, and
SPSS.

In order to familiarize oneself with the presented methods, we suggest replicating
research findings that build on publicly available data. As this data is often cumber-
some to collect and manipulate to the point where an analysis becomes meaningful, the
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following papers provide their applied data set ready for any researcher to use and
replicate the findings. Furthermore, the authors of those studies also provide their code
which provides a useful check for one own’s replication efforts. Employing difference-
in-differences designs in natural experiments, Calzada and Gil (2020) investigate the
role of online news aggregators on news providers, De Silva et al. (2010) research the
causal relationship of migration on wages, and Seiler et al. (2017) address the question
of whether and how online word of mouth increases demand. Bronzini and Iachini
(2014) and Shapiro (2018) are using regression discontinuity approaches; the former
investigates whether incentives for R&D are effective and the latter derives causal
claims with regard to advertising in the health insurance market. Lastly, instrumental
variables approaches are used by Barron et al. (2020) who address the effect of home-
sharing on house prices using Airbnb data and by Draca et al. (2011) who aim to
disentangle the effect of police presence on crime using the London 2005 terror attacks
as an exogeneous event.

Conclusions

Drawing causal inferences instead of purely relying on associations has gained
importance in business practice and research in the past 20 years. Traditionally,
conducting experiments in the controlled environment of a laboratory with partici-
pants who were randomly selected from a certain pool of candidates was the primary
method to gain insights into causal relationships. More recently, field experiments
have gained relevance for researchers and practitioners alike due to new (online)
possibilities for conducting self-designed experiments outside the laboratory. Yet, as
field experiments do not provide the same degree of randomization and controlla-
bility, exploiting such data in a way which still provides the means to draw causal
conclusions requires a set of selected methods. Moreover, it becomes apparent that
the farther one parts from the ideal field experiment, namely towards quasi, natural,
or quasi-natural field experiments, the more effort and sophistication is likely to be
required in analyzing the data. In order to tackle short-comings in a field experi-
ment’s design, three methods have become a standard set in business research:
difference-in-differences, regression discontinuity, and instrumental variables. The
difference-in-differences method lends itself often when treatment and control group
(s) are not necessarily equal but are sufficiently similar so that they are affected by
the same environmental conditions and, thus, move in parallel with regard to a set of
selected variables. The regression discontinuity method becomes useful when one is
able to exploit an arbitrary cut-off, a threshold value, which quasi-randomly divides
observations into a treatment and control group so that a prerequisite of causal
inferences (random assignment to treatment) is restored for a sufficiently large
subsample of the data. Finally, the instrumental variables method helps to exploit
data in which one may be confronted with self-selection into treatment and control
group, if critical influential variables cannot be observed or if simultaneity is likely
present. Those issues may be solved by identifying a “third,” exogenous, variable
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which is able to estimate the treatment variable sufficiently well in order to address
the present endogeneity problem.

The three methods presented in this chapter can be employed irrespective of the
setting, that is, they may serve practitioners when evaluating the introduction of a
new product in one or more markets, when analyzing the effect of a new legislation
regarding advertising to children or when testing different purchase processes in the
firm’s online sales channels. This chapter aimed at providing an introduction to the
three methods and their respective applications by providing intuitive, nontechnical
explanations for each approach on how to exploit data from field experiments.
Understanding, generating, and integrating insights from data created by field
experiments will become more relevant even despite the growing availability of
big data in business research and practice. Big data often only provides insights into
correlational relationships potentially providing misleading guidance for decision
making, creating the potential of misusing insights from big data, and leading to
worse business decisions. Similar to Keele (2015), in a recent Harvard Business
Review publication, Zoumpoulis et al. (2015) subsume that carefully conducted and
analyzed field experiments can serve as a remedy and as a complement of increasing
importance to make sense of purely correlational evidence from big data.

Cross-References

▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶Experiments in Market Research
▶ Field Experiments
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Abstract

This chapter introduces the conceptual and statistical basics of mediation analysis
in the context of experimental research. Adopting the respective terminology,
mediation analysis can be referred to as an array of quantitative methods devel-
oped to investigate the causal mechanism(s) through which an independent
variable influences a dependent variable. The chapter takes a regression-based
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approach to mediation analysis and focuses on mediation models likely to be
tested in experiments (i.e., the single mediator model, parallel and serial multiple
mediator models, and conditional process models). Yet, the scope of mediation
analysis beyond an experimental setting will also be touched upon. Furthermore,
the chapter addresses the question how to strengthen causal inference in media-
tion analysis through design, the collection of additional evidence, and statistical
methods. It closes with a discussion of common topics of relevance when
implementing mediation analysis such as sample size and power, mean centering
in conditional process analysis, coding of categorical independent variables,
advantages and disadvantages of a regression-based approach to mediation anal-
ysis, and software options to perform mediation analysis.

Keywords

Mediation analysis · Conditional process analysis · Regression analysis ·
Bootstrapping · Experiments

Introduction

One focal goal of market research is to gain insight into whether and why marketing
stimuli, such as price or advertising, affect consumer behavior. That is, it is not
only important to demonstrate the causal effect of a marketing measure on
consumer behavior (e.g., through conducting experiments, Koschate-Fischer and
Schandelmeier 2014; chapter ▶ “Field Experiments” by Valli et al., this volume),
but it is also crucial to understand the causal mechanism(s) through which an effect
occurs. A deeper understanding of the “why” or “how” of an effect is often gained
through qualitative methods (e.g., focus groups or interviews). This chapter provides
an introduction to regression-based mediation analysis, an array of quantitative
methods developed to investigate the causal mechanism(s) through which an inde-
pendent variable influences a dependent variable, which has gained increasing
popularity in experimental research in marketing and market research over the last
decade (e.g., Cavanaugh 2014; Koschate-Fischer et al. 2012, 2016; Savary et al.
2014; Touré-Tillery and McGill 2015).

The remainder of this chapter is structured as follows: Starting with the most
simple mediation model, the single mediator model, the conceptual and statistical
principles of mediation analysis are explained. These will then be applied to medi-
ation models including multiple mediating variables (multiple mediator models) as
well as a moderating variable (conditional process models). Further mediation
models that take into account additional variables, time (longitudinal mediation
models), and nested data (multilevel mediation models) are also briefly addressed.
Subsequently, an overview is given of how to strengthen causal inference through
design, the collection of further evidence, and statistical methods. The chapter closes
with a discussion of selected questions arising when implementing mediation
analysis.
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Conceptual and Statistical Basics of Mediation Analysis

Adopting the terminology from an experimental context, mediation refers to a
situation in which the effect of an independent variable on a dependent variable is
transmitted through an intervening variable, the mediator (e.g., MacKinnon et al.
2007b; Preacher 2015; see also Mathieu and Taylor 2006). A mediator is a third
variable included in the conceptual framework describing the simple effect of an
independent variable on a dependent variable and can conceptually, yet not neces-
sarily statistically (MacKinnon et al. 2000), be distinguished from other third vari-
ables: confounding variables, covariates, and moderators (MacKinnon et al. 2007b).
Confounding variables influence both the independent variable and the dependent
variable and, if unaccounted for (i.e., omitted from the model), bias the estimate of
the relationship between the independent variable and the dependent variable. In an
experimental context, covariates (also called concomitant variables) are variables
that share variance with the dependent variable and controlling for them improves
the estimation of the relationship between the independent variable and the depen-
dent variable (Miller and Chapman 2001). Moderators influence the effect of the
independent variable on the dependent variable, such that the magnitude or sign of
the relationship changes depending on the values of the moderator.

In marketing and market research, mediators are likely to be psychological
processes evoked by marketing stimuli affecting consumer judgment and behavior
such as brand-, other-, or self-related cognitions and emotions. We agree with
MacKinnon (2008) that mediators should be selected a priori based on theoretical
considerations and the careful review of existing literature. If such a basis is not
available, possible mediators could also be identified through, for example, qualita-
tive interviews, and tested in subsequent quantitative studies. In either case, it is of
paramount importance to carefully consider whether the mediator is a variable that
can be causally affected by the independent variable and can, in turn, causally affect
the dependent variable. Thus, stable consumer traits, such as cultural norms or
values, cannot be mediators (unless the mediating variable denotes a change in
such relatively stable traits, see Koschate-Fischer et al. 2017) and the mediator and
the dependent variable have to be clearly distinguishable from each other (Pieters
2017).

The concepts and analyses described in this chapter will be illustrated with the
help of a hypothetical experiment exploring the effect of sales promotions on
consumers’ positive word-of-mouth (WOM) intentions. Specifically, the experiment
investigates whether a “free gift with purchase” promotion (e.g., “Receive a free
summer gift with any $10 purchase”) increases positive WOM intentions through
providing hedonic benefits to consumers (e.g., making the shopping experience
more interesting and fun), a research question derived from the benefit congruency
framework of sales promotion effectiveness (Chandon et al. 2000), and literature on
WOM generation (Berger 2014). The independent variable in this example is
manipulated on two levels (small vs. large free gift) and a between-subject design
is employed. Hence, there are two experimental groups to which participants are
randomly assigned. In both groups, participants read a scenario in which they
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imagine they are browsing through an online store to buy a T-shirt. The store offers a
wide variety of different T-shirts and brands. They encounter a banner on which it
says that for each T-shirt of a specific brand bought today, consumers receive a free
gift card for a future purchase in the online shop. In the small free gift condition, the
banner states that participants will receive a “$2 gift card with every T-shirt,” and in
the large free gift condition, it states they will receive a “$10 gift card with every
T-shirt.” Participants are then asked about the hedonic benefits the sales promotion
provides them and their willingness to positively talk about and recommend the
promoted products by answering questions such as how inclined they are to like
social media content referring to the promoted products. Hence, while the indepen-
dent variable is manipulated, the mediator as well as the dependent variable
are measured, which makes the experiment a measurement-of-mediation design
(Spencer et al. 2005). Note that, as the experiment itself, the data the following
analyses are based upon are hypothetical, i.e., simulated. Hence, the results reported
do not allow to draw conclusions as to the ability of free gifts to stipulate positive
WOM intentions through increasing hedonic benefits.

The Single Mediator Model

To illustrate the conceptual and statistical idea of mediation analysis, the most
simple mediation model, the single mediator model, is described in the following
section. It will be extended in later sections of the chapter by including additional
mediating (multiple mediator models) and a moderating variable (conditional
process models).

Conceptual Description of the Single Mediator Model
To explain the single mediator model, we start with a conceptual diagram (Hayes
2018) showing the simple causal effect of an independent variable X on a dependent
variable Y (Fig. 1). In mediation analysis, this relationship is referred to as the total
effect of X on Y.

In the single mediator model, this basic causal relationship is extended by a
mediatorM, which is causally located between X and Y (see Fig. 2). By includingM,
the total effect is split into direct and indirect components: X affects Y indirectly
through M (path a and path b). In addition, X also affects Y directly (path c0).
Together, path a and path b are referred to as the indirect effect of X on Y. The
indirect effect indicates the effect of X on Y that is transmitted through M. Path c0

denotes the direct effect of X on Y, which corresponds to the effect of X on Y that is

X
(large vs. small

free gift)

Y
(positive WOM 

intentions)

c total 
effect

Fig. 1 The conceptual diagram of the total effect of X on Y
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not transmitted through M. The direct effect (path c0) differs from the total effect
(path c) in that it estimates the effect of X on Ywhile controlling for the indirect effect
of X on Y through M. The total effect, however, denotes the overall effect of X on Y.

Figures 1 and 2 illustrate these concepts with the help of the free gift example
introduced above. In this example, the total effect refers to the overall effect of the
large (vs. small) free gift on positive WOM intentions without taking into account a
possible mediator. The indirect effect denotes the effect of the large (vs. small) free
gift on positive WOM intentions that is transmitted through hedonic benefits. It is
hypothesized to be positive, because a large (vs. small) free gift provides hedonic
benefits to consumers which, in turn, are associated with increased positive WOM
intentions. The direct effect denotes the effect of the large (vs. small) free gift on
positive WOM intentions which is not transmitted through hedonic benefits.

Statistical Description of the Single Mediator Model
The statistical diagrams (Hayes 2018) for the total effect and the single mediator
model are depicted in Fig. 3. The diagrams can be described by a set of linear
equations.

The total effect (see panel A in Fig. 3) is quantified by

Y ¼ iy þ cX þ ey (1)

where iy denotes the intercept and c the effect of X on Y. The error term of Y is
denoted as ey.

To describe the single mediator model (see panel B in Fig. 3), two equations are
necessary, one predicting M and the other predicting Y:

M ¼ im þ aX þ em (2)

Y ¼ iy þ bM þ c0X þ ey (3)

The i parameters in Eqs. 2 and 3 denote the intercepts, a estimates the effect of
X onM, b estimates the effect ofM on Y controlling for X, and c0 estimates the effect
of X on Y controlling for M. The error terms are denoted by the e parameters,
respectively. Note that iy as well as ey in Eqs. 1 and 3 are not equivalent.

X
(large vs. small

free gift)

Y
(positive WOM 

intentions)

c' direct
effect

M
(hedonic
benefits)a b indirect

effect

Fig. 2 The conceptual diagram of the single mediator model depicting the direct as well as indirect
effect of X on Y
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The indirect effect corresponds to the product of path a and path b, i.e., ab.
The total effect equals the sum of the indirect effect and the direct effect (Eq. 4).
Hence, the indirect effect can be also expressed as the difference between the total
effect and the direct effect (Eq. 5):

Total effect : c ¼ abþ c0 (4)

Indirect effect : ab ¼ c� c0 (5)

The effects are usually reported as unstandardized regression coefficients, espe-
cially when X is dichotomous (as in the free gift example), as standardized coeffi-
cients are not meaningful in this case (Hayes 2018).

In the previously introduced free gift example, X is coded with “0” (small free
gift) and “1” (large free gift). Hence, a total effect of c = 0.218 denotes that in
comparison to a small free gift, a large free gift increases positive WOM intentions
by 0.218 units. An indirect effect of ab = 0.103 indicates that a large (vs. a small)
free gift increases positive WOM intentions by 0.103 units through its effect on
hedonic benefits which, in turn, is associated with positive WOM intentions. A direct
effect of c0 = 0.115 shows that controlling for the indirect effect of a large (vs. small)
free gift on positive WOM intentions through hedonic benefits, a large (vs. small)
free gift increases positive WOM intentions by 0.115 units. As can be seen, the total
effect c = 0.218 is the sum of the indirect effect ab = 0.103 and the direct effect
c0 = 0.115, as 0.103 + 0.115 = 0.218.

A

B

X
(large vs. small

free gift)

Y
(positive WOM 

intentions)

c'

M
(hedonic
benefits)a b

em

ey

X
(large vs. small

free gift)

Y
(positive WOM 

intentions)

c

ey

Fig. 3 The statistical diagrams of the total effect of X on Y (panel A), as well as the single mediator
model depicting the direct as well as indirect effect of X on Y (panel B)
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Please note that the direct effect c0 does not have to be smaller (i.e., closer to zero)
than the total effect c even though the total effect c is the sum of both, the indirect
effect ab and the direct effect c0. There are situations when the total effect c is equal
in size to the direct effect c0 or even smaller, for instance, if M acts as a suppressor
(MacKinnon et al. 2000).

Statistical Inference for the Single Mediator Model
Various approaches have been suggested to determine whether or not mediation
occurs, that is, whether the indirect effect ab is significantly different from zero (for
an overview, see Hayes and Scharkow 2013; MacKinnon et al. 2002). MacKinnon
et al. (2002) classify these according to the coefficients tested within the respective
approaches: While the causal steps approach (Baron and Kenny 1986; Judd and
Kenny 1981) establishes mediation through testing whether the individual paths in a
mediation model are significantly different from zero, the difference in coefficients
approach and the product of coefficients approach test whether the indirect effect
(as indicated by the difference c�c0 or the product ab) is different from zero. Each
approach will be described subsequently.

The causal steps approach consists of a series of regressions run separately and
sequentially in order to demonstrate mediation. Mediation is logically inferred if,
first, the total effect c is significant, second, path a is significant, third, path b is
significant, and, fourth, the direct effect c0 is not significant (Judd and Kenny 1981)
or considerably reduced in size as compared to the total effect c (Baron and Kenny
1986).

The causal steps approach has been extraordinarily influential. The paper illus-
trating it – Baron and Kenny (1986) – is one of the most cited papers in the social
sciences. However, it has also been criticized heavily (e.g., Hayes 2009;
MacKinnon et al. 2000; Rucker et al. 2011; Shrout and Bolger 2002; Zhao et al.
2010). One major criticism is that the method requires a significant total effect to
establish mediation (“an effect to be mediated”). It has been argued that there are
situations in which significant mediation occurs even though the total effect of X on
Y is not significant. Hence, requiring an effect to be mediated impairs the power of
the approach (MacKinnon et al. 2002). Other criticism refers to the fact that testing
the individual paths in the mediation model separately is statistically as well as
conceptually different from directly testing the indirect effect: Testing the constituent
paths answers the question whether they, considered individually, are different from
zero. Testing the indirect effect, however, answers the question whether the indirect
effect as a whole is different from zero. It might be intuitive to assume that, if the
paths comprising the indirect effect are significant, the indirect effect must also be
significant. However, this is not necessarily the case. Hence, to establish mediation,
the focus should be on testing the indirect effect.

As opposed to the causal-steps approach, the difference in coefficients approach
and the product of coefficients approach directly test the indirect effect. While the
difference in coefficients approach does so using the right side of Eq. 5, c�c0, the
product of coefficients approach refers to the left side of Eq. 5, ab. The indirect effect
can be tested through computing its standard error which can then be used to create a
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test statistic or confidence interval. The indirect effect is assumed to be significantly
different from zero if the value of the test statistic exceeds some critical value of the
normal distribution, or if the confidence interval around the indirect effect excludes
zero. The latter approach is based on the following interpretation of a confidence
interval: If a study were replicated many times and a confidence interval were
computed around the indirect effect in each study, respectively, a large percentage of
the confidence intervals obtained (e.g., 95% for a 95% confidence interval) would
include the true value of the indirect effect. Hence, if zero is included in a confidence
interval around the estimated indirect effect, zero is a fairly plausible value for the true
indirect effect. If zero is not included, however, zero is a rather implausible value.

Several different methods have been suggested to estimate the standard error for
both expressions, ab as well as c�c0 (MacKinnon et al. 2002). The most prominent
of those methods is probably the one suggested by Sobel (1982), which is based on
the delta method and used in the so-called Sobel test. With sea and seb being the
standard errors of the coefficients a and b, respectively, to estimate the standard error
of the indirect effect ab, Sobel (1982) suggests the following (first order delta
estimator):

seab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2se2b þ b2se2a

q

(6)

The test statistic Z used in the Sobel test is then

Z ¼ ab

seab
(7)

If Z exceeds the critical value of the z-distribution (for a two-sided test and
α = 0.05, zcrit = � 1.96), the indirect effect ab is assumed to be significantly
different from zero. For an overview of other methods to compute standard errors
and corresponding test statistics of ab and c�c0, see MacKinnon et al. (2002).

The values necessary to compute the Sobel test can be obtained through two
ordinary least squares (OLS) regressions fitting the linear equations illustrated in
Eqs. 2 and 3. In the free gift example, these regressions yield the following estimates:
a = 0.135, b = 0.767, sea = 0.049, and seb = 0.079. Consequently, seab can be

estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1352 � 0:0792 þ 0:7672 � 0:0492
p

¼ 0:0391 (see Eq. 6). The test
statistic Z is computed as 0:135�0:767

0:0391 ¼ 2:650 (see Eq. 7). As Z > zcrit (zcrit = 1.96), it
can be concluded that there is a significant and positive indirect effect of a large
(vs. small) free gift on positive WOM intentions through hedonic benefits. That is, as
compared to consumers receiving a small free gift, the consumers receiving a large
free gift perceive greater hedonic benefits (a = 0.135), which, in turn, is associated
with increased intentions to positively talk about and recommend the promoted
products (b = 0.767). Note that one would obtain the same indirect effect if the
regression coefficients denoting path a and path b were negative. Hence, although
not being the focus when testing ab, the individual path coefficients a and b should
by no means be ignored.
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One issue with the Sobel test is that inference is based on the assumption that the
product of two normally distributed random variables (e.g., regression coefficients)
is normally distributed as well. That means, it is assumed that the sampling distri-
bution of the indirect effect ab is normal. However, the sampling distribution of the
indirect effect differs from the standard normal distribution with regard to its
skewness and kurtosis, especially in small samples (e.g., Bollen and Stine 1990;
Kisbu-Sakarya et al. 2014). Hence, relying on the assumption that the sampling
distribution of the indirect effect is normal may lead to false conclusions about
mediation (MacKinnon et al. 2002, 2004).

Taking this concern into account, MacKinnon and colleagues (e.g., MacKinnon
et al. 2007a) developed approaches to compute seab that are based on the assumption
that the indirect effect ab follows the distribution of the product of two normally
distributed random variables. Simulation studies show that as compared to the
normal theory approach, this distribution of the product approach leads to more
accurate Type I error rates and higher statistical power to detect a possible indirect
effect (MacKinnon et al. 2002), as well as to more precise confidence intervals
(MacKinnon et al. 2004). However, the distribution of the product approach is not
always easily applicable to more complicated mediation models (Taylor et al. 2008;
Preacher and Hayes 2008).

Another set of methods establishes mediation by creating confidence intervals
around the indirect effect through resampling (Monte Carlo resampling, Preacher and
Selig 2012; jackknife resampling, MacKinnon et al. 2004; bootstrapping, Bollen and
Stine 1990). Of these, the presumably most commonly applied method in consumer
science is bootstrapping (Pieters 2017). The particularly convenient characteristic of
bootstrapping is that, unlike the previously presented approaches, it does not require
any assumptions to be made about the distribution of the indirect effect, nor does it rely
on an estimate of the standard error of the indirect effect. It is a resampling procedure,
which means that the distribution of the indirect effect is empirically obtained, that is,
obtained from the data itself. To do so, k bootstrap samples (kmin = 1,000, Shrout and
Bolger 2002; kmax = 10,000, Hayes 2018; krecommended > 5,000, Hayes 2018) with
N cases each are drawn with replacement from the original dataset (N denotes the
original sample size). From each bootstrap sample k, the indirect effect abk is estimated.
As the bootstrap sample is drawn with replacement (i.e., a participant from the original
sample may be selected not at all, once, or multiple times in a bootstrap sample), the
individual bootstrap samples will not only differ from the original sample, but also from
each other. Consequently, the k estimates of the indirect effect vary. Sorting them from
smallest to largest creates a distribution of the indirect effect. This distribution can then
be used to compute a confidence interval around the point estimate of ab estimated from
the original sample.

Figure 4 depicts such an empirically obtained distribution of the indirect effect
from the free gift example. It is based on k = 5,000 bootstrap samples. The point
estimate for the indirect effect from the original sample is ab = 0.1035. Three types
of bootstrap confidence intervals are depicted: the percentile bootstrap confidence
interval, the bias-corrected bootstrap confidence interval, and the bias-corrected and
accelerated bootstrap confidence interval.
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Indicated by the two dotted lines are the lower and upper limits of the percentile
bootstrap confidence interval (p.bci), which denotes the values at position k � α

2

� �

(lower limit, ll) and k � 1� α
2

� �þ 1 (upper limit, ul). Setting α = 0.05, the
lower limit of the percentile bootstrap confidence interval (p.bci.ll) corresponds to
5; 000� 0:05

2

� � ¼ 125 , that is, the 125th value in the sorted distribution (p.bci.
ll = 0.0281 in Fig. 4); the upper limit of the percentile bootstrap interval (p.bci.ul)
corresponds to 5; 000� 1� 0:05

2

� �þ 1 ¼ 4; 876 , that is, the 4876th value (p.bci.
ul = 0.1781 in Fig. 4). Note that due to the skewness of the distribution, bootstrap
confidence intervals are usually asymmetric unlike confidence intervals based
on the standard normal distribution. As the confidence interval does not include
zero (p.bci95% [0.0281; 0.1781]), zero is not a plausible value for the indirect effect.
Hence, the indirect effect is assumed to be significantly different from zero.

In this example, testing the indirect effect with a percentile bootstrap confidence
interval leads to the same conclusion as the Sobel test: The effect of the large
(vs. small) free gift on positive WOM intentions is significantly mediated by hedonic
benefits (ab = 0.1035, p.bci95% [0.0281; 0.1781]). This reflects the notion that
although there may be inconsistent results from different approaches to test media-
tion, they quite frequently agree (Hayes and Scharkow 2013).

As mentioned, Fig. 4 also depicts the bias-corrected bootstrap confidence interval
(bc.bci, broken lines) and the bias-corrected and accelerated bootstrap confidence
interval (bca.bci, solid lines, Efron 1987). The bias correction adjusts the confidence
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Fig. 4 Distribution of 5000 bootstrap estimates of an indirect effect (ab = 0.1035) and the
corresponding percentile, bias-corrected, and bias-corrected and accelerated bootstrap confidence
intervals (p.bci95% [0. 0281, 0.1781], bc.bci95% [0.0310; 0.1805], bca.bci95% [0.304; 0.1797])
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limits for differences between the point estimate of the indirect effect
from the original data set ab and the bootstrap estimates of the indirect effect abk
(bc.bci95% [0.0310; 0.1805]). The bias-corrected and accelerated bootstrap confi-
dence interval additionally accounts for the skew of the bootstrapped distribution
(bca.bci95% [0.304; 0.1797]).

The bootstrap approach to mediation analysis has some disadvantages: It requires
raw data, which may not always be available. In addition, as the resampling process
is random, the limits of the confidence interval may slightly differ when the analysis
is repeated. Finally, statistical software has to be set up to perform bootstrapping.
However, statistical software generally allows one to save bootstrap estimates for
further analysis or to specify a seed to replicate the bootstrap samples. Furthermore,
there are an increasing number of software options to perform mediation analysis
with bootstrapping.

Most importantly, though, bootstrapping has considerable statistical advantages
over normal theory based approaches and the distribution of the product approach:
As noted, it makes no assumptions about the sampling distribution of the indirect
effect, but empirically determines it through resampling. As a consequence, boot-
strap confidence intervals have been shown to be more accurate and perform better
with regards to statistical power while maintaining reasonable Type I error rates
(Fritz and MacKinnon 2007; Hayes and Scharkow 2013; MacKinnon et al. 2004).
The bias-corrected confidence interval has been demonstrated to perform best with
regard to power, although somewhat liberally under some conditions (Fritz et al.
2012). Researchers reluctant to take this risk may use the percentile bootstrap
confidence interval which is more powerful than the Sobel test, but less liberal
than the bias-corrected bootstrap confidence interval. Furthermore, bootstrapping
is relatively easy to apply to more complex mediation models (Taylor et al. 2008;
Williams and MacKinnon 2008). Hence, in accordance with many others (e.g.,
Hayes 2018; MacKinnon 2008; Jose 2013), we recommend bootstrapping confi-
dence intervals for testing mediation over normal theory based methods and the
distribution of the product approach.

Assumptions of the Single Mediator Model
OLS regression-based mediation analysis relies on assumptions that apply to OLS
regression analysis in general (see chapter ▶ “Regression Analysis” by Skiera et al.,
this volume). Some of these assumptions are particularly crucial in mediation
analysis. For instance, it has been shown that measurement error can heavily bias
estimates of the indirect effect, especially if it affects the mediator. While this can
lead to either overestimation or underestimation of effects in a mediator model, in
experimental settings, measurement error affecting the mediator tends to lead to
underestimation of the indirect effect (Fritz et al. 2016). Mediation analysis with
structural equation modeling accounts for this issue to some degree as it enables
measurement error to be estimated (MacKinnon 2008; see also ▶ “Crafting Survey
Research: A Systematic Process for Conducting Survey Research,” this volume).

Omitting causally relevant variables in mediation analysis can similarly bias the
estimate of the indirect effect (see also chapter ▶ “Dealing with Endogeneity: A
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Nontechnical Guide for Marketing Researchers” by Ebbes et al., this volume).
Pieters (2017) differs between bias as a result of pre- and posttreatment confounding
variables. Pretreatment confounding variables are independent of the treatment, that
is, the independent variable, but affect the mediator and the dependent variable. One
example of pretreatment confounding variables pointed out by Pieters (2017) is
common method bias, that is, common variance in the mediator and the dependent
variable due to being measured in a similar way or in close proximity to each other.
Posttreatment confounding variables are consequences of the treatment and affect
the dependent variable. Hence, they are omitted mediators. In experimental studies,
the omission of a confounding variable affecting the mediator and the dependent
variable likely leads to an overestimation of the indirect effect (Fritz et al. 2016).
Pieters (2017) concludes that bias resulting from confounding variables can be
addressed through employing different methods to measure the mediator and the
dependent variable, the inclusion of possible confounding variables as covariates in
the mediation model, the use of advanced statistical methods that account for the
influence of unobserved confounding variables on mediation (for an overview, see
MacKinnon and Pirlott 2015, see also chapter ▶ “Dealing with Endogeneity: A
Nontechnical Guide for Marketing Researchers” by Ebbes et al., this volume), and
by running studies in which the mediator is manipulated (for an overview, see Pirlott
and MacKinnon 2016).

To address violations of the assumption of homoskedasticity, robust regression
analysis (e.g., Hayes and Cai 2007) could be applied which corrects for possible bias
in the standard errors of the regression coefficients. However, note that bootstrapping
does not rely on estimates of the standard errors of the regression coefficients
comprising the indirect effect, but solely on estimates of the regression coefficients
which are unaffected by heteroskedasticity (Darlington and Hayes 2017). Hence,
the bootstrap approach to testing mediation is generally robust against violations of
the assumption of homoskedasticity.

Another assumption in mediation analysis requires that the causal order of vari-
ables be correctly specified (i.e., the causal order is assumed to be unidirectional). To
test this assumption, it would be necessary to demonstrate that X causes M, which in
turn causes Y. The section on causal inference in this chapter will address this issue in
greater detail.

Furthermore, it is generally assumed that X and M do not interact to predict Y.
Hence, the interaction between X and M is not included in the linear equation
predicting Y (see Eq. 3, but see also Fig. 5 for a model including this interaction).
That means, neither is the direct effect of X on Y assumed to be affected byM, nor is
the effect of M on Y assumed to be affected by X. However, it has been argued that
this is not justified and that the interaction between X and M should be estimated in
mediation analysis (e.g., Kraemer et al. 2002, 2008; Valeri and VanderWeele 2013),
for instance, to test whether mediation differs across levels of X. The questions of
when to estimate the interaction term XM in mediation analysis and how to estimate
the direct and indirect effects in such a case are addressed by VanderWeele (2015).

Additional assumptions in mediation analysis refer to the correct timing and level
of the mediated effect (MacKinnon 2008). Specifically, conclusions based on a
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single (as compared to repeated) assessment of X, M, or Y assume that the variables
and relationships of interest do not change over time. In addition, inferring mediation
without taking into account possible nesting of the data (e.g., consumers nested in
geographical locations or repeated measurements nested in one participant) relies on
the assumption that mediation is unaffected by such nesting.

Classifying Mediation
Mediation can be classified depending on the significance of the indirect and the
direct effect. Zhao et al. (2010) broadly differentiate between mediation (if the
indirect effect is significant) and nonmediation (if the indirect effect is not signifi-
cant), and further distinguish different types of mediation and nonmediation
depending on the significance of the direct effect as well as whether the direct effect
and indirect effect have the same sign (see Table 1). Competitive mediation has also
been referred to as inconsistent mediation (MacKinnon et al. 2000) or suppression
(Shrout and Bolger 2002). Baron and Kenny (1986) refer to complementary medi-
ation as partial mediation and to indirect-only mediation as complete mediation, for
which the attributes “perfect” or “full” are also used. According to Zhao et al. (2010),
different types of mediations give hints for subsequent theory building. Specifically,
complementary and competitive mediation as well as direct-only nonmediation may
indicate that a relevant mediator or moderator may have been omitted from the
mediation model. However, when drawing theoretical conclusions or classifying
mediation based on the significance of the direct effect, note that a nonsignificant
direct effect may also be the result of too little power (Rucker et al. 2011). Further-
more, mind that qualitatively classifying mediation as, for example, partial,
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complete, or competitive, does not allow conclusions to be drawn about the magni-
tude of an indirect effect.

Effect Size
To quantify mediation, several effect size measures have been proposed with a
comprehensive overview provided by Preacher and Kelley (2011). However, none
of the measures is without limitations. For instance, effect size measures and
their corresponding variance estimates may be inaccurate unless sample size or
effect size is large (e.g., N > 500, MacKinnon et al. 1995), may not be applicable
to specific variable metrics (e.g., exclusively suitable for dichotomous X, Hansen and
MacNeal 1996), or may not work in any mediation model more complex than
the single mediator model (e.g., Wen and Fan 2015). Hence, we agree with
Preacher and Kelley (2011) that, when reported, effect size measures have to be
carefully discussed with regard to whether they are bounded (i.e., whether there is an
upper and lower limit of possible values of the measure), robust to changes in scales
(i.e., standardized) as well as sample size, precise (as indicated by, e.g., a confidence
interval), and meaningfully scaled.

Variable Metrics
OLS regression-based mediation analysis can incorporate dichotomous, multi-
categorical, or continuous independent variables. A multicategorical independent
variable can be included as a set of indicator variables, each representing, for
example, a pairwise comparison with a reference group (Hayes and Preacher
2014). Different strategies to create indicator variables will briefly be discussed in
the section on coding of categorical independent variables later in the chapter.
Including a dichotomous or multicategorical mediator or dependent variable goes
beyond what OLS regression-based mediation analysis can accommodate. Yet, the
equations presented above can be rewritten for logit models and logistic regressions
(Iacobucci 2012; MacKinnon 2008). Note, that in this case, Eq. 5 does not hold
anymore, as the difference in coefficients c�c0 may be biased due to scale bound-
edness (MacKinnon and Dwyer 1993). Applying generalized linear models to

Table 1 Classification of mediation according to Zhao et al. (2010)

Classification

1. Is the indirect
effect
significant?

2. Is the direct
effect
significant?

3. Do direct and indirect
effects have equal
signs?

Mediation Complementary
mediation

Yes Yes Yes

Competitive
mediation

Yes Yes No

Indirect-only
mediation

Yes No –

Non-
mediation

Direct-only
nonmediation

No Yes –

No-effect
nonmediation

No No –
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mediation analysis further allows for the analysis of mediation models with media-
tors and outcomes taking the form of counts (e.g., VanderWeele and Vansteelandt
2014) or survival rates (e.g., VanderWeele 2015). Additionally, several approaches
to incorporate nonnormally distributed but continuous variables into mediation
analysis have been described (e.g., Yuan and MacKinnon 2014).

Mediation Models Including More Than One Mediator: The Parallel
and Serial Multiple Mediator Model

Some research questions require inclusion of more than one mediator into the
conceptual model. It could be of interest, for instance, to pit competing explanations
for an effect of X on Y against each other or to test whether an effect of X on
Y operates through multiple mechanisms at once. The single mediator model can be
extended to include multiple mediators in two different ways: They can be assumed
to be causally independent of each other and work in parallel, or form a causal chain
from X to Y and operate in serial. The former is referred to as the parallel multiple
mediator model and will be described next. The latter is referred to as the serial
multiple mediator model and will be described subsequently. General notes on
statistical inference in multiple mediator models are included at the end of this
section on mediation models with more than one mediator.

Conceptual Description of the Parallel Multiple Mediator Model
In the parallel multiple mediator model, X is assumed to affect Y through two or more
mediatorsMi, which are assumed not to be causally related (see Fig. 6). Yet, they are
also not expected to be completely uncorrelated as they share a common cause.
Parallel multiple mediator models are hence particularly suited to disentangle the
respective mediating ability of multiple (ideally not too strongly) correlated media-
tors from each other (Preacher and Hayes 2008).

X
(large vs. small
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Y
(positive WOM 

intentions)

M1
(hedonic
benefits)

M2
(utilitarian
benefits)

Fig. 6 The conceptual
diagram of a parallel multiple
mediator model in which the
effect of X on Y is transmitted
through two mediatorsM1 and
M2 operating in parallel
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For instance, in the free gift example, it might be of interest to investigate whether
the increase in positive WOM intentions in response to the large (vs. small) free gift
is solely explained by hedonic benefits or also by utilitarian benefits (e.g., making a
purchase decision more efficient because of reduced search costs). In order to
investigate these alternative explanations, a second mediator (utilitarian benefits) is
added to the previously tested single mediator model, which included hedonic
benefits as the only mediator. Furthermore, since it is not assumed that there is a
causal relationship between hedonic and utilitarian benefits, the two mediators are
hypothesized to act in parallel.

Just like the single mediator model, the parallel multiple mediator model can be
separated into indirect and direct components. However, there are multiple indirect
components in parallel multiple mediator models, namely, the specific indirect effects
aibi associated with each mediator Mi, respectively. The crucial characteristic of the
specific indirect effect in a multiple mediator model compared to the indirect effect in
a single mediator model is that it estimates the specific mediating ability of a mediator
while controlling for the remaining specific indirect effects of all other mediators
included in the model. Consequently, specific indirect effects are affected by the
degree to which the mediators in a parallel multiple mediator model conceptually
overlap (i.e., correlate). The specific indirect effects in a parallel multiple mediator
model sum up to form the total indirect effect, which denotes the ability of a set of
mediators to transmit an effect from X on Y. The direct effect denotes the remaining
effect of X on Y, controlling for the total indirect effect. Thus, together, the total
indirect effect and the direct effect add up to the total effect of X on Y.

Preacher and Hayes (2008) describe several advantages of testing one parallel
multiple mediator model instead of multiple single mediator models. First, by testing
the total indirect effect, a parallel multiple mediator model allows conclusions to be
drawn regarding a set of multiple mediators. Second, disentangling the mediating
ability of each mediator enables researchers to identify the specific indirect effect of
each mediator as well as to quantitatively compare the specific indirect effects of the
different mediators with each other. Third, the parallel multiple mediator model
partially accounts for the limitation of the single mediator model with regard to
possible bias due to omitted variables.

Statistical Description of the Parallel Multiple Mediator Model
The parallel multiple mediator model with two mediators M1 and M2 can be
described by the following linear equations predicting M1, M2, and Y, respectively
(see also Fig. 7):

M 1 ¼ im1 þ a1X þ em1 (8)

M 2 ¼ im2 þ a2X þ em2 (9)

Y ¼ iy þ b1M 1 þ b2M 2 þ c0X þ ey (10)
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The i parameters denote the intercepts and ai estimates the effect of X on Mi.
The coefficient b1 estimates the effect ofM1 on Y, controlling for X andM2. Likewise,
b2 estimates the effect of M2 on Y, controlling for X and M1. Finally, c0 estimates the
effect of X on Y, controlling for M1 and M2. The error terms are denoted by the
respective e parameters. In a parallel multiple mediator model with jmediators, j + 1
equations are required to describe the model, one to predict each Mi and one to
predict Y.

Analogous to the single mediator model, a specific indirect effect through a
mediator Mi is the product of the two unstandardized regression coefficients of
path ai and path bi, aibi. Therefore, in a parallel multiple mediator model with
j mediators, there are j specific indirect effects to be estimated. The total indirect
effect is the sum of all j specific indirect effects:

Total indirect effect :
X

j

i¼1

aibið Þ (11)

The total effect is the sum of the total indirect effect and the direct effect c0:

Total effect : c ¼
X

j

i¼1

aibið Þ þ c0 (12)

Again, the total indirect effect can also be computed by subtracting the direct
effect from the total effect as follows:
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Fig. 7 The statistical diagram of a parallel multiple mediator model in which the effect of X on Y is
transmitted through two mediators M1 and M2 operating in parallel

Mediation Analysis in Experimental Research 873



Total indirect effect : c� c0 ¼
X

j

i¼1

aibið Þ (13)

In the parallel multiple mediator model sketched out above, a specific indirect effect
through the first mediator (hedonic benefits) of a1b1 = 0.103 indicates that controlling
for the specific indirect effect of the large (vs. small) free gift on positive WOM
intentions through utilitarian benefits, the large (vs. small) free gift increases positive
WOM intentions through hedonic benefits by 0.103 units. Similarly, a specific indirect
effect through the second mediator (utilitarian benefits) of a2b2 = 0.005 denotes that
controlling for the specific indirect effect of the large (vs. small) free gift on positive
WOM intentions through hedonic benefits, the large (vs. small) free gift increases
positive WOM intentions through utilitarian benefits by 0.005 units. The total indirect
effect of a1b1 + a2b2= 0.103 + 0.005= 0.108 shows that together, changes in hedonic
and utilitarian benefits in response to a large (vs. small) free gift account for a 0.108 unit
increase in positive WOM intentions. A direct effect of c0 = 0.110 indicates that
independent of the total indirect effect of the large (vs. small) free gift on positive
WOM intentions through hedonic as well as utilitarian benefits, the large (vs. small)
free gift increases positive WOM intentions by 0.110 units. As can be seen, the total
effect c = 0.218 is the sum of the specific indirect effect through the first mediator,
a1b1 = 0.103, the specific indirect effect through the second mediator, a2b2 = 0.005,
and the direct effect c0 = 0.110, as 0.103 + 0.005 + 0.110= 0.218.

Statistical Inference for the Parallel Multiple Mediator Model
Testing for mediation in the parallel multiple mediator model involves testing the
total as well as the specific indirect effects. As with the single mediator model, this
can be accomplished with the help of bootstrap confidence intervals. There are also
other suitable approaches; however, they do not perform as well as the bootstrap
approach (Preacher and Hayes 2008; Williams and MacKinnon 2008). Note that
specific indirect effects should be investigated irrespective of whether the total
indirect effect is significant or not (Preacher and Hayes 2008).

In the free gift example, the bias-corrected bootstrap confidence interval for the
specific indirect effect through hedonic benefits lies completely above zero. Hence,
the effect is positive and significant (a1b1 = 0.103, bc.bci95% [0.029; 0.181]).
However, the bias-corrected bootstrap confidence interval for the specific indirect
effect through utilitarian benefits straddles zero and is hence not significant
(a2b2 = 0.005, bc.bci95% [�0.014; 0.029]). The total indirect effect is positive and
significant too (a1b1 + a2b2 = 0.108, bc.bci95% [0.031; 0.189]). That is, as compared
to consumers receiving a small free gift, consumers receiving a large free gift
perceive greater hedonic benefits (a1 = 0.135), which, in turn, is associated with
increased intentions to positively talk about and recommend the promoted products
(b1 = 0.766, a1b1 = 0.103, bc.bci95% [0.029; 0.181]). Furthermore, hedonic and
utilitarian benefits jointly mediate the effect of a large (vs. small) free gift on positive
WOM intentions (a1b1 + a2b2 = 0.108, bc.bci95% [0.031; 0.189]).

In parallel multiple mediator models, it is also possible to address the question of
whether specific indirect effects differ from each other. For instance, a researcher
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may be interested in finding out whether one specific indirect effect is larger than
another one. This, too, can be achieved with bootstrapping. The idea is straightfor-
ward: If two specific indirect effects aibi and ajbj significantly differ from each other,
their difference must be different from zero. To test this, the distribution of aibi� ajbj
is bootstrapped, and a confidence interval is determined. If it excludes zero, the
specific indirect effects in question differ significantly from each other. Note,
however, that the conclusion that one specific indirect effect is larger than the
other can only be drawn if both specific indirect effects compared have the same
sign (i.e., are both positive or both negative, Preacher and Hayes 2008). To contrast
specific indirect effects with different signs, the difference in absolute values may be
determined and tested analogously with the help of a bootstrap confidence interval
(Hayes 2018). Furthermore, note that a (specific) indirect effect is scaled in the
metrics of X and Y: A change in X by one unit leads to a change in Y throughM of ab
units. Hence it does not matter whether the same response scales (e.g., 7-point
vs. 5-point) are used to assess the respective mediators when comparing two specific
indirect effects (Preacher and Hayes 2008).

Conceptual Description of the Serial Multiple Mediator Model
In a serial multiple mediator model, X is assumed to affect Y through two or more
mediators Mi. However, in contrast to the parallel multiple mediator model, the
mediators in a serial multiple mediator model are hypothesized to form a causal
chain (see Fig. 8). Thus, serial multiple mediator models are suitable when a causal
chain of mediators is assumed to account for the effect of X on Y. Research
investigating serial multiple mediator models may be less common than research
on parallel multiple mediator models. Yet, it is frequently possible to assume that
mediators are part of a longer causal chain.

In the free gift example, one could hypothesize, for instance, that the effect of a
large (vs. small) free gift on positive WOM intentions is in fact the result of an
immediate positive emotional response to encountering a sales promotion which is
then used as a basis for judging the hedonic benefits provided by the specific
promotion. That is, one could argue that a causal chain consisting of, first, a positive
emotional response and, second, perceived hedonic benefits, transmits the effect of
the large (vs. small) free gift on positive WOM intentions.

As in the case of the parallel multiple mediator model, the serial multiple mediator
model can be divided into total and specific indirect and direct components. The total
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Fig. 8 The conceptual diagram of a serial multiple mediator model in which the effect of X on Y is
transmitted through two mediators M1 and M2 operating in serial
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indirect effect is the sum of the specific indirect effects of X on Y through the
respective mediators, considered individually and in sequence (see Fig. 9). The
direct effect denotes the remaining effect of X on Y after controlling for the total
indirect effect. Together, the direct effect and the total indirect effect add up to the
total effect of X on Y.

Statistical Description of the Serial Multiple Mediator Model
Analogous to the previously presented mediation models, the serial multiple medi-
ator model with two mediators M1 and M2 (see Fig. 9) can be described by the
following linear equations predicting M1, M2, and Y:

M 1 ¼ im1 þ a1X þ em1 (14)

M 2 ¼ im2 þ a2X þ d21M1 þ em2 (15)

Y ¼ iy þ b1M 1 þ b2M 2 þ c0X þ ey (16)

The i parameters denote the intercepts, a1 estimates the effect of X on M1, and a2
estimates the effect of X on M2, controlling for the effect of M1 on M2 which is
captured by d21. The coefficient b1 denotes the effect of M1 on Y, controlling for
X and M2. Likewise, b2 denotes the effect of M2 on Y, controlling for X and M1. The
coefficient c0 estimates the effect of X on Y, controlling for M1 and M2. The error
terms are denoted by the respective e parameters. Generally, in a serial multiple
mediator model with j mediators, there are j + 1 equations required to describe the
model, one to predict each Mi and one to predict Y.

In a serial multiple mediator model with two mediators, three specific indirect
effects are to be estimated, one through each mediator (a1b1 and a2b2), and one
through both mediators (a1d21b2). The total indirect effect is the sum of the specific
indirect effects:

Total indirect effect : a1b1 þ a2b2 þ a1d21b2 (17)

The total effect is the sum of the total indirect effect and the direct effect c0:
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Fig. 9 The statistical diagram of a serial multiple mediator model in which the effect of X on Y is
transmitted through two mediators M1 and M2 operating in serial
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Total effect : c ¼ a1b1 þ a2b2 þ a1d21b2 þ c0 (18)

Again, the total indirect effect can also be computed by subtracting the direct
effect from the total effect:

Total indirect effect : c� c0 ¼ a1b1 þ a2b2 þ a1d21b2 (19)

These effects correspond to the following effects from the free gift example:
A specific indirect effect through the first mediator (positive emotional response) of
a1b1 = 0.001 indicates that controlling for all other indirect effects in the model, a
large (vs. small) free gift increases positive WOM intentions through a positive
emotional response by 0.001 units. Similarly, a specific indirect effect through the
second mediator (hedonic benefits) of a2b2 = 0.067 denotes that controlling for all
other indirect effects in the model, a large (vs. small) free gift increases positive
WOM intentions through hedonic benefits by 0.067 units. Finally, a specific indirect
effect through both mediators (first, the positive emotional response and then
hedonic benefits) of a1d21b2 = 0.037 denotes that a large (vs. small) free gift
increases positive WOM intentions by 0.037 units sequentially through a positive
emotional response which is associated with hedonic benefits which, in turn,
is associated with positive WOM intentions. The total indirect effect of
a1b1 + a2b2 + a1d21b2 = 0.105 shows that together, all three specific indirect effects
in the model account for a 0.105 unit increase in positive WOM intentions in
response to the large (vs. small) free gift. A direct effect of c0 = 0.114 indicates
that controlling for all specific indirect effects in the model (i.e., the total indirect
effect), a large (vs. small) free gift increases positive WOM intentions by 0.114 units.
The total effect c = 0.218 is the sum of the specific indirect effect through the first
mediator (positive emotional response), a1b1 = 0.001, the specific indirect effect
through the second mediator (hedonic benefits), a2b2 = 0.067, the specific indirect
effect through both mediators a1d21b2 = 0.037, and the direct effect c0 = 0.114, as
0.001 + 0.067 + 0.037 + 0.114 � 0.218 (the difference is due to rounding).

Hayes (2018) notes that while it is relatively easy to incorporate more than two
mediators in a parallel multiple mediator model, the number of specific indirect
effects quickly increases in a model with more than two mediators operating in
serial. This follows because there is one specific indirect effect through each
mediator, one specific indirect effect through each combination of two mediators,
one specific indirect effect through each combination of three mediators, and so
on. Yet, the same relations apply in such models: The specific indirect effects
comprise the total indirect effect and together with the direct effect they sum up to
the total effect. Moreover, the total indirect effect can be estimated by subtracting the
direct effect from the total effect.

Statistical Inference for the Serial Multiple Mediator Model
As for the parallel multiple mediator model, testing for mediation in the serial
multiple mediator model involves testing the total indirect effect as well as
the specific indirect effects. Again, there are several suitable methods to do so,
yet bootstrap confidence intervals have been demonstrated to perform very well
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(Taylor et al. 2008). In addition, as in the case of the parallel multiple mediator
model, specific indirect effects should be investigated irrespective of whether or not
the total indirect effect is significant (Hayes 2018).

In the free gift example, the results of the analysis are as follows: The bias-
corrected bootstrap confidence intervals for the specific indirect effect of the large
(vs. small) free gift on positive WOM intentions solely through the positive
emotional response as well as the specific indirect effect solely through hedonic
benefits include zero, that is, neither of the two effects is significant (a1b1 = 0.001,
bc.bci95% [�0.043; 0.046], a2b2 = 0.067, bc.bci95% [�0.010; 0.145]). However,
the specific indirect effect of the large (vs. small) free gift on positive WOM
intentions through both mediators sequentially, the positive emotional response
and hedonic benefits, is positive and significant (a1d21b2 = 0.037, bc.bci95%
[0.012; 0.072]). The total indirect effect is positive and significant as well
(a1b1 + a2b2 + a1d21b2 = 0.001 + 0.067 + 0.037 = 0.105, bc.bci95% [0.026;
0.192]). That is, as compared to consumers receiving a small free gift, consumers
receiving a large free gift show a more positive emotional response to the promotion
(a1 = 0.199), which, in turn, is associated with greater perceived hedonic benefits
(d21 = 0.241), and, as a consequence, positive WOM intentions are increased
(b2 = 0.767, a1d21b2 = 0.037, bc.bci95% [0.012; 0.072]). Furthermore, the positive
and significant total indirect effect suggests that a large (vs. small) free gift increases
positive WOM intentions through all three specific indirect effects at once
(a1b1 + a2b2 + a1d21b2 = 0.105, bc.bci95% [0.026; 0.192]).

Analogous to the parallel multiple mediator model, specific indirect effects can
also be contrasted in serial multiple mediator models. The logic is the same and,
again, a significant difference between two specific indirect effects can only be
interpreted as the one effect being larger than the other one if both specific indirect
effects have the same sign. In case they do not, the strength of the two specific
indirect effects may be compared by testing the difference between the absolute
values of the effects.

How to Interpret Results from Multiple Mediator Models
The crucial difference between a multiple mediator model and a single mediator
model lies in the number of mediators included in the model. As a consequence, the
interpretation of an “indirect effect” in a multiple mediator model differs from the
“indirect effect” in a single mediator model: In a single mediator model, the indirect
effect denotes the ability of a mediatorM to transmit the effect of X on Y. In a multiple
mediator model, however, there are multiple indirect components: While a specific
indirect effect quantifies the unique ability of a mediator Mi to transmit the effect of
X on Y taking the specific indirect effects of X on Y through other mediating variables
Mj into account, the total indirect effect denotes the ability of a set of mediators to
transmit the effect of X on Y. These distinctions should be carefully considered when
interpreting and comparing results from different single and multiple mediator
models (Hayes 2018).
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Mediation Models Including a Moderator: Conditional Process Models

The single mediator model can also be extended to include a moderator. Doing so
allows to account for the fact that mediation may work differently, for example, for
different people or under different circumstances. For instance, it could be of interest
in the free gift example to investigate whether the indirect effect of a large (vs. small)
free gift on positive WOM intentions through hedonic benefits is the same across
consumers differing in their general responsiveness to sales promotions. One might
argue that mediation is especially large for consumers that are very deal-prone, that
is, overall highly responsive to sales promotions (Lichtenstein et al. 1995), but
smaller for consumers that are overall not particularly deal-prone. Moreover, one
could hypothesize that as hedonic benefits are more likely to affect consumer
judgment if consumers pursue a hedonic consumption motive as compared to a
utilitarian consumption motive (Chandon et al. 2000), a large (vs. small) free gift
should increase positive WOM intentions through hedonic benefits if the promoted
product is associated with a hedonic consumption motive (e.g., a fashionable T-shirt
by a high-end brand), but not if it is generally purchased out of utilitarian motives
(e.g., a plain T-shirt to wear under a shirt).

Conceptual Description of Conditional Process Models
Mediation models with added moderators can generally be referred to as conditional
process models (Hayes 2018), but sometimes, a conceptual distinction is made
between moderated mediation and mediated moderation (e.g., Muller et al. 2005;
Preacher et al. 2007). In the prototypical moderated mediation, the research focus lies
on whether or not the mediation of X on Y through M is influenced by a moderating
variable W, which may affect different paths in the conditional process model. The
conceptual diagrams depicted in panel A and B in Fig. 10 are exemplary cases of
moderated mediation. Excluding the broken line, panel A shows a conditional
process model in which a moderatorW affects path a, the effect of X onM. Including
the broken line, the model assumes thatW also moderates path c0, the direct effect of
X on Y. These models correspond to the first research question mentioned above,
namely, whether the effect of a large (vs. small) free gift on positive WOM intentions
through perceived hedonic benefits is affected by consumers’ deal proneness, as
consumers’ deal proneness could be argued to influence the effect of a large
(vs. small) free gift on hedonic benefits (i.e., path a and possibly also path c0).

Panel B shows a conditional process model in which a moderator V affects path b,
the effect ofM on Y (excluding the broken line), but also a mediation model in which
path c0 is additionally affected by V (including the broken line). These models
correspond to the second question raised above, namely, whether the effect of a
large (vs. small) free gift on positive WOM intentions through hedonic benefits is
affected by the consumption motive associated with the promoted product, as this
moderator can be hypothesized to influence the effect of hedonic benefits on positive
WOM intentions (i.e., path b and possibly also path c0).
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In the prototypical mediated moderation, the focus lies on whether or not the
moderation of an effect of X on Y by W can be explained by a mediator. Thus, in
mediated moderation, the effect of an interaction between two variables (i.e., XW) on
Y is transferred through M (Hayes 2018). The respective conceptual diagram is
depicted in panel C in Fig. 10. This would correspond to the question whether the
effect of the interaction between the large (vs. small) free gift and consumers’ deal
proneness on positive WOM intentions can be explained by hedonic benefits. As it
will become clearer in the following section, mediated moderation is a special case
of moderated mediation. Hence, mediated moderation can be framed as moderated
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Fig. 10 Conceptual diagrams of exemplary conditional process models. While the model in panel
A and panel B are examples of moderated mediation, the model in panel C corresponds to a case of
mediated moderation

880 N. Koschate-Fischer and E. Schwille



mediation. Hayes (2018) even argues that mediated moderation should be framed as
moderated mediation, as the product between two variables and thus its indirect
effect may be difficult to interpret meaningfully.

Just like the previously presented mediation models, a conditional process model
can be divided into direct and indirect components which, if qualified by a moder-
ator, are referred to as conditional indirect effect and conditional direct effect.
Together, the (conditional) direct effect and the conditional indirect effect may be
added up to the total effect of X on Y.

Statistical Description of Conditional Process Models
In the following section, the three conditional process models depicted in Fig. 10
will be described statistically, starting with the conditional process model depicted in
panel A in which a moderator W affects path a (see panel A in Fig. 10 as well as
Fig. 11, excluding the broken lines). This conditional process model is described by
the following equations:

M ¼ im þ a1X þ a2W þ a3XW þ em (20)

Y ¼ iy þ bM þ c01X þ ey (21)
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Fig. 11 The statistical diagram of the conditional process model depicted in panel A in Fig. 10 in
which a moderator W affects path a (solid lines) as well as path c0 (broken lines)
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The i parameters in Eqs. 20 and 21 denote the intercepts, a1 estimates the effect of
X on M, a2 the effect of W on M, and a3 the effect of their interaction XW on M,
respectively, controlling for the remaining variables in the equation. The effect of
M on Y controlling for X is indicated by b and the effect of X on Y controlling forM is
estimated by c01. The error terms are denoted by the respective e parameters. If the
direct effect is conditional on W as well (see panel A in Fig. 10 as well as Fig. 11,
including the broken lines), additional c0 parameters would be added to Eq. 21 to
denote the partial effects of W and XW on Y resulting in the following equation:

Y ¼ iy þ bM þ c01X þ c02W þ c03XW þ ey (22)

Irrespective of whether or not a moderator W affects path c0, if W moderates path
a, the effect of X on M, the conditional indirect effect is denoted as

Conditional indirect effect : ωxw ¼ a1 þ a3Wð Þb (23)

Rewritten as

ωxw ¼ a1bþ a3bW (24)

it becomes evident that the conditional indirect effect ωxw is a linear function of the
moderatorW. That is, there is no single numeric estimate for the conditional indirect
effect but many, depending on the value of W.

Hayes (2015) coined the term index of moderated mediation for the weight of the
moderator a3b in Eq. 24 which quantifies the linear dependency of the conditional
indirect effect on the moderator W. Specifically, the index of moderated mediation
denotes the difference between the conditional indirect effects of participants differ-
ing by one unit on the moderatorW. Hence, ifW is a dichotomous variable indicating
two experimental groups and coded with “0” and “1,” the index of moderated
mediation denotes the difference of the conditional indirect effects in those two
groups (Hayes 2015).

The direct effect is denoted by c01 if unconditional. If conditional on a moderator
W (see broken lines in Fig. 11), it is denoted by

Conditional direct effect : c01 þ c03W (25)

which shows that if the direct effect is moderated byW, the remaining effect of X on
Y controlling for the conditional indirect effect varies depending on values of W.

The total effect c is again the sum of the (conditional) direct effect and the
conditional indirect effect. If W solely moderates the effect of X on M (Fig. 11,
excluding the broken lines), the total effect is denoted by

Total effect : c ¼ ωxw þ c0 ¼ a1 þ a3Wð Þbþ c0 (26)

The linear dependency of a conditional indirect effect on a moderator described
above is visualized in Fig. 12 which is based on results from the free gift example:
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While the y-axis denotes the magnitude of the effect of a large (vs. small) free
gift (X) on positive WOM intentions (Y ), the x-axis indicates the values of
the metric (and mean centered) moderator deal proneness (W ). The solid
line represents the conditional indirect effect of X on Y through M, which is
ωxw = a1b + a3bW = 0.052 � 0.767 + 0.165 � 0.767 � W = 0.040 + 0.126 � W
(see also Eq. 24). As the conditional indirect effect ωxw is dependent onW, the slope
of the solid line in Fig. 12 is nonzero: The conditional indirect effect of a large
(vs. small) free gift on positive WOM intentions through hedonic benefits is
descriptively positive for highly deal-prone consumers (e.g., for W = 2,
ωxw = 0.04 + 0.126 � 2 = 0.292), but negative for low deal-prone consumers
(e.g., for W = �2, ωxw = 0.04 + 0.126 � (�2) = �0.212). The slope of the graph
depicting the conditional indirect effect corresponds to the index of moderated
mediation, which is a3b = 0.126.

The broken line in Fig. 12 denotes the direct effect of X on Y which, in contrast to
the conditional indirect effect, is not affected by a moderator and denoted by
c0 = 0.115. That means, the direct effect of a large (vs. small) free gift on positive
WOM intentions is c0 = 0.115 for highly deal-prone consumers, but also for low
deal-prone consumers. Hence, the broken line is horizontal.

The equations describing a conditional process model in which path b is moder-
ated by V (see panel B in Fig. 10, excluding the broken lines) follow the same
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principles just applied to the case in which a moderator W affects path a. The
conditional process model is described by

M ¼ im þ aX þ em (27)

Y ¼ iy þ b1M þ b2V þ b3MV þ c01X þ ey (28)

The i parameters denote the intercepts and a estimates the effect of X on M.
Controlling for the remaining variables in the equation, the effect of M on Y is
estimated by b1, the effect of Von Y by b2, the effect of their interaction MVon Y by
b3, and the effect of X on Y by c01. The error terms are denoted by the respective
e parameters. As Eqs. 27 and 28 show,M is a simple function of X. Y, however, is not
only affected by X andM but also by V and by the interactionMV. If the direct effect
were conditional on V as well (see panel B in Fig. 10, including the broken line), an
additional c0 parameter would be added to Eq. 28 to denote the partial effect of XVon
Y. The resulting equation would be

Y ¼ iy þ b1M þ b2V þ b3MV þ c01X þ c02XV þ ey (29)

Irrespective of whether or not a moderator V affects path c0, if Vmoderates path b,
the effect of M on Y, the conditional indirect effect is denoted as

ωmv ¼ a b1 þ b3Vð Þ ¼ ab1 þ ab3V (30)

In this conditional process model, the index of moderated mediation is indicated
by ab3. The direct effect is again denoted by c01 if unconditional, yet, if conditional
on the moderator V (see panel C in Fig. 10, including the broken line), it is described
by the following equation:

Conditional direct effect : c01 þ c02V (31)

As can be seen from Eqs. 25 and 31 (see also Eqs. 22 and 29 for the interpretation
of c03 and c02, respectively), the equation for the conditional direct effect has the same
form irrespective of whether a moderator affects path a and path c0 or path b and
path c0.

The total effect c is again the sum of the (conditional) direct effect and the
conditional indirect effect. If V solely moderates the effect of M on Y, the total effect
is denoted by

Total effect : c ¼ ωmv þ c0 ¼ a b1 þ b3Vð Þ þ c0 (32)

The equations underlying the mediated moderation depicted in panel C in Fig. 10
are the following:

M ¼ im þ a1X þ a2W þ a3XW þ em (33)

Y ¼ iy þ bM þ c01X þ c02W þ c03XW þ ey (34)
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As can be seen, Eqs. 20 and 33 as well as Eqs. 22 and 34 are identical. That is,
mediated moderation as shown in Fig. 10 (panel C) is statistically identical to the
case of moderated mediation in which a moderator W affects path a and path c0

(Fig. 10, panel A) and corresponds to the statistical model shown in Fig. 11
(including the broken lines). Hence, the same relations apply for mediated moder-
ation as for this case of moderated mediation.

The equations describing other conditional process models (e.g., in which a
moderator Z affects path a and path b simultaneously) follow the same general
principles applied in the examples outlined above. They can be found in publications
by, for example, Edwards and Lambert (2007), Preacher et al. (2007), and Hayes
(2018).

Statistical Inference for Conditional Process Models: Conditional
Process Analysis
Testing for moderated mediation in conditional process models is somewhat differ-
ent from testing for mediation in single or multiple mediator models, as no single
numerical estimate for “the conditional indirect effect” can be tested against zero
with the help of a bootstrap confidence interval. Instead, as mentioned above, there
are multiple numerical estimates of the conditional indirect effect for different values
of the moderator (see Fig. 12), and the question of interest is whether they differ
significantly from each other. Different approaches have been introduced to answer
this question (e.g., Edwards and Lambert 2007; Fairchild and MacKinnon 2009;
Hayes 2015; Muller et al. 2005; Preacher et al. 2007). They can generally be referred
to under the term conditional process analysis (Hayes 2018).

Earlier approaches (e.g., Muller et al. 2005) implicitly or explicitly rely on the
assumption that to establish moderated mediation, one or more paths in the condi-
tional process model need to be significantly moderated. These approaches test
moderated mediation, for example, by testing the individual paths in a conditional
process model and whether or not they are moderated (Muller et al. 2005) or by
extending simple slopes analysis and the Johnson-Neyman technique to determine
the significance of the conditional indirect effect at a few (similar to simple slopes
analysis) or all (similar to the Johnson-Neyman technique) values of the moderator
(Preacher et al. 2007).

It has been pointed out, however, that testing whether a constituent path in the
conditional process model is significantly moderated or whether an indirect effect
for one or more specific values of the moderator is different from zero is concep-
tually different from testing whether mediation, that is, the indirect effect, is
moderated (Fairchild and MacKinnon 2009; Hayes 2015). In other words, testing
moderation of the individual paths in a conditional process model or probing the
indirect effect for different values of the moderator is useful for descriptive
reasons, but it does not address the central question of interest in conditional
process analysis.

Addressing this aspect, a further approach to testing moderated mediation is
provided by Hayes (2015). He argues that moderated mediation can be demonstrated
by testing the index of moderated mediation which, as noted above, corresponds to
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the weight of the moderator in the equation for the conditional indirect effect (see
Eqs. 24 and 30). If the index of moderated mediation is different from zero, the
conditional indirect effect significantly varies as a linear function of the moderator.
For example, if the index of moderated mediation in the free gift example
(a3b = 0.126) is different from zero, it could be concluded that the effect of a
large (vs. small) free gift on positive WOM intentions through hedonic benefits is
significantly moderated by consumers’ deal proneness: The indirect effect would be
more positive for highly deal-prone consumers (i.e., consumers that score high on
the moderator) as compared to low deal-prone consumers. Specifically, it would be
0.126 units more positive for every unit increase in deal-proneness.

To test the index of moderated mediation, a bootstrap confidence interval can be
computed. Hayes (2015) shows that if this confidence interval excludes zero, it can
be concluded that any two conditional indirect effects for different values of a
moderator (e.g., plus and minus one standard deviation from the mean) signifi-
cantly differ from each other. In the free gift example, the index of moderated
mediation is found to be nonsignificant as the bootstrap confidence interval
includes zero (a3b = 0.126, bc.bci95% [�0.014; 0.284]). Hence, it cannot be
concluded that the indirect effect of a large (vs. small) free gift on positive
WOM intentions through hedonic benefits is moderated by consumers’ deal-
proneness.

The shift in focus in conditional process analysis from the moderation of a
specific path in earlier approaches (e.g., Muller et al. 2005) to the moderation of
the indirect effect in the approach by Hayes (2015) can lead to situations in which
significant moderation of the indirect effect is found in the absence of significant
moderation of an individual path of the indirect effect, and vice versa. Furthermore,
it may happen that the index of moderated mediation is not significant, but there are
differences in the significance of conditional indirect effects for different values of
the moderator, and vice versa.

Take, for instance, the results from the analysis testing whether the effect of a
large (vs. small) free gift on positive WOM intentions through hedonic benefits
is dependent on consumers’ deal proneness (see Fig. 11): The regression coefficient
denoting the moderating effect of W on path a, a3, is not significant (a3 = 0.165,
p = 0.087) and neither is the index of moderated mediation, as pointed out above
(a3b = 0.126, bc.bci95% [�0.014; 0.284]). However, a significant indirect effect is
found for highly deal-prone consumers (consumers one standard deviation above the
mean, abdealprone+ = 0.230, bc.bci95% [0.056; 0.415]), but not for low deal-prone
customers (consumers one standard deviation below the mean, abdealprone-=�0.149,
bc.bci95% [�0.469; 0.143]). Hence, it cannot be concluded that the effect of a large
(vs. small) free gift on hedonic benefits (i.e., path a) is moderated by consumers’ deal
proneness (a3 is nonsignificant). Moreover, it cannot be said that the conditional
indirect effects of a large (vs. small) free gift on positive WOM intentions through
hedonic benefits for differently deal-prone consumers differ from each other (a3b,
the index of moderated mediation is not significant). However, a positive conditional
indirect effect of a large (vs. small) free gift on positive WOM intentions through
hedonic benefits is found for highly deal-prone consumers (abdealprone+ is

886 N. Koschate-Fischer and E. Schwille



significant), but not for low deal-prone consumers (abdealprone- is not significant). In
situations like these, we argue that the test corresponding most closely to the specific
research question investigated should be given the greatest weight in a researcher’s
judgment. Furthermore, we emphasize again that moderation of the indirect effect
cannot be inferred from the mere observation that mediation occurs for some values
of the moderator, but not for others (Hayes 2015).

Variable Metrics
A dichotomous or continuous moderator can easily be incorporated into regression-
based mediation analysis. Multicategorical moderators can be included as a set of
indicator variables (Hayes 2017), again, each representing a comparison of one
category (or a set of categories) to another category (or a set of categories, see,
e.g., Darlington and Hayes 2017).

Further Mediation Models

In the following section, further, more complex mediation models are described.
These are models with multiple mediators and moderators, and with more than one
predictor or outcome. Furthermore, we touch upon mediation analysis for longitu-
dinal and multilevel data. Although these models generally go beyond the scope of a
mere introduction to mediation analysis in an experimental context, we address them
briefly as they, first, illustrate how the principles applied above can be extended to
more complex mediation models and, second, account for assumptions in mediation
analysis frequently not considered (omitted variables, timing of mediation, or
nested data).

Notably, with some exceptions, the following models go beyond the scope of the
OLS regression-based approach to mediation analysis. However, they can be ana-
lyzed with the help of other methods (e.g., structural equation modeling, see
▶ “Crafting Survey Research: A Systematic Process for Conducting Survey
Research,” this volume). Furthermore, it should be emphasized that mediation
models do not have to be complex in order to be of scientific value. Rather, the
complexity of the model should be determined weighing the principle of parsimony
against the premise to include all important causal variables in the model while
keeping in mind that bias due to measurement error is a more serious issue in
complex mediation models (Cole and Preacher 2014).

Mediation Models with Multiple Mediators and Moderators
Multiple mediator models can also include moderators (see conceptual diagrams in
panel A and panel B in Fig. 13 depicting a moderated parallel multiple mediator
model and a moderated serial multiple mediator model, respectively). Furthermore,
in multiple mediator models with three or more mediators, serial and parallel
mediation can be combined (Hayes 2018).

If a conditional process model includes more than one moderator (see panel C and
panel D in Fig. 13 for examples), it can be distinguished between the concepts of
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partial moderated mediation, conditional moderated mediation, and moderated
moderated mediation (Hayes 2017). Partial moderated mediation refers to the
question whether a conditional indirect effect of X on Y through M is moderated
by a moderator W1 while a second moderator W2 affecting the same path is held
constant (see panel C in Fig. 13). That is, partial moderated mediation denotes the
moderating ability of W1 independent of W2. In conditional moderated mediation
and moderated moderated mediation, a second moderatorW2 affects the effect ofW1

(see panel D in Fig. 13 for an example). Hence, the moderation of W1 is dependent
on W2. In this scenario, two questions may be of interest: First, is the conditional
indirect effect moderated by W1 when W2 takes a specific value? Second, does the
moderating ability of W1 change if W2 changes? Conditional moderated mediation
refers to the first question, that is, whether a conditional indirect effect of X on
Y through M is moderated by a moderator W1 at a specific value of W2. Moderated
moderated mediation addresses the second question, that is, whether the moderation
of a conditional indirect effect by a moderatorW1 changes if a second moderatorW2

changes. Details on these concepts, specifically, how to quantify and test them, are
discussed by Hayes (2017).

Whether a mediator can be a moderator at the same time is a topic of debate.
While some argue that one and the same variable can mediate as well as moderate a
relationship between X and Y (e.g., Frazier et al. 2004), others differentiate more
(e.g., Kraemer et al. 2002; Kraemer et al. 2008) or less strictly (e.g., Baron and
Kenny 1986) between the conceptual definitions of a mediator and a moderator.
Without taking a definite stand on the question, we think it is important to be aware
of the conceptual and the statistical level of the debate: Differentiating clearly
between a moderator and a mediator on a conceptual level does not mean that
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Fig. 13 Conceptual diagrams of mediation models with additional mediators as well as moderators
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evidence for a mediating process cannot be provided by testing the significance of
interaction effects (e.g., Jacoby and Sassenberg 2011; Kraemer et al. 2002, 2008;
Pirlott and MacKinnon 2016; Spencer et al. 2005).

Moreover, while one might consider the same variable as a mediator in one model
and as a moderator in another, it is another question to consider a variable simulta-
neously as mediator and moderator in the same model (Hayes 2018). Pieters (2017),
for instance, finds no such model being tested in a review of N = 138 papers
published in the Journal of Consumer Research between 2014 and 2016, which
included N = 166 mediation analyses. We contend that one possible reason for the
unusualness of models in which a variable acts as a mediator and moderator
simultaneously (see Fig. 5 for such a case) is that it may be rather challenging (albeit
likely not impossible) to theoretically deduct hypotheses for this situation. Such a
model would, for instance, correspond to a hypothesis stating that the direct effect of
a large (vs. small) free gift on positive WOM intentions, namely, the effect of a large
(vs. small) free gift on positive WOM intentions controlling for the influence of
hedonic benefits, is different for consumers perceiving high hedonic benefits from
the sales promotion than for consumers perceiving low hedonic benefits from the
sales promotion. However, we also see that it is mathematically possible and that
researchers test such models (e.g., Kraemer et al. 2002, 2008).

Mediation Models with Multiple Predictors and Outcomes
Mediation models can be extended to include multiple predictor or outcome vari-
ables. These more extensive mediation models can be referred to as path analysis
(mediation) models (MacKinnon 2008). Including more than one predictor in a
mediation model (e.g., by adding covariates to the model or multiple indicator
variables in case an independent variable is multicategorical) does not pose much
difficulty to OLS regression-based mediation analysis. Each predictor Xi or covariate
Ui is assigned a specific effect onM or Y, which is interpreted as the respective ability
of Xi or Ui to predictM or Y, controlling for the effects of all other variables affecting
M or Y (see Fig. 14).
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Fig. 14 Conceptual diagram
of a mediation model with
several predictors Xi as well
as a covariate U affecting
M and Y
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Including more than one outcome in a mediation model generally goes beyond
what regression analysis can do, and the use of structural equation modeling
becomes necessary to estimate the respective path coefficients (MacKinnon 2008).
However, Hayes (2018) points out that, if no relationships between the dependent
variables Yi are modeled, regression analysis can be used to analyze mediation
models in which X’s effect on multiple Yi is transmitted through one or more Mi.
Then, the estimated indirect effect on Yi will be the same, regardless of whether the
model was fitted simultaneously with structural equation modeling or by a series of
separate regressions.

Incorporating Time and Nested Data in Mediation Analysis
Two emerging research fields in mediation analysis are longitudinal mediation
analysis and multilevel mediation analysis. Describing them in detail is beyond the
scope of this chapter (for overviews, see Preacher 2015 and MacKinnon 2008).
However, we briefly address why mediation analysis for longitudinal and multilevel
data is relevant.

Development in time is a crucial, albeit often implicit, aspect of mediation
analysis: As a cause must precede an effect, time must elapse for X to cause M and
for M to cause Y. Cole and Maxwell (2003) argue that mediation analysis based on
cross-sectional designs (i.e., designs in which X, M, and Y are measured simulta-
neously and only once) provide accurate information about a mediation process
unfolding over time only under rather limited conditions (see also Maxwell and Cole
2007; Maxwell et al. 2011). Time can be incorporated into mediation analysis
through longitudinal designs, that is, repeated measurement of X, M, and
Y (MacKinnon 2008; Preacher 2015). An exemplary longitudinal mediation model
is depicted in Fig. 15. Longitudinal designs control for error resulting from individ-
ual differences and other unobserved variables. However, they are usually affected
by common method bias.

Mediation analysis can also accommodate multilevel data, for example, con-
sumers nested in different geographical regions or repeated measurements nested
in one participant (Preacher 2015; Tofighi and Thoemmes 2014). An exemplary
multilevel mediation model is depicted in Fig. 16. In nested datasets, the assumption

Xt1

Mt1

Yt1

Xt2

Mt2

Yt2

Xt3

Mt3

Yt3

Fig. 15 An exemplary
conceptual diagram of a
longitudinal mediation model
in which X, M, and Y are
measured three times (at t1, t2,
and t3) and the variables are
affected by their hypothesized
cause as well as by themselves
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of independent error terms is violated (chapter▶ “Multilevel Modeling” by Wieseke
et al., this volume). If this is unaccounted for, that is, if the nesting is ignored, the risk
of reporting a nonexistent indirect effect increases.

Strengthening Causal Inference in Mediation Analysis

Inferring causal relationships is the central idea of mediation analysis. Yet, the mere
statistical results obtained from mediation analysis do not allow researchers to draw
strong conclusions (if any) about the causal relationships between the variables
included in the model (e.g., Baron and Kenny 1986; Bollen 1989). According to
Cook and Campbell (1979), causality can be inferred when covariation, temporal
precedence, and absence of bias due to confounding variables is given. Hence, if a
significant indirect effect (i.e., covariation between X, M, and Y ) is found based on
simultaneously collected and nonexperimental data, alternative models in which
the variables are differently ordered could explain the data as well (e.g., Y could
precede M, which, in turn, could precede X, or M could precede X as well as Y ).
The observed relationships could also be a result of bias due to confounding vari-
ables. That is, there might be omitted variables causally influencing the variables in a
mediation model. Furthermore, the variables assessed for X, M, and Y may only be
correlates of the actual causes, mediators and consequences of an effect. Hayes
(2018) refers to this as epiphenomenality.

The following section describes how causal inference in mediation analysis can
be strengthened through design, the collection of further evidence, and statistical
methods. Taken by themselves, none of these methods is sufficient to establish
causality. In combination, however, they may strongly support a causal argument.
Beyond that, the most crucial method to strengthen causal inference in mediation
analysis is to provide strong theoretical support for one’s hypotheses tested.

Strengthening Causal Inference Through Design

Causal claims in mediation analysis can be strengthened through experimental
methods (Spencer et al. 2005; Stone-Romero and Rosopa 2008). Specifically,
randomizing X strengthens causal inference for the effect of X on M, as well as for

X

M Y

Level 2

Level 1

Fig. 16 An exemplary
conceptual diagram of a
multilevel mediation model in
which X is a level-2 variable
affecting M and Y which are
level-1 variables. This model
can be referred to as a 2-1-1
design
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the total effect of X on Y. This is, first, because X clearly precedes M as well as Y if it
is successfully manipulated, and, second, because possible confounding variables
are controlled for through the random assignment of participants to different levels
of X. Crucially, however, the randomization of X does not allow to causally interpret
the effect ofM on Y: As participants are not randomly assigned to a “level ofM,” path
b is correlational. Furthermore, as the indirect and the direct effect take path b into
account (see Eqs. 3 and 4), neither one of them can be interpreted causally.

RandomizingM has been suggested as a way to strengthen causal inference about
the relationship between M and Y, for example, by conducting double randomized
experiments (Spencer et al. 2005; Stone-Romero and Rosopa 2008; for an overview
of different design approaches to manipulate mediators and mediating effects, see
Pirlott and MacKinnon 2016). Double randomized experiments consist of a series of
experiments. These are composed, first, of a study randomizing X and measuring
M (and Y ) and, second, of a study randomizing M and measuring Y (further studies
investigating the hypothesized causal effect could be added to probe, e.g., whether
Y does not cause M, as hypothesized). Evidently, data collected from a chain of
experiments is not analyzed using mediation analysis (but, for instance, through
analysis of variance, see chapter ▶ “Analysis of Variance” by Landwehr, this
volume).

Establishing the causal chain from X to Y via M through multiple experiments
provides strong causal evidence for the hypothesized relationships (Stone-Romero
and Rosopa 2008). However, there are several difficulties associated with double
randomized experiments (e.g., Bullock et al. 2010; Kenny 2008; MacKinnon 2008;
Preacher 2015; Spencer et al. 2005; Stone-Romero and Rosopa 2008). Among other
concerns, it has been noted that running double randomized experiments (just like
experiments in general, see chapter ▶ “Field Experiments” by Valli et al., this
volume) may not always be possible (e.g., because an active manipulation of X or
M is not feasible, true randomization cannot be achieved, or a suitable control group
cannot be identified) or desirable (e.g., because an active manipulation would be
unethical). Furthermore, experimental designs may be somewhat artificial with
regard to the operationalization employed (e.g., the manipulation of X or measure-
ment of Y ) and the setting chosen (e.g., the laboratory). This may cast doubt on the
construct validity of the manipulations and measures, and on the external validity of
the results obtained. In addition, double randomization assumes that measuring
M (in a study in which X is randomized andM is measured) is equal to manipulating
M (in a study in which the effect of M on Y is demonstrated), which may not be the
case. Spencer et al. (2005) suggest running double randomized experiments only if
the proposed mediating process is easy to manipulate and measure. If this does not
apply (e.g., if the mediator is hard to measure but easy to manipulate), Spencer et al.
(2005) recommend that other designs be employed.

If (double randomized) experiments cannot be conducted, it may seem reasonable
to apply a sequential design to strengthen causal inference in mediation analysis, that
is, to measure X,M, and Yon three subsequent points in time and hence “allow” X to
“precede” M and M to “precede” Y. However, the logic of a sequential design is
problematic as the measurement of a construct is independent of the conceptual
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timing of a construct: Just because M is measured after X and Y is measured after
X and M, one cannot conclude that X precedes M and M precedes Y (Cole and
Maywell 2003). As a consequence, a sequential design by itself does not improve
causal inference. Besides that, note that the independence of measurement and
timing of a construct also implies that, unless the act of measuring Y affects M,
Ymay just as well be assessed beforeMwithout impairing causal inference (Lemmer
and Gollwitzer 2017).

Generally, we recommend to apply experimental methods as often as possible
while being aware of their limitations in establishing the causal claim that X affects
Y through M. Moreover, we encourage readers to run multiple, methodologically
diverse studies testing the proposed mediating process as this can compensate for
methodological limitations arising when demonstrating mediation only through a
single (type of) study. A selective overview of possible strategies to do so is given in
the following section.

Strengthening Causal Inference Through the Collection of Further
Evidence

Causal inference on mediation can be strengthened through the collection of further
evidence after initial support for a proposed mediating process has been found.
Specificity designs allow to investigate mediation in greater detail (Preacher 2015),
either by isolating the relevant mediator among different possible mediators or by
identifying conditions under which mediation is strengthened (enhancement
designs) or weakened (blockage design). This can be done through analyzing
mediation models with additional mediators or moderators that enhance or block
the proposed mediating process (MacKinnon 2008; Pirlott and MacKinnon 2016).

In the free gift example described previously, for instance, testing the parallel
multiple mediator model could be interpreted as an attempt to specify the proposed
mediator, hedonic benefits. Simultaneously considering two possible mediating
variables, hedonic and utilitarian benefits, allows to investigate whether it is specif-
ically hedonic benefits and not consumer benefits more broadly (i.e., including
utilitarian benefits) that transmit the effect of the large (vs. small) free gift on positive
WOM intentions.

The generalizability of a mediating process can be demonstrated through consis-
tency designs (Preacher 2015), that is, through replications of the initial study in
different contexts or employing different conceptually related measures or manipu-
lations (pattern matching, MacKinnon 2008). For instance, a causal claim for the
proposed mediation in the free gift example would be strengthened if the effect could
be replicated in a study that employs a tangible free gift instead of a gift card.

Further experimental designs to strengthen causal inference in mediation analysis
have been suggested by Imai et al. (2013). For instance, strong causal evidence for a
proposed mediating process can be provided by employing a parallel design which
essentially combines a measurement-of-mediation design (Spencer et al. 2005), that
is, a design in which only X is manipulated, but M and Y are measured, with a
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concurrent double randomization design (Pirlott and MacKinnon 2016) in which
both, X andM are simultaneously manipulated and only Y is measured. Furthermore,
Preacher (2015) points out that employing a within-subject design, that is, an
experiment in which participants are exposed to all levels of X, may be worthwhile
to strengthen causal inference, because participants then serve as their own controls
by simultaneously being in all experimental groups. Finally, MacKinnon (2008)
notes that the mediating process may also be investigated from a qualitative per-
spective, as the focus in quantitative research may be too much on issues of statistical
significance and less on the originally qualitative nature of a research question.

Strengthening Causal Inference Through Statistical Methods

Beyond experimental methods and collecting more data, statistical methods can also
contribute to strengthen causal inference in mediation analysis (see also chapter
▶ “Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers”
by Ebbes et al., this volume). Rooted in the potential outcomes framework, a formal
(i.e., theoretical) framework which specifies assumptions for causal inference (see
chapter ▶ “Field Experiments” by Valli et al., this volume), one group of statistical
methods specifically addresses the issue of bias due to omitted confounding vari-
ables (for an overview, see Imai et al. 2011; MacKinnon and Pirlott 2015; Preacher
2015). These methods either assess the degree to which results of mediation analysis
are affected by possible violations of the assumption that no confounding variable is
omitted from the model (through sensitivity analysis, e.g., Imai et al. 2010), or aim to
account for the influence of confounding variables (for an overview of different
methods, see MacKinnon and Pirlott 2015).

Note that one implicit assumption of these methods is that the causal order of the
variables in the mediation model is correctly specified which may not be the case.
Importantly, as illustrated by Lemmer and Gollwitzer (2017), testing for a different
causal order by comparing the size of indirect effects found in different possible
mediation models (e.g., a model assuming that X ➔ M ➔ Y and a model assuming
that X ➔ Y ➔ M ) while assuming that the mediation model for which the larger
indirect effect is found must be the correct one (“reverse mediation testing”), is
unlikely to be a helpful strategy to address this problem. Specifically, Lemmer and
Gollwitzer (2017) show that the size of the indirect effect is affected by a factor
completely unrelated to the true underlying causal order of the variables in
a mediation model, namely, measurement error associated with M and Y. As a
consequence, reverse mediation testing is rarely effective, likely ineffective, and
potentially misleading (Lemmer and Gollwitzer 2017; see also Thoemmes 2015).

Questions Arising When Implementing Mediation Analysis

In the following, selected questions arising when implementing mediation analysis
are addressed. Specifically, an overview of studies investigating required sample size
and power in mediation analysis is given, and reasons for mean centering variables
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in conditional process analysis as well as different coding schemes for categorical
independent variables are discussed. Furthermore, limitations of the regression-
based approach to mediation analysis are touched on and information is provided
as to different software options to perform mediation analysis.

Sample Size and Power in Mediation Analysis

In studies performing mediation analysis, sample size is often too small to achieve
sufficient power (Fritz and MacKinnon 2007). Hence, a note on optimal sample size
in mediation analysis, that is, the required sample size to detect mediation with a
power of 1�β = 0.8, seems warranted. Unfortunately, there is no easy rule of thumb.
Overall, however, it has been shown that the effect with the greatest power in a single
mediator model is the indirect effect and the power to detect both, the total and the
direct effect, tends to be considerably smaller (Kenny and Judd 2014; Rucker et al.
2011).

Optimal sample size in mediation analysis is (sometimes counterintuitively)
affected by the inferential approach, the size of the indirect effect and the individual
paths, reliability of the measures, and the complexity of the mediation model.
For instance, Fritz and MacKinnon (2007) investigate the required sample size to
detect an indirect effect in a single mediator model comparing six different inferen-
tial approaches. They report that to detect a small indirect effect using a bias-
corrected bootstrap confidence interval, the minimal sample size required to achieve
a power of 1�β = 0.8 may be well above N = 400. If the indirect effect is large, the
required sample size drops to approximately N � 40. The percentile bootstrap
confidence interval is somewhat more conservative and, hence, requires slightly
larger sample sizes to achieve sufficient power (Fritz and MacKinnon 2007; see also
MacKinnon et al. 2004).

Taylor et al. (2008) provide evidence on the performance of different inferential
approaches to test the three-path specific indirect effect in a serial multiple mediator
model. They find that the bias-corrected bootstrap confidence interval performs well
in samples larger than N = 200. Yet, Pieters (2017) describes an example in which a
sample size of N = 450 is necessary to detect a three-path specific indirect effect of
a1d21b2 = 0.02 with a power of 1�β = 0.8. Thoemmes et al. (2010) point out that in
multiple mediator models, the power to detect individual paths and total as well as
specific indirect effects can vary considerably. For example, a larger specific indirect
effect may be sufficiently powered given a particular sample size, yet a smaller
specific indirect effect may be greatly underpowered. Williams and MacKinnon
(2008) report that, given a specific sample size, specific indirect effects consisting
of three paths are harder to detect than are two-path specific indirect effects.

Fairchild and MacKinnon (2009) report that when performing conditional pro-
cess analysis, the required sample size to reach a power of 1 – β = 0.8 might be as
large as N = 500 or even N = 1,000, depending on how much variance is explained
by the model (the more, the better). These results are in accordance with results
reported by Pieters (2017) who found a sample size of N = 500 to be needed to
demonstrate moderated mediation. Morgan-Lopez and MacKinnon (2006) further
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show that power to detect mediated moderation is impaired when the direct effect in
the model is nonzero and the independent variable and the moderator are correlated.

Hoyle and Kenny (1999) point out that measurement error affecting the mediator
can decrease power to detect mediation. Furthermore, they argue that large collin-
earity between X andM (corresponding to a large effect of X onM in an experimental
context) negatively affects power in mediation analysis as it reduces the amount of
variance inM that can contribute to predict Y (i.e., path b) and, consequently, the size
of the indirect effect.

When data collection is complicated or expensive, sample size will likely be
small. Increasing power in mediation analysis without increasing sample size can
be achieved by maximizing variance in the independent variable, the mediator, or the
dependent variable and by minimizing error variance (Fairchild and MacKinnon
2009; MacKinnon et al. 2013; Fritz et al. 2015). This can be achieved by design
(e.g., by ensuring that the experimental manipulation is sufficiently strong),
improved measurement (i.e., minimizing measurement error), or statistical methods
(e.g., decreasing error through the inclusion of covariates or the use of structural
equation modeling). Power could also be increased by using modern missing data
techniques instead of listwise deletion of cases (Fritz et al. 2015), or simply by
increasing alpha (Fairchild and MacKinnon 2009). However, Fritz et al. (2015)
demonstrate that some measures intended to increase power may also have the
opposite effect under specific circumstances (e.g., when there is not enough power
to detect the effect of a covariate included to reduce error).

Mean Centering in Conditional Process Analysis

In conditional process analysis, it is sometimes recommended to mean center vari-
ables composing an interaction term (e.g., Muller et al. 2005). It has been argued that
this reduces multicollinearity between the predictors (e.g., X and W ) and interaction
terms (e.g., XW) in the model, but this argument has been rebutted several times
(Dalal and Zickar 2012; Echambadi and Hess 2007; Hayes 2018). However, mean
centering variables without a meaningful zero point improves the interpretability of
regression coefficients in conditional process analysis (see also chapter ▶ “Regres-
sion Analysis” by Skiera et al., this volume).

For instance, earlier, we discussed a conditional process model in which the
effect of a large (vs. small) free gift (X) on positive WOM intentions (Y ) through
hedonic benefits (M ) is dependent on consumers’ deal proneness (W ). Assuming
that W only affects path a, the equations describing the model look as follows (see
Eqs. 20 and 21): M = im + a1X + a2W + a3XW + em and Y = iy + c01X + bM + ey. As
the interaction between X and W is included in the model predicting M, the effect of
X on M is modeled to depend on W. That is, the effect of X on M changes in value
depending on the value of W. The regression coefficient a1 denoting the effect of
X on M must, hence, be tied to a specific value of W and this value is zero. If W is
measured on a scale ranging from 1 (not at all deal-prone) to 7 (very deal-prone),
zero is not meaningful and, as a consequence, neither is a1. However, if the
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moderator is mean centered, zero indicates the mean deal proneness in the sample
and a1 denotes the effect of the large (vs. small) free gift on hedonic benefits for
consumers with average deal proneness. Importantly, as interactions are symmetric,
the same reasoning applies to the effect of W on M, a2, which is only meaningful if
X has a meaningful zero point.

That is, centering affects the regression coefficients of the variables composing
the interaction term. However, it does not affect the regression coefficient associated
with the interaction term itself. Hence, to obtain meaningful regression coefficients
for variables composing an interaction term, it is important to ensure that these
variables have a meaningful zero point. Mean centering is one way of achieving this.

Coding of Categorical Independent Variables

When performing mediation analysis on data gathered in experiments, a coding
scheme has to be selected to translate qualitative information about experimental
groups into a set of quantitative indicator variables (Hayes and Preacher 2014).
The coding scheme determines how the regression coefficients of the indicator
variables are interpreted; hence, it should be selected carefully. There is a variety
of different coding schemes of which an overview is presented, for example, by
Darlington and Hayes (2017). To illustrate how coding affects the interpretation of
regression coefficients, and thus, indirect effects, we briefly discuss two common
coding schemes, dummy coding and effect coding.

When employing dummy coding (also called treatment coding or indicator
coding), each experimental group Gi is compared to a reference group GR. Accord-
ingly, the regression coefficients associated with dummy coded indicator variables
denote the mean difference between one group Gi and GR, respectively. Dummy
coded indicator variables consist of a series of zeros and ones representing these
contrasts (see, e.g., Darlington and Hayes 2017). In fact, in all analyses conducted
throughout this chapter, X is dummy coded and denoted by a variable taking the
value of zero for participants in the small free gift condition and the value of one for
participants in the large free gift condition. Consequently, the indirect effect is
interpreted as the effect of the large (vs. small) free gift on positive WOM intentions
through the respective mediator(s).

Effect coding (also called effects coding or sum coding) differs from dummy
coding in that the individual groups Gi are compared to the grand mean, that is, the
overall mean of the to-be-predicted variable across all groups. Accordingly, the
regression coefficients associated with the indicator variables represent the mean
deviation of a group Gi from the grand mean. In the simplest case, an effect coded
indicator variable representing two experimental groups takes the values 1 and �1
(for more examples, see, e.g., Darlington and Hayes 2017). For instance, the
independent variable from the free gift example could also be denoted by an
indicator variable taking the value of 1 for participants in the large free gift condition
and the value of �1 for participants in the small free gift condition. In this case, an
indirect effect of ab = 0.051 indicates that, as compared to the mean positive WOM
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intentions in the overall sample, a large free gift increases participants positive
WOM intentions through hedonic benefits by 0.051 units.

Hair et al. (2006) argue that dummy coding is the most appropriate coding for
an experiment in which there is a control group (GR) that one or more experi-
mental groups (Gi) are to be compared to. More generally, we would argue that
whichever coding scheme should be employed depends on the research question
investigated and the specific hypotheses to be tested. Notably, results obtained
from analysis of variance can be replicated using regression analysis, namely, if
the independent variable(s) are effect coded (chapter ▶ “Analysis of Variance”
by Landwehr, this volume). This emphasizes the usefulness of regression anal-
ysis for analyzing data gathered in experiments.

Regression Analysis Versus Structural Equation Modeling

It was pointed out earlier that the linear equations describing a mediation model can
be fitted sequentially with the help of regression analysis or simultaneously using
structural equation modeling (SEM, ▶ “Crafting Survey Research: A Systematic
Process for Conducting Survey Research,” this volume). There is a lively debate
about which approach, regression analysis or SEM, is better when it comes to
mediation analysis (e.g., James et al. 2006; Iacobucci et al. 2007; Hayes et al.
2017; Pek and Hoyle 2016). Reasonable arguments have been presented for either
side referring to conceptual and statistical differences between the two approaches.
Ultimately, we leave it up to the reader which approach to take. However, to enable
an informed decision, we summarize important differences, shortcomings, and
advantages of either approach in the following section.

On a conceptual level, the two approaches differ with regard to their focal
mediation paradigm (James et al. 2006). Specifically, as a consequence of traditions
specific to either approach, the default mediation model in regression-based medi-
ation analysis assumes that X may directly affect Y even after controlling for M, as
this is presumably likely the case in psychological research where the regression-
based approach to mediation analysis originated (Baron and Kenny 1986). Within
the SEM approach, however, whether or not the direct effect is included in the model
depends on a priori considerations specific to the research question. As a conse-
quence, James et al. (2006) argue that the SEM approach is more parsimonious, and
hence, more in accordance with scientific principles.

With regards to statistical differences, it is important to consider that SEM
encompasses regression analysis, meaning that any model that can be estimated
with regression analysis can also be estimated with SEM. However, as men-
tioned above, the two approaches differ when it comes to fitting a mediation
model. Whereas, in the regression-based approach, the equations describing the
mediation model are sequentially fitted for each criterion Mi and Y, they are
simultaneously fitted in the SEM approach. This has several consequences. First,
it has been argued that simultaneously fitting the whole mediation model is
closer to the conceptualization of mediation as one process as compared to a
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causal chain of separate effects (Pek and Hoyle 2016). Second, the SEM
approach is more flexible with regards to the complexity of the model fitted.
For instance, while it is not possible to fit mediation models including multiple
correlated mediators and outcomes with regression analysis (e.g., longitudinal
mediation), such models can be analyzed within a SEM framework. At the same
time, however, computational tools such as PROCESS, a macro for SPSS and
SAS, relying on regression analysis (Hayes 2018) accommodate a variety of
mediation models common to experimental research and will, hence, be suffi-
cient in many cases. Third, it is possible in SEM, but not in regression analysis,
to assess how well the mediation model fits the data. This allows to evaluate a
specific mediation model as well as to compare multiple mediation models to
each other. Hayes et al. (2017) argue, however, that information about a medi-
ation model’s fit carries little additional insight: First, fit for saturated models,
that is, mediation models that include all possible paths, is likely perfect.
Moreover, slightly different mediation models may fit equally well. Finally,
testing the significance of specific coefficients is likely to carry more weight in
a researcher’s judgment than information about fit, as hypotheses generally refer
to such specific coefficients (e.g., the index of moderated mediation or a specific
indirect effect in a multiple mediator model).

Furthermore, while regression analysis is based on the assumption that latent
constructs can be inferred from measured variables without measurement error, SEM
estimates measurement error by statistically differentiating between manifest, that is,
measured variables and latent variables. Provided that all assumptions underlying
the estimation of latent variables are met, this accounts for the unreliability of
measured variables. However, Pek and Hoyle (2016) note that there is a bias-
efficiency trade-off to adding latent variables to a mediation model, as their inclusion
to the model (just as the inclusion of manifest variables) makes it necessary to
estimate more parameters which, all else being equal, may reduce the power of the
analysis. Another issue with latent variables arises in conditional process analysis as
the benefits of accounting for measurement error have to be weighed against
considerable methodological uncertainty associated with estimating interactions
between latent variables (Hayes et al. 2017).

Finally, Hayes et al. (2017) point out that SEM software may have more sophis-
ticated options to deal with missing data than more basic statistical software.
Furthermore, Hayes (2018) notes that with small samples, which are common in
experimental research, SEM programs may be slightly biased as their standard errors
may be underestimated in such conditions. However, Iacobucci et al. (2007) show
that SEM performs well with samples as small as N = 30.

Overall, though, Hayes (2018) sees little justification in the general claim that
SEM is the better approach to mediation analysis than regression analysis. Assuming
that both approaches are suitable to analyze a mediation model, he argues that
differences observed in the results from regressions and SEM (e.g., estimates of
coefficients or boundaries of bootstrap confidence intervals) are indicative of com-
putational characteristics of a specific SEM software rather than an actual difference
between both methods in their ability to reveal mediation.
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Software Tools for Mediation Analysis

An increasing variety of software tools enable commonly used statistic programs
such as SPSS, SAS, or R to perform mediation analysis. For instance, PROCESS,
the previously mentioned macro for SPSS and SAS (www.processmacro.org,
Hayes 2018), allows researchers to analyze a considerable range of mediation
models combining several inferential methods within the regression-based approach:
PROCESS performs the causal steps procedure, runs the Sobel test, and computes
different bootstrap confidence intervals. Other macros for SPSS and SAS allow to
incorporate nonlinear effects in the mediation model (MEDCURVE, Hayes and
Preacher 2010), perform mediation analysis in studies employing a two-condition
within-subject design (MEMORE, Montoya and Hayes 2017), and use the distribu-
tion of the product approach to test the indirect effect (PRODCLIN, MacKinnon
et al. 2007b). Many common SEM software options compute bootstrap confidence
intervals for the indirect effect as well (e.g., Mplus, Muthén and Muthén 1998). With
the help of so-called packages (i.e., shared code), general statistical software such as
R can also be used for rather basic as well as advanced mediation analysis (e.g.,
lavaan, Rosseel 2012; MBESS, Kelley 2007; mediation, Tingley et al. 2014;
RMediation, Tofighi and MacKinnon 2011; psych, Revelle 2016).

After having collected and analyzed the data, the next step is to report the results
of one’s mediation analysis. Excellent recommendations on how to do so compre-
hensively, comprehensibly, and convincingly are given, for example, by Hayes
(2018) and Pieters (2017).

Summary

This chapter provides a regression-based introduction to mediation analysis with an
emphasis on mediation analysis in an experimental context. Hence, the focus lies on
the description and analysis of selected mediation models common to experimental
research (the single mediator model, parallel and serial multiple mediator models,
and conditional process models), while more complex mediation models are just
briefly discussed. The chapter further addresses the question of how to strengthen
causal inference in mediation analysis through design, the collection of additional
data, and statistical methods, and closes with a discussion of topics frequently arising
when implementing mediation analysis.

However, this chapter only represents a partial survey of the impressive progress
made in mediation analysis over the last decade. Furthermore, many research
questions in mediation analysis remain unsatisfactorily answered (for a recent
summary, see Preacher 2015). Hence, we highly encourage readers to use the
literature cited here as a starting point for further literature search. For instance,
readers interested in a more detailed illustration of regression-based mediation
analysis may refer to Hayes (2018), while readers coming from a structural equation
background may find more information from MacKinnon (2008). Finally, an
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illustration of recent developments in mediation analysis with a special emphasis on
how to strengthen causal inference in mediation analysis is given by
VanderWeele (2015).

Cross-References

▶Analysis of Variance
▶Dealing with Endogeneity: A Nontechnical Guide for Marketing Researchers
▶ Field Experiments
▶Multilevel Modeling
▶Regression Analysis
▶ Structural Equation Modeling
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Abstract

Measuring customer satisfaction and customer loyalty represents a key
challenge for firms. In response, researchers and practitioners have developed
a plethora of options on how to assess these phenomena. However, existing
measurement approaches differ substantially with regard to their complexity,
sophistication, and information quality. Furthermore, guidance is scarce on how
firms can leverage and combine these approaches to implement a state-of-the-art
satisfaction and loyalty measurement system. This chapter attempts to address
this vacancy. The authors first define and conceptualize customer satisfaction
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and customer loyalty. Next, the authors provide an overview of the different
operationalization and measurement approaches that companies face when
designing a customer satisfaction and loyalty measurement system. The authors
also discuss some of the common modeling challenges associated with measuring
loyalty, namely, dealing with self-selection bias. Finally, the authors project what
the future holds in this area.

Keywords

Customer satisfaction · Customer loyalty · Measurement · Conceptualization ·
Operationalization · Scales · Loyalty programs

Introduction

Customer satisfaction and customer loyalty are key constructs in marketing
management (Anderson et al. 1994; Howard and Sheth 1969). Due to their impor-
tance, research provides rich insights regarding their nature as well as regarding
the determinants and consequences of both phenomena (Palmatier et al. 2006).
Moreover, empirical evidence indicates that marketing managers conceive customer
satisfaction and loyalty as important success factors (Aksoy 2013). Studies by Bain
and Company (2013) and Anderson (2010) identify customer satisfaction and
loyalty as top strategic priorities for firms. Furthermore, empirical results
show that increasingly volatile customer and competitor behaviors in a digitalized
economy will further increase the relevance of systematically managing customer
satisfaction and loyalty in the upcoming years (Ernst and Young 2011; Reeves and
Deimler 2011). Brooke (2016) recently summarized these issues: “the initial trans-
action between buyer and seller is but a prologue to the overall concern of marketing.
Few businesses can be sure their customers will continue to engage with them (. . .).
We live in an age of disruption” (p. 30).

For successfully managing customer satisfaction and loyalty, the basic require-
ment is the effective assessment of these constructs (Peterson and Wilson 1992;
Watson et al. 2015). However, as Hayes (2008) points out, conceptualizing and
measuring customer satisfaction and loyalty represent strong managerial challenges,
especially for three main reasons. First, there is a wide range of different assessment
approaches. Yet, evidence indicates that the existing conceptualizations and
measurement approaches substantially differ with regard to their complexity, sophis-
tication, and information quality (Fornell et al. 1996; Morgeson et al. 2011; Sheth
1970). Second, new marketing trends and technologies, such as Big Data or
social media, provide various novel opportunities for marketers to gain insights on
customer attitudes and behaviors (Homburg et al. 2015; Kozinets et al. 2010;
Weinberg et al. 2015). These novel opportunities may have relevance for assessing
customer satisfaction and loyalty in certain contexts. Third, empirical proof shows
that the suitability of novel and existing customer satisfaction and loyalty approaches
may substantially vary according to the specific application field and the
consequences of mis-measurement may be severe (Aksoy 2013; Hayes 2008). For
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instance, companies may mis-target customers based on an incorrect measurement,
that is, dedicating resources to customers who don’t need attention (e.g., those that
are already satisfied and loyal or those that are a “lost case” for the firm) or failing to
dedicate resources to key customers (e.g., customers who the firm is at risk of losing
due to declining satisfaction).

Thus, given the lack of overviews, evaluations, and application guidelines of the
different traditional and novel tools and measurement approaches, many firms
struggle to design appropriate measurement systems for their particular needs and
contexts (Hayes 2008). Against this background, this chapter introduces the reader
to the constructs of customer satisfaction and loyalty. Moreover, actionable
approaches and tools to measure customer satisfaction and loyalty information are
described. Specifically, this chapter addresses the following questions:

• How can firms conceptualize customer satisfaction and customer loyalty?
• How can firms measure customer satisfaction?
• How can firms measure customer loyalty?

This chapter answers these questions across six sections. In this first section
we have introduced the relationship between satisfaction and customer loyalty.
The second section continues this discussion and explores the conceptual back-
ground of each construct. The third and fourth sections outline the common methods
in which firms measure both satisfaction and customer loyalty. For satisfaction we
discuss surveys, focus groups, and complaint analyses, and for customer loyalty we
highlight surveys and databases, with additional attention to loyalty programs.
We recognize that there are additional methods for measuring customer satisfaction
and loyalty (e.g., social media) and that methods can apply to both topics (e.g., some
databases can be used to gain insights on customer satisfaction). However, in
the interest of brevity, we focus on the primary methods used within each subject
in addition to the nuances of using each method for a given subject. The fifth section
emphasizes the recent trends and future directions in measuring satisfaction and
customer loyalty. Finally, the sixth section concludes.

Conceptual Background

The Relationship of Customer Satisfaction and Loyalty

Research has extensively analyzed customer satisfaction, customer loyalty, their
relationship, as well as potential antecedents and consequences (see Palmatier et
al. (2006) for an overview). Customer satisfaction is generally referred to as a
postconsumption evaluation of perceived quality relative to prepurchase expecta-
tions about quality (Homburg et al. 2005, p. 85). In contrast, customer loyalty is
defined as “a collection of attitudes aligned with a series of purchase behaviors that
systematically favor one entity over competing entities” (Watson et al. 2015, p. 804).
See section “Conceptualizing Customer Satisfaction and Loyalty” for a more
detailed conceptualization of both constructs.
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As prior investigators have pointed out, the existing knowledge on customer
satisfaction and loyalty can be summarized along the “Customer Relationship
Management (CRM)-Outcome Chain” (Anderson and Mittal 2000; Kumar and
Reinartz 2012). More precisely, according to the CRM-Outcome Chain, firms’
marketing activities provoke customers’ psychological states (i.e., attitudes) as
well as other loyalty reasons, which, in turn, result in diverse loyalty intentions
and actual behaviors, eventually manifesting in economic outcomes (cf. Fig. 1). For
instance, a firm’s investment in a customer loyalty program (i.e., a marketing
activity) may enhance customers’ satisfaction (i.e., an attitude), which drives their
loyalty intentions and is likely to result in additional future sales (e.g., actual loyalty
behavior in terms of repurchases or cross-buying) and economic company success.

Thus, as shown by the CRM-Outcome Chain, customer satisfaction represents an
important antecedent of customer loyalty. However, as the CRM-Outcome Chain
also indicates, an increase in customer satisfaction does not necessarily result in a
(equal) gain of customer loyalty (Anderson 1996; Woodruff et al. 1983). This is due
to two main reasons. First, there are other factors besides customer satisfaction that
can influence customer loyalty, for instance, other psychological states (e.g., trust,
commitment), loyalty incentives (e.g., rewards for repurchases or cross-buying),
contractual obligations (e.g., due to a legal contract, the customer must stay within a
given relationship), technical causes (e.g., the customer depends on a system of a
given provider), and economical causes (e.g., changing the supplier is relatively
costly due to existing rebates or bonuses) (Hayes 2008; Kumar and Reinartz 2012;
Watson et al. 2015). A meta-analysis has therefore found that customer satisfaction
explains less than 25% of the variance of components of customer loyalty
(Szymanski and Henard 2001). Second, the magnitude of the customer satisfac-
tion-customer loyalty relationship is likely to depend on various situational and

Fig. 1 CRM-Outcome Chain. (Adapted from Kumar and Reinartz 2012; Watson et al. 2015)
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environmental factors (Aksoy 2013; Larivière et al. 2016; Shankar et al. 2003). For
example, Bolton (1998) found that customer satisfaction is positively related
to customer loyalty, yet the strength of this relationship depends on other
factors, such as the level of satisfaction or the length of the prior customer-firm
relationship. Similarly, Anderson et al. (2004) find the customer satisfaction-loyalty
relationship is significantly weaker under high competition.

As a result of potential competing antecedents and various contingent conditions,
Kumar et al. (2013) conclude in their review of the customer satisfaction–loyalty
relationship: “the customer satisfaction–loyalty main effect is indeed weak and that
customer satisfaction, by itself, can hardly change customer loyalty in a significant
way. In fact, the systematic presence of moderators, mediators, and other predictors
of loyalty introduce a high variability in the findings, thus reducing the role of
satisfaction” (p. 247). In line with this point of view, rich evidence today indicates
that even very satisfied customers can deflect. For instance, Reichheld (1996) finds
that more than 60% of satisfied customers may actually switch their providers.
Likewise, evidence indicates that only about half of the households with service
problems would remain loyal, even if their problems were satisfactorily resolved
(Chandrashekaran et al. 2007). These results emphasize that, in order to achieve
sustainably high sales success with the existing customer base, firms need to
systematically assess and manage customers’ loyalty as well as their satisfaction
levels (Luo and Homburg 2007; Rust and Zahorik 1993). In embracing this com-
prehensive view, this chapter focuses in the following on the conceptualization and
measurement of both, customer satisfaction and customer loyalty.

Conceptualizing Customer Satisfaction and Loyalty

To conceptualize customer satisfaction, prior research has distinguished (1) a trans-
action-specific perspective and (2) a cumulative perspective (Anderson et al. 1994).
The former perspective conceives customer satisfaction as the buyer’s cognitive
state, resulting from the evaluation of being adequately rewarded for a particular
sacrifice she has undergone (Churchill Jr. and Surprenant, 1982; Howard and Sheth
1969; Oliver 1981). In contrast, the latter perspective comprehends customer satis-
faction as the cognitive state resulting from the evaluations of the entire interactions
with a firm over time (Hunt 1977; Verhoef 2003). Hence, the transaction-specific and
the cumulative perspective provide a highly similar understanding of customer
satisfaction that essentially differs with regard to the reference object (i.e., a single
transaction versus the entire relationship).

Thus, by drawing on both of these perspectives, this study conceptualizes cus-
tomer satisfaction as the result of a cognitive process during which the customer
compares her prior expectations regarding the product’s performance with the
actually perceived performance (Gupta and Zeithaml 2006). This conceptualization
builds on the “Confirmation-Disconfirmation Paradigm” (Oliver 1980). According
to this paradigm (cf. Fig. 2), customers compare the perceived performance of the
product or service to an expected performance standard (e.g., based on prior
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experiences or desires) (Halstead 1999). If the customer perceives the actual
performance as higher (equal) relative to her expectations, the expectations will
be positively discontinued (confirmed), thus resulting in customer satisfaction.
In contrast, if the expected performance is greater than the actually perceived
performance, customers will experience a negative discontinuation of their expec-
tations, which results in dissatisfaction (McCollough et al. 2000).

The conceptualization of customer loyalty is more complicated. Although cus-
tomer loyalty has been in the focus of marketing research and practice for a long time
(Oliver 1999), there is no consensus among researchers on how to define customer
loyalty (Aksoy 2013; Kumar and Reinartz 2012; McAlexander et al. 2003). Yet, most
prior studies agree that customer loyalty is a complex, multidimensional construct.

More precisely, prior research has often conceptualized customer loyalty by
differentiating two theoretical elements, i.e., loyalty (future) intentions and the
(current) loyalty behavior (McAlexander et al. 2002; Oliver 1999; Watson et al.
2015). Furthermore, as Fig. 3 shows, these theoretical elements have both been
defined in terms of four dimensions (i.e., repurchase, cross-buying, positive WOM/
recommendation, and price increase acceptance/tolerance). Recent empirical

Fig. 2 Conceptualization of customer satisfaction: the Confirmation-Disconfirmation Paradigm.
(Adapted from Boshoff 1997)

Fig. 3 Conceptualization of Customer Loyalty. (Adapted from Bruhn 2016)
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findings showing that loyal customers in many situations tend to pay less, not more,
illustrate the relevance of conceptualizing customer loyalty via multiple dimensions
and differentiating between intentions and actual behavior, instead of merely looking
at repurchase-related variables (see Umashankar et al. (2017) or Wieseke et al.
(2014) for detailed overviews).

Measuring Customer Satisfaction

Customer satisfaction can be measured in a variety of ways (Homburg and Fuerst
2010). Due to several advantages in terms of flexibility and comprehensiveness,
most academics and practitioners today measure customers’ satisfaction through
surveys, using and adapting established scales (Hayes 2008; Zairi 2000). Against
this background, we discuss in this section how customer satisfaction can be
assessed via scales in surveys and then review alternative approaches which can
improve upon traditional customer satisfaction scales.

Survey Scales

As previously outlined, there are two conceptual perspectives to customer satisfac-
tion that differ with respect to their reference object: the transaction-specific per-
spective focuses on individual transactions, whereas the cumulative perspective
centers on the entire relationship. Research has shown that customer satisfaction
can be operationalized according to both perspectives in surveys which have resulted
in the creation of a variety of scales (Hayes 2008; Peterson and Wilson 1992). In the
following, we will provide an overview of the leading customer satisfaction scales
and present guidelines of how to adapt and choose between them.

Adopting a transaction-specific perspective, Oliver (1980) developed one of
the first multi-item customer satisfaction scales. As Table 1 shows, this scale
encompasses six reflective items, which have been used and adapted at various
times in the marketing literature. For instance, Bearden and Teel (1983) adapted
Oliver’s (1980) six items to their research context, and then, due to problems with
the scale’s psychometric properties, reduced the scale to four main items. More
recently, Homburg et al. (2005) and Homburg et al. (2006) drew on Oliver (1980)
and Bearden and Teel (1983) to measure customers’ satisfaction with a specific
transaction with 4 items on an 11-point Likert scale. Moreover, various recent
measurements of a transaction-specific customer satisfaction in marketing research
use further reduced, adapted, and more efficient forms of the Oliver (1980) scale;
some even draw on single-item scales (e.g., Chandrashekaran et al. 2007).

Adopting a cumulative perspective, Cannon and Perreault Jr. (1999) provided a
multi-item customer satisfaction scale measuring the satisfaction with the entire
relationship (see Table 1). This scale was further developed by Homburg and
Stock (2004) and Homburg et al. (2011). In synthesizing this literature analysis,
findings reveal that customers’ satisfaction with a particular transaction and satis-
faction with the entire relationship are generally measured with a multi-item
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Table 1 Examples of leading customer satisfaction scales

Authors
(year)

Reference
object

Type of
scale

Items (item reliabilities, if
specified)

Other
psychometric
properties

Oliver
(1980)

Transaction Not
specified

I am satisfied with my decision to
get or not to get a flu shot
If I had it to do all over again, I
would feel differently about the
flu shot program (R�)
My choice to get or not to get a
flu shot was a wise one
I feel bad about my decision
concerning the flu shot (R�)
I think that I did the right thing
when I decided to get or not to get
the flu shot
I am not happy that I did what I
did about the flu shot (R�)

CA = 0.82

Homburg
et al.
(2005)

Transaction 11-point
Likert
scale

All in all, I would be satisfied
with this restaurant [experience]
The restaurant [experience]
would meet my expectations
The earlier scenario compares to
an ideal restaurant experience
Overall, how satisfied would you
be with the restaurant visit just
described?

CR = 0.98
(study 1)
CA > 0.94
(study 2)

Cannon
and
Perreault
(1999)

Relationship 7-point
Likert
scale

Our firm regrets the decision to
do business with this supplier
(R�) (0.50)
Overall, we are very satisfied
with this supplier (0.80)
We are very pleased with what
this supplier does for us (0.87)
Our firm is not completely happy
with this supplier (R�) (0.59)
If we had to do it all over again,
we would still choose to use this
supplier (0.59)

CA = 0.84
AVE = 0.67

Homburg
and Stock
(2004)

Relationship 5-point
Likert
scale

We are very pleased with the
products and services that this
company delivers (0.74)
We enjoy collaborating with this
company (0.71)
On an overall basis, our
experience with this company has
been positive (0.84)
This company is first choice for
us for the purchase of these
products and services (0.53)
On an overall basis, we are
satisfied with this company
(0.85)

CA = 0.91
CR = 0.92
AVE = 0.55

(continued)
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reflective Likert scale with an uneven amount of scale points (e.g., seven scale points
ranging from “strongly disagree” to “strongly agree”). The scales provided in Table
1 can serve as a source for item selection, but the items obviously need to be adapted
to the specific transaction of interest. See Jarvis et al. (2003) for guidance of how to
choose between uneven and even scale points and select the exact number of
scale points in different situations, and Bergkvist and Rossiter (2007) for potential
problems and advantages of single-item scales (“Design and Process of Survey
Research”).

In addition, previous work across the two conceptual perspectives often recom-
mends measuring customer satisfaction at two different levels: the overall level and
the detailed level (Churchill Jr. and Surprenant 1982; Homburg and Fuerst 2010;
Rust and Zahorik 1993). This recommendation is because an entity (e.g., a transac-
tion or an overall relationship) and customers’ satisfaction with it may encompass
various aspects. Hence, knowledge regarding which of the single aspects account
for how much of the overall satisfaction score may provide actionable implications
for enhancing customers’ future satisfaction levels (Hayes 2008).

For instance, according to the cumulative perspective, customer satisfaction at
the overall level may refer to the customer’s total satisfaction with the entire
customer-firm relationship. (Note that customer satisfaction could also be measured
at different levels according to the transaction-specific perspective. For instance, the
overall level could relate to the satisfaction with the entire transaction (e.g., “how
satisfied are you with the purchase of the new iPad overall?”) and the detailed level

Table 1 (continued)

Authors
(year)

Reference
object

Type of
scale

Items (item reliabilities, if
specified)

Other
psychometric
properties

Homburg
et al.
(2011)

Relationship 7-point
Likert
scale

We are very pleased with the
products and services of
company X (0.61)
We intensively enjoy
collaborating with company X
(0.76)
On an overall basis, our
experience with company X has
been very positive (0.85)
On an overall basis, we are very
satisfied with this company
(0.92)

CA = N/A
CR = 0.94
AVE = 0.78

Fuerst
(2012)

Relationship 7-point
semantic
differential

How satisfied are you with firm
XYZ?
How advantageous do you
consider the relationship with
firm XYZ?
How well does firm XYZ fulfill
your expectations?

N/A

Note: R� = reverse coded; N/A = not available
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could refer to the functionalities of the product (e.g., the features and the usability) or
the purchase process (e.g., consulting by the sales rep, payment modes, financing
options, etc.).) As Table 1 shows, overall customer satisfaction is typically measured
on a Likert scale with four to five reflective items. Due to the reflective nature of
the items, a customer’s satisfaction with the overall customer-firm relationship is
specified as the average of all chosen scale items (see chapter ▶ “Crafting Survey
Research: A Systematic Process for Conducting Survey Research” by Klarmann and
Homburg in this handbook for details). In aggregating the overall-level satisfaction of
all survey participants, firms can compute the customer satisfaction index (i.e., the
average overall customer satisfaction). To enhance the comparability of customer
satisfaction indices between different satisfaction measurements, it is recommended
to keep the itemsmeasuring overall-level customer satisfaction as consistent as possible
across measurements and time.Moreover, as previous work has pointed out, firms may
choose to rescale customer satisfaction indices to a scale ranging from 0 to 100 to
facilitate interpretation and discussion of results (Fuerst 2012; Griffin et al. 1995).

Customer satisfaction at the detailed level in this example refers to the customer’s
satisfaction with specific performance aspects of the firm (e.g., customer service,
complaint handling, or satisfaction with a product) (also see Grigoroudis and Siskos
2009; Rust and Zahorik 1993). Customer satisfaction at the detailed level could also
be assessed via reflective multi-item scales (which could lead to a higher validity and
reliability of the assessment). However, many customer satisfaction measurements
interested in assessing the detailed level draw on single items to ensure parsimony of
the measurement and to increase response rates (Fuerst 2012; Hayes 2008). Similar
to the overall level, customers’ satisfaction with each performance aspects can
be aggregated across all survey participants once the individual responses are
collected. Comparing the overall customer satisfaction index with the indices of
the detailed performance aspects may provide important explanations for the level of
the customer satisfaction index and, potentially, indicate first levers for improving
the customer satisfaction index in the future (Diamantopoulos 2011; Rust and
Zahorik 1993; Homburg and Klarmann 2012).

Measuring customer satisfaction at the detailed level can be conducted in
two steps (Fuerst 2012). In the first step, firms should carefully analyze their
offerings and identify all major functionalities that may influence the customers’
satisfaction in order to design a comprehensive measurement (Griffin et al. 1995;
Homburg and Klarmann 2012; Rust and Zahorik 1993). The relevant functionalities
may vary substantially according to the product type, the industry, or company-
specific factors (Homburg and Fuerst 2010). For example, a limousine transportation
service provider might want to assess the quality and response time of the service
center, punctuality of service delivery, as well as integrity and commitment of the
drivers, whereas a car manufacturer might rather put emphasis on product quality,
brand reputation, and satisfaction with after sales service. In the second step, firms
should then specify all determinants of the identified functionalities. For instance, if
the aforementioned car manufacturer has identified product quality, brand reputation,
and after sales service as the critical functionalities, the manufacturer now needs to
specify the drivers of these functionalities (e.g., for the functionality after sales
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service: speed of service, behavior of service personal, possibilities to complain, and
quality of service results). Figure 4 demonstrates how customer satisfaction can be
operationalized at an overall level and the detailed level, using a different example of
a private bank.

Finally, in addition to assessing the level of customer satisfaction, it is a focal aim of
customer satisfaction measurements to identify the most critical drivers of customer
satisfaction (Morgan et al. 2005). As Gustafsson and Johnson (2004) show, a customer
satisfaction measurement encompassing the overall and detailed level can be easily
used to make this identification. Figure 5 summarizes one of the advanced methods to
conduct such an evaluation: structural equation modeling (see also Gustafsson and
Johnson (2004) and Homburg and Klarmann (2012) for more details and overviews of
alternative methods). As this figure further indicates, by using structural equation
modeling, firms can receive insights regarding the strength of the satisfaction drivers
by looking at the standardized path coefficients (see the chapter “▶Structural Equation
Modeling” by Hans Baumgartner and Bert Weijters in this handbook for details).

Other Measurement Approaches

As prior work has demonstrated, there are various other approaches to assess cus-
tomer satisfaction (Brandt and Reffett 1989; Bruhn 2003; Van Doorn and Verhoef

Fig. 4 Measuring customer satisfaction – example of a private bank. (Adapted from Fuerst 2012, p.
134 ff)
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2008). The following paragraphs will focus on two of the most popular measurement
approaches: complaint analysis and focus groups (see Bruhn (2003) for the depiction
of further and more rare methods). However, because these approaches generally
relate to a specific event or transaction (McCollough et al. 2000; Smith and Bolton
1998), these approaches have various disadvantages as compared to the above-
described direct satisfaction ratings via survey scales, e.g., in terms of measuring
customer satisfaction comprehensively. Thus, firms generally amend their customer
satisfaction surveys with these approaches and use results from the complaint anal-
ysis and focus groups for a selective improvement of their offerings (Fuerst 2012).

Prior work has shown that customer suggestions and complaints can be a
valuable implicit source for analyzing the underlying factors that determine
customer satisfaction levels (Homburg and Fuerst 2005; Singh and Pandya 1991).
For instance, if a firm receives many complaints concerning the availability of its call
center, it may start to systematically analyze the complaints and the performance
data of the call center in order to detect and ultimately eliminate the underlying cause
of the problem. Likewise, if a company receives an increased amount of suggestions
regarding the functionalities of their products, these suggestions may provide valu-
able information on how to improve the products’ handling in the future, adding to
the future satisfaction of customers. An advantage of analyzing customer sugges-
tions and complaints is that the company can utilize existing data to get insights on
latent problems that affect customer interactions (Grigoroudis and Siskos (2009); see
also Homburg and Fuerst (2005) for a detailed discussion of complaints in the

Fig. 5 Simplified structural equation model for determining the strength of satisfaction drivers.
(Adapted from Homburg and Klarmann 2012, p. 204)
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context of customer satisfaction and customer loyalty). However, a major drawback
of this method is that usually only a few customers actually complain and, thus,
various existing deficits may not become obvious with this method (Richins 1983).
Thus, we recommend that firms use the systematic analysis of customer suggestions
and complaints in addition to the above-described direct customer satisfaction
measurement via scales.

Moreover, firms can use focus groups or other more qualitative research
approaches to gain more detailed insights into the underlying reasons for (the lack
of) customer satisfaction. More precisely, such qualitative approaches focus on
specific customer experiences (i.e., incidents), such as the contact with the service
helpdesk of the firm, being advised by a salesperson, or using the product for the first
time (Bruhn 2003). Firms can employ the critical incident technique in order to
analyze these decisive moments in the customer-firm relationship: these incidents
constitute deviations from the customers’ “business-as-usual” mindset, which might
affect their evaluation of entire business relationship (Gremler 2004; Van Doorn and
Verhoef 2008). However, as the incident-related approaches focus on one specific
touch point or transaction with the firm, they can hardly be used to assess the
cumulative or overall satisfaction (Brandt and Reffett 1989; Bruhn 2003). Thus, in
line with recommendations in the methodological research (Davis et al. 2011), we
recommend that firms utilize focus groups in addition to customer satisfaction
surveys to gain additional in-depth insights on selected issues.

Measuring Customer Loyalty

Overview

As shown in section “Conceptual Background” above, customer loyalty is generally
conceptualized as encompassing two theoretical elements (i.e., loyalty intentions and
actual loyalty behaviors). Moreover, both theoretical elements can be
operationalized alongside four dimensions: repurchase, cross-buying, positive
WOM/recommendation, and price increase acceptance/tolerance. The researcher
can use both objective data – e.g., from the company’s CRM system – and subjective
data – e.g., from customer surveys – in order to gather information on customer
loyalty. However, assessing actual loyalty behavior in surveys is problematic,
because, as Sheppard et al. (1988) demonstrate, stated behavioral intentions are
often a weak predictor of actual behavior (e.g., due to unexpected events and factors
of the social environment). Thus, prior research recommends focusing on objective
data to assess customers’ actual loyalty behavior (Hayes 2008; Kumar and Shah
2004; Peters et al. 2010). Moreover, prior work also recommends to focus on
subjective data (e.g., surveys) to assess loyalty intentions, because these intentions
are latent and subjective in nature (Hayes 2008). In adopting this view, we created
Fig. 6, which provides an overview of the operationalization of attitudinal and
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behavioral customer loyalty. In the following section, we discuss approaches to
measuring customer loyalty in greater detail.

Loyalty Intentions

Firms should employ subjective approaches to derive insights with respect to
customers’ loyalty intentions (Watson et al. 2015). This recommendation is because
subjective approaches are particularly suitable to uncover latent constructs and
underlying subjective factors (Hayes 2008; Klarmann 2008). Similar to measuring
customer satisfaction, there are two different approaches to measuring customer
loyalty intentions in surveys (see Table 2). First, there is the aggregated approach,
which tries to assess the overall customer loyalty with up to five or more reflective
items (e.g., Watson et al. 2015). Applications of the aggregated approach assess the
customer’s loyalty intentions through indicators that essentially target the same
underlying latent loyalty construct (i.e., collection of attitudes aligned with a series
of purchase behaviors that systematically favor one entity over competing entities).
Second, as also shown in Table 2, there is the disaggregated approach. This approach
builds more directly on the above-described conceptualization of customer loyalty
via multiple dimensions. Scales following this approach therefore aim to assess
customer loyalty intentions for each of its disaggregated dimensions. For instance,
Homburg et al. (2011) focus on three dimensions of the customer loyalty concept
and measure each dimension via two items.

Fig. 6 Measuring customer loyalty intentions and behavior. (Adapted from Homburg and Fuerst
2010)
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Table 2 Examples of leading customer loyalty intention scales

Authors
(year)

Approach
of scale

Type of
scale Items (item reliabilities, if specified)

Other
properties

Brakus
et al.
(2009)

Overall
loyalty

7-point
Likert
scale

In the future, I will be loyal to this
brand
I will buy this brand again
This brand will be my first choice in
the future
I will not buy other brands if this
brand is available at the store
I will recommend this brand to others

N/A

Watson
et al.
(2015)

Overall
loyalty

N/A I prefer [target] over competitors
I enjoy doing business with [target]
I consider [target] my first preference
I have a positive attitude toward
[target]
I really like [target]

N/A

Zeithaml
et al.
(1996)

Loyalty
dimensions

7-point
likelihood
scale

Say positive things about XYZ to
other people
Recommend XYZ to someone who
seeks your advice
Encourage friends and relatives to do
business with XYZ
Consider XYZ your first choice to
buy services
Do more business with XYZ in the
next few years
Do less business with XYZ in the
next few years (R)
Take some of your business to a
competitor that offers better
Continue to do business with XYZ if
its prices increase somewhat
Pay a higher price than competitors
charge for the benefits you currently
receive from XYZ
Switch to a competitor if you
experience a problem with XYZ’s
service
Complain to other customers if you
experience a problem with XYZ’s
service
Complain to external agencies, such
as the Better Business Bureau, if you
experience a problem with XYZ’s
service
Complain to XYZ’s employees if you
experience a problem with XYZ’s
service

N/A

Homburg
et al.
(2011)

Loyalty
dimensions

7-point
Likert
scale

Customer intentions to repurchase
We consider company X as our
first choice for the purchase of

CR = 0.81
AVE = 0.60

(continued)
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Table 2 (continued)

Authors
(year)

Approach
of scale

Type of
scale Items (item reliabilities, if specified)

Other
properties

such products and services (0.49)
We intend to stay loyal to company
X (0.71)

Customer intentions to increase
share of wallet

We intend to do more business
with company X in the future
(0.77)
We intend to additionally purchase
other products and services from
company X in the future (0.51)

Customer word of mouth
We recommend company X to
other people (e.g., customers,
business partners, friends) (0.64)
We say positive things about
company X to other people (e.g.,
customers, business partners,
friends) (0.82)

Homburg
and
Fuerst
(2010)

Loyalty
dimensions

7-point
semantic
differential

Repurchase. In how far. . .
. . .are you planning to buy the
product/service from firm XYZ
again?
. . .are you intending to stay

customer at firm XYZ?
. . .are you planning to increase the
share of products/services
purchased from firm XYZ?

Cross-buying. In how far. . .
. . .are you planning to buy
additional/other products/services
from firm XYZ?
. . .is it an option for you to buy
product categories/service
categories from firm XYZ?

Recommendation. In how far. . .
. . .are you intending to
recommend firm XYZ to your
business partners?
. . .will you recommend firm XYZ
to your acquaintances and friends?

Price increase acceptance/
tolerance

Would you tolerate a 2/5/10/20
percent price increase and still buy
products/services from firm XYZ?
By how much could the prices of
firm XYZ increase such that you
would still buy from it in the
future?

N/A

Note: (R) = reverse coded; N/A = not available
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As an alternative to customer loyalty scales, many companies today have
adopted the so-called Net Promoter Score (Reichheld 2003). As Keiningham
et al. (2007) explain, the “Net Promoter is a metric derived from survey responses
to a recommend likelihood question. Respondents who provide a rating of 9–10
are classified as ‘promoters’: respondents who provide a rating of 6 or lower are
classified as ‘detractors.’ Net Promoter is calculated by subtracting the proportion
of a firm’s detractors from its proportion of promoters (i.e., Net Promoter =
promoters – detractors)” (p. 39). Although the Net Promoter Score is widely
spread in practice and appears to be intuitive and efficient, research results
regarding the Net Promoter Score are mixed (Keiningham et al. 2007; Morgan
and Rego 2006). For instance, in their extensive analysis of various customer
loyalty measures, Keiningham et al. (2007) find “no support for the claim that Net
Promoter is the single most reliable indicator of a company’s ability to grow”
(p. 45). Hence, we warn firms to exclusively rely on the Net Promoter Score for
assessing their customers’ loyalty but instead recommend to integrate it as one
component to their measurement system (e.g., as an alternative measure for the
recommendation facet of loyalty).

Finally, previous research indicates that customers’ loyalty intentions and
customers’ satisfaction levels are usually assessed within the same survey.
Figure 7 provides an overview of decisions that need to be taken when
designing a customer survey with sections on satisfaction and loyalty. See the
chapter ▶ “Crafting Survey Research: A Systematic Process for Conducting
Survey Research” by Vomberg and Klarmann in this handbook for more
detailed guidance on the design, process, and evaluation of customer surveys.
For interesting application examples of customer satisfaction and loyalty sur-
veys, see Hayes (2008).

Loyalty Behavior

As prior research shows, firms should generally employ objective approaches to
measure customer loyalty behavior (Peters et al. 2010; Mellens et al. 1996; Kumar
and Shah 2004). This tendency is because the objective approaches draw on directly
observable numbers that are not biased due to subjective perceptions, incomplete
memory of events, or unexpected events (McNeal 1969; Sheppard et al. 1988).
Thus, the objective approaches allow a more valid, reliable, and timely assessment of
actual customer behavior (Mellens et al. 1996). Due to the increasing availability of
objective data (e.g., from CRM systems), the objective loyalty measurement
approaches have gained importance for firms over the past couple of years (Sarstedt
and Mooi 2019). Hence, firms can use such data nowadays to gain insights on most
of the different dimensions of customer loyalty behavior (i.e., repurchase, cross-
buying, price increase acceptance, and positive WOM behavior) by developing and
monitoring appropriate key performance indicators (KPIs). In the following, we first
explain how firms can use several general databases to generate information on
customer loyalty behavior before we discuss loyalty programs, which are for many
companies the most valuable data source for loyalty behavior information.
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General Databases
As prior work has pointed out, there are two types of objective measurement
approaches which differ according to the orientation of the data source (i.e., internal
objective and external objective approaches) (Fuerst 2012; Homburg and Fuerst
2010). While the former draw on company-internal data sources (such as CRM
systems, central contact management databases, or ERP systems), the latter
approaches exploit company-external data sources (such as external panel data).
Internal objective approaches provide especially valuable information on actual
customer loyalty behavior, since they generally capture individual customer behav-
ior and therefore allow for very detailed and precise evaluations (Sarstedt and Mooi
2019). Thus, these approaches can be used to gain transparency on three of the four
behavioral dimensions of customer loyalty (i.e., repurchase behavior, cross-buying
behavior, and price increase acceptance). Moreover, depending on the CRM system
configuration, firms may also be able to gain first insights regarding the fourth
behavioral loyalty dimension (i.e., positive WOM communication), e.g., by moni-
toring the proportion of new customers that came through recommendations of
existing customers. Figure 8 illustrates how firms can derive meaningful KPIs for
the different dimensions of customer loyalty behavior by utilizing various objective
data sources (e.g., CRM data, central contact management data, or scanner data).

In addition, firms may want to amend the internal objective techniques by
external objective techniques to gain more nuanced and comprehensive insights in
all customer loyalty behavior dimensions. There are two different kinds of external
data that have relevance for the measurement of customer loyalty behavior: panel
data (Sarstedt and Mooi 2019) and social media data (Ma et al. 2015). First, when
using panel data, firms usually generate information at an aggregated level, such as
the market, segment, or company level. This aggregated information on customer

Fig. 8 KPIs to measure actual loyalty behavior
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loyalty behavior can be valuable. For instance, firms can use this information as
benchmarks for their more specific analyses or to detect general trends and tenden-
cies (Fornell et al. 1996). Most panel data with relevance for measuring customer
loyalty are collected by the leading market research agencies (e.g., Nielsen, GfK)
and need to be purchased. Second, to gain further insights on customer loyalty
behavior, such as on product or brand level, firms can use social media analyses.
More precisely, firms can employ a social media crawler (e.g., Brandwatch, Social
Crawlytics, spirm3r, or PromptCloud) to retrieve all relevant discussions as entries
from various social media, such as blogs, communities (e.g., Twitter, Facebook),
business networks (e.g., LinkedIn, XING), photo sharing (e.g., Instagram, Flickr), as
well as products and services reviews (e.g., Amazon.com). The social media crawler
is able to deliver the relevant social media entries on a regular basis (e.g., weekly or
monthly) such that firms can systematically evaluate these entries to gain further
insights on the recommendation behavior of their customers, at an aggregated level
or a more disaggregated level depending on the abilities of the hired social media
crawler. See Fig. 9 for an example of automatic outputs of a social media crawler
(e.g., daily mentions, author profession, and brand sentiment). These automatic
outputs do not provide direct results on customer loyalty. Instead, to gain more
direct insights on customer loyalty behavior, more sophisticated text analysis tools
(e.g., dictionaries or machine learning algorithms) need to be employed (see chapter
▶ “Automated Text Analysis” by Humphreys in this handbook for more details on
text analysis). As Fig. 9 also indicates, with adequate methods, such as sentiment
analysis (Homburg et al. 2015), firms could even gain objective insights on cus-
tomers’ attitudes, such as satisfaction and loyalty intentions.

Loyalty Programs
Overview of loyalty programs One of the most common ways that firms measure
customer loyalty behavior is through their loyalty programs. Since their beginnings
with airlines in the early 1980s, loyalty programs (LPs) as marketers know them
today have seen a tremendous increase in participation rates and are now prevalent in
a variety of industries. At their core, LPs offer consumers rewards in exchange for
providing firms with detailed transaction data to be used to develop marketing
strategies that are designed to optimize customer engagement with the firm. Given
their importance in measuring loyalty behavior, we briefly review the design and
modeling issues associated with loyalty programs.

The design of loyalty programs encompasses five key components: (1) member-
ship requirements, (2) program structure, (3) point structure, (4) reward structure,
and (5) program communication (Breugelmans et al. 2015). These components are
common to all types of LPs, but the variations in program design across firms are
immense. Of the five components, reward structure has been given the most attention
in the marketing literature. Currently, there are two types of rewards schemes in
loyalty programs: customer tier and frequency based. Customer-tier LPs, which are
popular in the airline, hotel, and casino industry, group customers into segments
according to their actual or potential purchase volume or profitability, with higher
tiers receiving some form of preferential treatment (Blattberg et al. 2008; Kumar and
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Shah 2004). In frequency-based LPs, customers earn rewards as a function of
purchase volume.

In spite of the popularity of loyalty programs, their effectiveness has long been
subject to debate. This debate has centered on the costs of giving discounts and perks
to the loyal customers, as well as the costs of administering the program itself, and
whether these costs are justified by increases in spending by those customers.
Loyalty programs have the potential to increase profits by increasing switching
costs for existing customers, stealing business from rivals, or through second-degree
price discrimination. They may also indirectly increase profits by increasing cus-
tomers perceptions of the firm, by generating customer data that can be used for
targeted promotions or CRM, or by exploiting agency issues such as flights booked

Fig. 9 Example report from a social media crawler. (Fictitious example based on a sample output
provided by Brandwatch)
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by business travelers and paid for by their employers (Roehm et al. 2002; Dreze and
Nunes 2008; Verhoef 2003; Shugan 2005). Empirical studies of whether loyalty
programs actually do increase profits have found mixed results. Verhoef (2003) finds
that the effects are positive but very small, DeWulf et al. (2001) find no support for
positive effects of direct mail, Shugan (2005) finds that firms gain short-term
revenue at the expense of longer-term reward payments, and Hartmann and Viard
(2008) find no evidence that loyalty programs create switching costs. For a more
complete review on loyalty programs, see Bijmolt et al. (2011); Liu and Yang
(2009); and McCall and Voorhees (2010). Regardless of the profit impact, one
clear advantage of loyalty programs is that it allows firms to objectively track and
monitor customer interactions with the firm.

Challenges in measuring customer loyalty through loyalty programs As
discussed earlier, conceptualizing and measuring customer loyalty can be challeng-
ing. In this section, we review the common modeling issues encountered when
attempting to measure customer loyalty behavior using an LP and discuss some of
the common solutions where applicable. Broadly, these issues can be categorized as
follows: endogeneity, complexity, and attribution.

From a modeling perspective, endogeneity is likely the most prevalent issue in
measuring customer loyalty. At a high level, it must be recognized that the design of
the LP itself is not a random outcome. While this is technically an endogeneity issue,
it tends to be abstracted away in most research. In addition, while endogeneity
related to price or targeted marketing decisions is a concern, these are relatively
simple for a firm to address through randomized experiments. For a detailed discus-
sion of endogeneity issues, see the chapter ▶ “Dealing with Endogeneity: A Non-
technical Guide for Marketing Researchers” by Ebbes, Papies, and van Heerde in
this handbook.

A more challenging, and common, scenario to address is when a firm attempts to
measure customer loyalty behavior by assessing customer engagement with the
loyalty program. This endogeneity issue stems from the fact that customers self-
select into loyalty programs, which can lead to biased estimates of LP effectiveness.
For example, if a firm compares spending behavior between customers who are
enrolled in the loyalty program with those who are not, they will likely find that
spending is higher from those who are enrolled. While this difference may be caused
by the program itself, the more likely explanation is simply that customers who
spend more with the firm are more likely to benefit from the LP and hence are more
likely to enroll. A less obvious example is when a firm observes spending for the
same customer both before and after joining the loyalty program. Here the firm may
be tempted to conclude that changes in spend for each individual eliminate the
endogeneity issue. However, again we have a selection issue: it is possible that
customers joined the LP due to anticipated changes in spend. This will again lead to
biased estimates of LP effectiveness.

A common approach to correct selection bias is to employ a Heckman two-stage
correction method (Heckman 1979). In the classic bivariate selection problem, we
have the following:
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y�1 ¼ X1β1 þ e1

y�2 ¼ X2β2 þ e2

where y�2 is the outcome of interest (e.g., customer spending) and is only observed if
y�1 > 0 (e.g., whether the customer decides to enroll in the LP). The stars indicate that
these are latent variables – for example, a firm may not observe customer-level
spending unless they are enrolled in the loyalty program. Problems arise in estimat-
ing β2 if there is a nonzero correlation between e1 and e2.

Under this specification, it can be shown that when

e1
e2

� �
� N

1 ρ

ρ 1

� �

we have

½y2jy�1 > 0� ¼ X2β2 þ ρλðX1β1Þ
where λ(z) = ϕ(z)/Φ(z), or the inverse Mills ratio. Clearly, failure to account for any
nonzero correlation ρ will result in a biased estimate of β2.

To correct this bias, Heckman’s two-step estimator first runs a probit regression of

y1 onto X1β1 to get bβ1 in the first step and then runs an OLS of y2 on X2β2 þ
ρλ X1

bβ� �
in the second stage. The estimated coefficient of the inverse Mills ratio, bρ,

may indicate whether or not sample selection correction is needed (so long as certain
model assumptions are met). For more details on model assumptions, estimation,
and interpreting the two-step estimator coefficients, see Heckman (1979) and Certo
et al. (2016).

Building on this model, later research found that more flexible control functions
could be implemented. For example, rather than use the inverse Mills ratio, instead
include higher-order polynomials of bβ1. The intuition is that the flexible function will
essentially replicate the inverse Mills ratio without the need for a probit in the first
stage. See Ahn and Powell (1993) for more details or Ellickson and Misra (2012) for
a recent application.

Besides endogeneity, another challenge in the analysis of loyalty program effec-
tiveness is the complexity of the environment in which LPs typically operate.
Analysts must recognize that LPs have numerous moving components, each which
may influence customer loyalty, for example, the mere offering of a LP, the design
of the rewards structure regardless of customer earnings and redemption activity
(e.g., a relatively complicated versus simple tier or earnings structure), or strategic
reactions from competition (Breugelmans et al. 2015). These are only a few of many
potential issues that arise when attempting to model and quantify the effectiveness of
a loyalty program and how it influences customer loyalty. Typically, researchers
circumvent these challenges by either (1) conducting field experiments to isolate the
causal effect of interest, (2) identify a natural experiment in situations where a field
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experiment is infeasible, or (3) specify a structural model and use economic theory to
identify the casual effect of interest.

Related to the complexities distinct to the LP itself is that of attribution among
other firm activities. Loyalty programs do not manage customer engagement in a
vacuum. Multiple touchpoints make it difficult to pin down exactly what is driving
customer engagement, whether it be billboards, TV, print or radio advertising, or the
LP itself. It is still not clear the extent to which the LP design interacts with these
other components, and more work is needed in this area. These difficult attribution
issues have not yet been solved and are only beginning to receive serious attention in
research. For a short discussion of current work in this area, see Ascarza et al. (2017).
If implemented properly, loyalty programs can be a powerful tool for firms to
increase customer engagement with a firm. However, firms must carefully balance
the costs of its implementation and management against the potential gains from
additional customer information and more refined targeting abilities.

The Future of Managing Customer Satisfaction and Loyalty

The practice of measuring and managing customer satisfaction and loyalty is in a
constant state of change (with “satisfaction” and “loyalty” now often referred to
using the more general term “customer engagement”). However, these changes have
occurred at an increasingly rapid pace, in part because the degree to which a firm can
manage the customer engagement process is very much dependent on computational
technology (e.g., processing speed, data storage costs, along with the labor to extract
and analyze the data, to name a few).

These changes are most visible in the speed, customization, and rate in which
customer satisfaction and loyalty is managed. For example, some firms are moving
away from static marketing campaigns and ad hoc analyses in favor of systematic,
real-time evaluation and tuning of the engagement process (see Schwartz et al. 2017;
Hauser et al. 2009). Part of this has been driven by the speed and ease in which firms
can customize offers, conduct A/B testing, and in general customize the customer’s
experience with the firm.

Related, there has been a growing interest in applying machine learning methods
to solve marketing problems. Even though machine learning has been around for
decades, their use has accelerated in tandem with increases in computational power.
A byproduct is that there has been, to some extent, a shift that emphasizes scalability
and predictive accuracy in customer behavior rather than understanding causality of
marginal effects. However, there has been strong interest in understanding how
machine learning can work with econometrics (e.g., Athey 2018) or as a way to
augment traditional marketing analyses (Ascarza 2018; Liu and Toubia 2018). In
addition, some of the machine learning methods have allowed managers to deal with
ultrafine, unstructured data such as text (e.g., social media content, as previously
discussed) or voice (such as reviews or call center recordings) which would be
cumbersome to process using traditional methods. Although it is a general consensus
today that the potential of these methods for assessing customer satisfaction and
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loyalty is very high, researchers are still in the early phase of determining how best to
use these powerful tools and to the boundaries of their limitations.

Given the current environment, what does the future hold? It is not unreasonable
to expect continued computation performance increases to drive much of the inno-
vations in marketing and the customer engagement process. We are still a long way
from optimizing a customer’s lifetime marketing activity, which evolves over time
and may be a function of competitor reactions. Relatively, there has been increased
attention to how the sequence of outcomes itself influences customer engagement
(e.g., reinforcement learning). It is simply a matter of time before even the most
complex interactions can be modeled and processed fast enough to be of use to both
practitioners and academics.

The key for marketing managers is to not allow advances in technology cloud the
primary objective of increasing customer satisfaction and loyalty. Firms should
implement technology to augment the customer relationship, rather than force the
relationship process around current limitations in technology. More generally, a firm
should avoid imposing any part of their management structure onto the relationship
process (e.g., sending a customer complaint to a different department simply because
that is how the organization is structured). As the field of customer engagement
advances, the one unchanging factor is that the customers’ experience is of para-
mount importance.

Concluding Remarks

Customer satisfaction and customer loyalty represent key constructs in marketing
research and management. The measurement of customer satisfaction and loyalty is
the basic requirement of a successful satisfaction and loyalty management. However,
as there is a lack of transparency and guidance regarding the different traditional and
novel measurement approaches, many firms currently struggle to identify the most
appropriate tools and approaches for their particular situation. Against this back-
ground, this chapter has aimed at answering the following research questions:
(1) How can firms conceptualize customer satisfaction and customer loyalty?
(2) How can firms measure customer satisfaction? (3) How can firms measure
customer loyalty?

To address these questions, this chapter has first summarized how customer
satisfaction and customer loyalty are generally conceptualized and operationalized.
Next, this chapter has outlined various important approaches and issues that relate to
the measurement of customer satisfaction and loyalty on the basis of the previously
introduced conceptual background. The chapter also discussed the current state and
future of measuring both customer satisfaction and loyalty as a function of advances
in technology and growing competitive pressure.

There is strong evidence that firms will need to focus on customer satisfaction and
loyalty management with even greater emphasis in the upcoming years. Firms
should continually reevaluate their approaches and tools for measuring customer
satisfaction and loyalty and update when needed. Challenging your firm’s current
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measurement approaches using the ideas and tools presented in this chapter may
serve as a first step toward implementing such a continuous improvement process.
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Abstract

Market segmentation describes the practice of grouping consumers that are alike
concerning specific characteristics. The idea is that firms can better identify and
target attractive segments and customize marketing actions for each segment.
Equally important, segmentation allows firms to avoid consumers that are unprof-
itable or otherwise incompatible with its marketing strategy. Like other marketing
concepts, market segmentation has changed over the years with increasing
globalization and digitalization. But the concept of market segmentation has
been and will continue to be one of the key concepts in marketing practice. In
this chapter, we define market segmentation along with its key characteristics,
describe the process by which it unfolds, outline the main traps to avoid, and
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provide an outlook into the future. A key concern of this chapter is also to reflect
the key challenges in business environments, such as the abundance of data,
globalization, as well as the acceleration of different trends.

Keywords

Heterogeneity · Market segmentation · Segmentation basis · Segmentation
process · Segment-of-one · Social media

Introduction to the Concept

A key goal of firms is to allocate resources to their best opportunities and efficiently
reach their organizational objectives. This requires firms to identify groups of
customers who would most likely respond favorably to their offers and marketing
actions. Market segmentation serves this purpose and is one of the most fundamental
concepts in marketing management.

Market segmentation goes back to Smith (1956) and is defined as the identifica-
tion of groups of customers with similar characteristics or needs who therefore
are likely to exhibit similar behavior and reactions (i.e., are homogeneous) and
that are distinct from other groups of consumers (i.e., are heterogeneous) in ways
that are relevant for the firm. These groups should be mutually exclusive and
collectively exhaustive. In other words, every customer should be allocated to
exactly one segment. This definition has remained largely unchanged. For example,
to Dolnicar et al. (2018), segmentation is “the process of grouping consumers into
naturally existing or artificially created segments of consumers who share similar
product preferences or characteristics” (Dolnicar et al. 2018, p. 11).

Conceptually, market segmentation is a compromise between, on the one hand,
considering all customers as unique entities, with their idiosyncratic needs and
preferences, enabling a firm to fully customize its marketing actions, and, on the
other hand, considering the entire population of customers as similar enabling the
firm to address them with a set of standardized marketing actions. By identifying
subgroups or segments that are sufficiently homogeneous and different from other
subgroups within a heterogeneous population, a firm can standardize its marketing
actions for the subgroup only and still customize marketing actions across subgroups.

For instance, a car manufacturer could group its customers into five segments. In
the best case, the car manufacturer should then be able to customize its marketing
activities and products to these segments or a subset of them and still benefit from
economies of scale. Thanks to market segmentation, General Motors was known to
offer a “car for every purse and purpose,” which contrasted with Ford’s one-size-fits-
all Model T, which was famously available only in black.

The key goals of market segmentation are therefore the following (Kotler 1989;
Mahajan and Jain 1978):

1. Understanding the range of customer differences
2. Simplifying a market through grouping customers
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3. Selecting target segments
4. Developing segment-tailored marketing actions
5. Efficiently allocating the firm’s resources towards their target segments and

marketing actions

Market segmentation is not only a theoretical concept but also one with high
managerial relevance as it serves to develop marketing strategy and actions (Kotler
1997; Wedel and Kamakura 2012). The concept has become one of the key pillars of
any given marketing strategy (Dolnicar et al. 2018) and significantly contributes to
the success of marketing within a firm. Unsurprisingly, market segmentation is one
of the tools that entails the largest influence on marketing decisions (Roberts et al.
2019). Among a large set of marketing tools, the respondents rated market segmen-
tation as the most impactful tool or concept. From a strategic perspective, market
segmentation allows a firm to capitalize on a superior market position as well as to
identify niche segments (Beane and Ennis 1987; Weinstein 1987, 2004).

The logical extension of market segmentation is the segmentation, targeting,
positioning (STP) framework (DeSarbo et al. 2008; Lilien and Rangaswamy 2004).
The real business value of market segmentation follows from the targeting and
positioning decisions. Positioning comprises the development and implementation
of marketing actions to communicate a firm’s image relative to the competition (Ries
and Trout 1980). The STP framework and this chapter’s focus are illustrated in Fig. 1.

Market segmentation has come a long way. In a seminal article, Daniel
Yankelovich (1964) urged marketing managers to abandon simplistic segmentations
based on demographic information and introduced psychographic and values-based
segmentation. Despite the importance professed by managers, he argued, 40 years
on, that the practice of market segmentation had significant room for improvement
(Yankelovich and Meer 2006). Our discussions with leaders in strategy consulting
confirm this conclusion. Moreover, novel sources of data nowadays allow creating
more elaborated market segmentations than ever.

The rest of this chapter is organized into three parts. We first discuss the key
considerations of any market segmentation and the question of whether market
segmentation is still relevant in the light of developments such as product custom-
ization and personalized communication. We then provide a detailed description of
the segmentation process. Finally, we conclude by discussing the effects of newer

Fig. 1 The segmentation-targeting-positioning (STP) framework and the focus of this chapter
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developments on this fundamental marketing concept, managerial implications, and
highlight the main traps of market segmentation.

Market Segmentation: Key Considerations

Heterogeneity and Homogeneity

Market segmentation aims at allocating customers into groups based on how similar
they are to each other. In technical terms, “similar” refers to homogeneous and
“dissimilar” to heterogeneous. Thus, any segmentation, while motivated by the
presence of customer differences, has the objective of reducing heterogeneity in
the target market by identifying similarities, eventually enabling establishing a
marketing strategy.

It would be tempting to start with the premise that customers are different.
However, how different consumers are and whether differences are relevant for a
firm is a matter of perspective. For example, humans share 99.9% of DNA, i.e., are
homogeneous. For many medical problems, therefore, a standardized treatment
suffices. For some diseases, however, the remaining 0.1% matter greatly. Likewise,
many consumers have similar basic needs, seek similar benefits, but they can differ
in terms of their specific preferences for quality, their decision-making process. We
all must eat to satisfy our need for calories, but we can still have different preferences
concerning the type of food, the way of preparation, and the time, place and form of
consumption, creating many opportunities for segmentation.

Moreover, customers’ preferences are not fixed and so is the heterogeneity. Firms
can influence customer preferences with their marketing strategies. Whether a
market consists of substantial heterogeneity and whether recognizing this heteroge-
neity by a firm is useful depends therefore on its business strategy and competitive
situation and its ability to turn it into an advantage.

Segment-of-One

Instead of segmenting customers, a firm could also consider each customer to form
her or his own segment. This perspective is often referred to as “segment-of-one,” or
that each customer forms her or his own segment (Bailey et al. 2010; Peppers and
Rogers 1997; Winger and Edelman 1989) challenges the concept of market segmen-
tation, which aims at simplifying the market.

The digital revolution is a key driver of the discussion around the relevance of
segmentation because it has a huge impact on the way firms can identify, target, and
engage with customers. The data generated by the digital revolution allow for
insights into individuals at an increasingly granular level.

To better understand the impact of the digital revolution on the value of market
segmentation, it is useful to distinguish between strategic segmentation and opera-
tional segmentation, i.e., a difference between defining target customers, customiz-
ing some marketing actions to individual customers. In particular, product
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customization (Gilmore and Pine 1997; Kotler 1989; von Hippel 1998, 2001), as
well as personalized communication (Ansari and Mela 2003; Arora et al. 2008;
Postma and Brokke 2002) allow shifting key components of a firm’s marketing
program from an aggregated segment level to an individual level. Firms nowadays
offer products that can be individualized or customized in response to consumers’
idiosyncratic needs, which has been reflected under the term “mass customization”
(Dellaert and Dabholkar 2009). Mass customization is a viable strategy, but suc-
cessfully implementing mass customization requires organizational flexibility, e.g.,
in the production process (Piller 2004). Related to market segmentation, mass
customization can provide the basis for reflecting the heterogeneity between cus-
tomers by addressing their product preferences on an individual basis. The previ-
ously mentioned activities come together under what can be described as one-to-one
marketing, which is defined as tailoring one or more dimensions of a firm’s market-
ing mix to individual customers (Arora et al. 2008).

These ideas, however, do not challenge the value of “traditional” segmentation as
much as they highlight the importance of distinguishing between strategic segmen-
tation (for hard-to-change and hard-to-customize marketing actions) and operational
segmentation (for easy-to-change and easy-to-customize marketing actions). The
former makes marketing actions more efficient, while the latter enables customiza-
tion and makes marketing actions more effective. The digital revolution has certainly
shifted a number of marketing actions in many industries from the former to the latter
and the combination of the two – a strategic segmentation and an operational
segmentation – is key to success (e.g., Bailey et al. 2010). Table 1 outlines the
differences between different levels of segmentation:

Concluding Thoughts

The value of any market segmentation ultimately depends on the heterogeneity in the
market and the firm’s marketing strategy. While some firms might even be able to
customize their products and personalize their communication efforts, for many
firms, “segment-of-one” strategies may be beyond their capacities. Those primarily
refer to operational segmentations; however, any firm can benefit from a strategic
segmentation.

Market Segmentation: Process

Different suggestions regarding the process of market segmentation exist (e.g.,
Dolnicar et al. 2018; Wedel and Kamakura 2012). We propose six key phases in
market segmentation, ranging from characterizing the ideal segment to
implementing the market segmentation (see Fig. 2).

We will illustrate the process in the domain of the automotive industry and
therefore point out the critical factors in each of the phases. For this illustration
purpose, we use survey data on 250 consumers that include variables related to:
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• Demographics (e.g., gender, age, income)
• Attitudes (e.g., attitudes towards cars as well as the key factors by which they

choose a car; e.g., “Image is not important to me in a car”)
• Preferences (e.g., concerning the focal product)

Step 1: Characterizing the Ideal Market Segment

The first step in the process of market segmentation is to anticipate and describe the
ideal segment as well as the ideal segment solution (Dolnicar et al. 2018).

As market segmentation is characterized by its exploratory nature (i.e., firms
normally do not know the final market segments before conducting the

Table 1 Unsegmented marketing, differentiated marketing, and the segment-of-one

Unsegmented
marketing Differentiated marketing Segment-of-one marketing

Unit of
analysis

All customers Groups of customers
(segments)

Individual customers,
consumption occasions

Target
customers

Everyone Single or multiple
segments

Individual customers

Market
characteristics

Little
heterogeneity

Large heterogeneity Each customer is unique

Information
needs

Low, occasional High, periodical Very high, real-time

Granularity
of data

Aggregated Differentiated Individual

Product Mass production,
physical products

Variety with mass
production, physical
products, and services

Services and digital
products, mass
customization

Marketing
mix

Same marketing
mix for all
customers

Several alternative
marketing mixes

Each customer receives a
different marketing mix

Firm objective Competitive
advantage from
low costs

Competitive advantage
from differentiation

Competitive advantage
from personalization and
mass customization

Major
disadvantage

Competitor may
identify and
create segments

Higher complexity and
cannibalization

High cost of variety and
complexity, no economies

Examples Industrial
commodities
(salt)

Most consumer products
(detergents)

Most capital goods, luxury
goods (yachts)

Fig. 2 The process of market segmentation
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segmentation), this step might seem counterintuitive. Omitting this step might lead
to firms ending up with a solution that does not fit firm strategy. For instance, while
one firm may focus on smaller segments with fewer customers (i.e., niche segments),
other firms – the market leaders – tend to only focus on segments that include a
greater number of consumers (i.e., mass segments). The decision about which
segment to focus on likely depends on multiple dimensions, such as the segments’
profitability, the number of consumers firms can cater to, their marketing activities,
as well as their value proposition (e.g., for some firms, consumers’ response to price
elasticity may be more important than for others).

Accordingly, the description of the ideal segment should be done before the actual
segmentation and the ideal segment should be characterized by the same criteria that
will be used to evaluate it later in the process (see Step 5: Evaluating Segments).

In the example of the choice of the car model “Ford Ka,” the ideal segment should
allow Ford to identify the potential buyers of that new model, which is characterized
by a unique design and sporty driving, as opposed to the traditional small car buyer
who was a single, first-time or income-constrained buyer. Table 2 illustrates the
means and medians of the variables that describe consumers depending on whether
they prefer the Ford Ka (listing the model among the top three car choices), no
preference for the Ford Ka (listing the model among the bottom three car choices), or
middle (none of the previous categories).

Step 2: Determining the Segmentation Criteria

After determining the ideal segment, firms need to select the variables allowing them
to identify that segment by distinguishing between consumers. These variables are
called “segmentation criteria.”

While the literature has proposed many variables that can serve as a basis for
segmentation (e.g., Bock and Uncles 2002), this chapter characterizes them using
two dimensions (see Wedel and Kamakura 2012):

• Observability: The extent to which a variable can be observed without interaction
with consumers

• Consumption-specificity: The extent to which a variable is related to the specific
consumption decision

Table 2 Car preferences and means across variables

Preference Size
Gender (%
female)

Married
(yes)

Single
(yes)

Age
(average)

Income category
(median)

Ford Ka
top 3

45.6% 53% 56.1% 31.6% 36.8 4.0

Middle 29.6% 51% 48.6% 43.2% 38.1 3.5

Ford Ka
least 3

24.8% 35% 43.5% 43.5% 33.4 3.5
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Observability. One key distinction between segmentation criteria is whether the
segmentation criteria can be easily observed or not (Dolnicar et al. 2018; Wedel and
Kamakura 2012). Observability describes a firm’s ability to assess a dimension for
individual customers without communicating with their consumers. Highly observ-
able variables are visible. The best observable variables are typically related to the
“who.” Examples of observable segmentation variables include many demographic
variables like gender, age, location of the customer, household size, and often culture
(Wedel and Kamakura 2012). The combination of these measures can also result in
socioeconomic status classifications (i.e., upper-middle class, lower-middle class,
etc.). Another advantage is that these variables are stable (Wedel and Kamakura
2012); they do not change much or at all over time. In business markets, an easily
observable variable is the industry or the size of the customer. Such observable
variables also allow firms to identify any new customers as members of a specific
segment. For instance, using age as a segmentation variable allows allocating new
customers to specific segments even when they had not been subject to the initiation
market segmentation. Accordingly, observable segmentation criteria have various
advantages.

Nevertheless, observable variables have disadvantages. One is that segments that
are formed based on observable segmentation criteria typically differ less in their
responsiveness to firm activities (Frank et al. 1972; McCann 1974). Marketing
actions are more effective when they aim at such underlying motivational drivers,
the goals customers pursue (Kruglanski and Szumowska 2020). Although this
renders observable variables less valuable, firms nowadays still widely apply observ-
able variables as segmentation criteria and their popularity as segmentation criteria is
unbroken (Wedel and Kamakura 2012). In sum, unobservable variables related to
needs, goals, and benefits are typically more meaningful for the segmentation as they
are more closely related to preferences (e.g., attitude towards specific products) or
future behavior (e.g., purchase behavior), but it is oftentimes easier for firms to use
observable segmentation criteria.

The question “who does what, when, where, how, and why?” provides another
classification of segmentation variables into needs or benefits sought (“why”) and the
decision-making process (“how”) of the consumer, demographic variables (“who”),
and behavior-specific information (“what,” “when,” and “where”). The “why” and
the “how” are more related to motivational drivers of behavior but typically
unobservable. On the other hand, the “who” and “what” are much easier to observe
but are often not closely related to motivational drivers.

Assume using age as segmentation criterion when considering our example of the
Ford Ka: Using age, which is observable, as segmentation criterion would unlikely
lead to a meaningful segmentation given that reportedly the consumers interested in
that model ranged across all age categories. By contrast, consumers’ preference for
driving pleasure and their ambition to “be different” from others, which both are
unobservable to Ford, would be better suited in identifying the segments that are
eventually meaningful to Ford.

Accordingly, firms need to assess whether observable variables are sufficient for
their market segmentation, or whether they need deeper insights into their customers
and therefore need unobservable variables.
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Consumption-specificity. The second dimension by which segmentation criteria
can be classified is the extent to which a criterion is specific to the consumers’ buying
and consumption behavior. Examples of criteria with a high consumption specificity
are product usage frequency, store loyalty, adoption stage, usage situation, and brand
loyalty (Wedel and Kamakura 2012). While some of the variables, and in particular
the behavioral variables related to the “what” (e.g., store patronage or online
presence visits), are more readily available as they can be observed (e.g., using a
CRM system or weblog systems that track consumers’ online behavior), others
might be more difficult to collect (Payne and Frow 2005; Verhoef et al. 2010). For
instance, attitudinal variables, such as ambition to “be different” from other con-
sumers, need to be revealed by consumers in surveys (Wedel and Kamakura 2012).
Even more so, consumption-specific variables are often unobservable, especially
those related to the “how.” Among those unobservable characteristics are variables
such as the decision-making process (Blattberg and Sen 1974; Dhalla and Mahatoo
1976), different types of elasticities (and in particular price elasticity; Wedel and
Kamakura 2012), and customer perceptions of brand attitudes (Yankelovich 1964).

Using behavioral variables related to the “what” can seem problematic because
the exact purpose of segmentation is to identify segments whose behavior can
potentially be shaped through marketing actions. While segmentation based on
consumption or usage volume, brand loyalty, or customer profitability, a typical
segmentation in services or B2B markets to allocate sales effort is relatively easy to
implement, and it requires an existing market, available transaction data, stable, hard
to change customer behavior, and good coverage of all potential customers. If these
conditions do not hold, it can easily result in self-fulfilling “prophecies” (e.g., low
users remain low users or brand switchers remain brand switchers), because there is
no effort to change behavior, in overlooking a significant part of the market because
customers do not appear in existing databases, or in getting blind-sided by compet-
itors, when their actions can change customer behavior. In the end, there is still a
need to understand the drivers of the observed behavior to understand customers and
guard against these threats.

The variety of the to-date examined measures is so broad that “almost every
consumer behavior variable has been proposed for segmenting markets” (Bock and
Uncles 2002). The advantage of variables with a high consumption specificity is that
they are more predictive of consumer’s attitudes and behavior towards a firm’s
products. However, one downside of high consumption-specificity is that its reli-
ability is questionable (Lastovicka et al. 1990) and may even be negatively related to
the stability (Wilkie and Cohen 1977). In particular, consumption-specific variables
are often subject to more significant changes given that they depend on character-
istics as the rate of innovation or the change of a competitors’ marketing communi-
cations. By contrast, general, or consumption unspecific, characteristics are typically
more stable than consumption-specific characteristics. Among general variables
count, for instance, customers’ general values, cultural values (Steenkamp and Ter
Hofstede 2002), as well as lifestyle (Wedel and Kamakura 2012). Thus, firms need to
trade-off whether they use variables that are high in terms of consumption specificity
(and thus be more informative for a firm) or that might be more stable (and thus
longer lasting).
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Building on these dimensions, one can establish a matrix that classifies the
different segmentation criteria and thus allows firms to select any of those (see
Table 3).

A pitfall of market segmentation is to either only use observable (e.g., demo-
graphic) or unobservable variables as segmentation variables. A good market seg-
mentation often requires a combination of these variables, which allow a firm to
form and identify actionable, responsive segments.

In the Ford Ka example, the following list is available as segmentation criteria:

• Demographic variables: Age, marital status, children, first car, age category,
children category, income category, residence, single, marital status,
household size

• Attitudinal variables related to cars and driving (examples):
• When it comes to cars, my heart rules my head.
• I want a car that is nippy and zippy.
• I prefer cars with high performance.
• For me, a car is a symbol of freedom and independence.

While the demographic criteria can be (typically) easily observed, the attitude
variables require a survey to be evaluated. For the segmentation analysis, we selected
three factors that (Factor 1: Value of small cars as means of transportation, Factor 2:
Seeing a car as a statement, Factor 3: Seeing driving as more than transportation) that
summarized the attitudinal variables (an inventory of 100 different questions about
transportation, cars, and driving). This approach should allow us to identify seg-
ments that have distinct attitudes toward cars and driving.

Step 3: Collecting and Evaluating Data

In this step, firms need to assess the data that are available, as well as identify the
need for data that may complement these yet available data (Dolnicar et al. 2018).
Firms then collect these data. This step of the segmentation process has significantly

Table 3 Classification of segmentation variables (see Wedel and Kamakura 2012)

Consumption specific Consumption unspecific

Observable Purchase frequency
Store loyalty
Online behavior
Time spent on the website
Purchase amount

Demographics (age, gender)
Culture
Public social media profile information
Industry application

Unobservable Attitudes toward product/brand
Benefits
Needs
Price sensitivity
Decision-making unit and process

Values
Lifestyle
Opinions
Strategic objectives
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changed in the past decades due to new data sources and new data collection
methods.

Classical sources of market research remain the most important source of data. To
the pillars of classical market research count among others:

• Survey-based methods (e.g., paper-back surveys, web-based surveys)
• Conjoint analysis (e.g., choice-based conjoint analysis, adapt conjoint analysis)
• Other methods (e.g., data from CRM databases, consumers’ expressions on social

media)

Surveys. Surveys are a method to collect self-reported data and are the most
common source of market segmentation also, because they are easy and cheap to
collect (Dolnicar et al. 2018). Current and prospective consumers respond to ques-
tions on their needs, attitudes (e.g., brand evaluation, customer satisfaction), atti-
tudes and preferences (for product attributes, products, brands), and behaviors (e.g.,
information search behavior, purchases of the company and its competitors). Nota-
bly, those questions should allow for a precise assessment of the dimensions later
used for the segmentation. The key advantage of surveys is that they allow to reveal
unobservable variables and thus information about the consumers that cannot be
easily collected differently. When conceptualizing consumer surveys for
segmentation, it is key to allow the collection of unbiased information. This requires
considerations about how to recruit respondents (e.g., to avoid biases related to self-
selection and representativity), the number of respondents that are recruited (i.e.,
sample size), as well as how the survey is designed (e.g., to avoid response biases
and the effort required of respondents to fill out the survey; Dolnicar et al. 2018).

Conjoint analysis. Conjoint analysis extends these surveys by making a system-
atic assessment of how individual attributes can affect consumers’ choices; eventu-
ally, these methods allow to estimate consumers’ willingness to pay and thus price
sensitivity. Conjoint analysis follows the idea that consumers can assess and com-
pare products as a whole better than individual attributes. Oftentimes, such conjoint
analysis starts by requiring respondents to indicate options that they would not
consider at all. This allows for more precisely assessing the remaining potentially
attractive options. Respondents then evaluate those offers as a package against each
other, iteratively comparing different offers. While many methods related to conjoint
analysis have been developed, the traditional ones are choice-based conjoint analysis
and adaptive conjoint analysis. While the latter only requires respondents to select
between two offers at a time while accounting for their previous choices, the former
provides multiple profiles of offers (e.g., consisting of a product, a price, a package).
Choice-based conjoint analysis is thus typically more demanding. Given that price
sensitivity is one of the key segmentation criteria and the importance of individual
product attributes allow for actionable insights, conjoint analysis is particularly
attractive for collecting data for segmentations.

Other methods. The increase in digitalization and the proliferation of customer
relationship management (CRM) databases allow to enrich classical sources with
additional segmentation-relevant data from manual or automated recording of cus-
tomer observations. In CRM databases information on a company’s current
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customers is archived and readily accessible, and they typically consist of demo-
graphic data, interaction data (previous interactions, such as sales interactions), as
well as transaction data (e.g., historic purchases, shopping baskets). Relatedly, web-
log systems (e.g., Google Analytics) track consumers in real-time generate detailed
behavioral data on individual consumers. Moreover, online social networks nowa-
days have been established as a source that allows to provide significant amounts of
data on both individual consumers as well as their social context (e.g., Casteleyn et
al. 2009; Russell 2011). What is more, data exchanges oftentimes allow firms to
access information about consumers prior to their arrival on the website.

With an increasing amount of available data, the question for firms shifts from
“How can firms access the data?” to “How attractive are the data?” (Cai and Zhu
2015), and ultimately “How important are the data for effectively differentiating
between groups of consumers?” (e.g., Haustein 2016; Liu et al. 2016; Tufekci 2014).
This section discusses novel data and how firms can use them for market segmen-
tation (Öztaysi and Onar 2013; Netzer et al. 2012) and proposes that these novel data
can allow firms to assess previously unobservable consumer characteristics.

A key source of data today are online social networks. Two data types can be
usefulness for segmentation:

• Standardized expression of attitudes (e.g., Facebook/Twitter likes)
• Textual data (e.g., Facebook/Twitter comments)

The first, expression of attitudes describe the various ways of expressing oneself
on online social networks that are standardized. Examples of those are, for instance,
the act of one’s liking of a fellow user’s comment, of a topic, or even of a brand.
While each online social network offers its own labeling of this expression (e.g.,
Facebook uses so-called “likes”), they often reveal preferences and are easy for firms
to collect. The revealed preferences can allow inferring people’s personalities, which
can be valuable as segmentation criteria.

A large amount of information is posted daily on social in the form of texts
(Netzer et al. 2012), for instance, when consumers write status updates (i.e.,
information about their current activities), comment on others’ activities, or engage
in conversations. Such data are unstructured, which leaves advantages and disad-
vantages. While the data potentially contain rich information, the complexity of
extracting information may not be trivial and often requires skills and resources
(Netzer et al. 2012). Among the common methods of extracting insights from
textual data are sentiment analysis (which analyzes the emotional profile of a
message; Dhaoui et al. 2017) or advanced natural language processing (Tsai and
Chiu 2004), and for more detailed information, please see chapter “Automated
Text Analysis” of this handbook. Moreover, to translate this textual data into
segmentation criteria, firms also need to deal with multiple key challenges, such
as (1) matching people’s profiles on online social networks to actual persons and
(2) identifying whether consumers state their honest opinion. Despite the previous
issues, marketers can take advantage of these new data and also use them as a
basis for market segmentation – oftentimes to render observable previously
unobservable variables.
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In the Ford Ka example, data were collected via surveys. Consumers had to
indicate their preferences concerning the car, against different attitudes, as well as
whether they listed the Ford Ka among the three most preferred cars, three least
preferred cars, or in the middle. Moreover, this survey allowed obtaining information
about non-observable variables, such as the consumers’ attitudes. However, one
challenge related to this survey is the relatively small sample of consumers and the
assessment of the representativity. This points to a general problem in data collection
for segmentation purposes: creating a sample that is representative to estimate the size
of segments, when the segmentation is not yet known. This problem can be addressed
with additional market research after the segmentation is complete. Alternatively, a
commonsense segmentation, which we elaborate on in the next section, can guide the
determination of the sample and the sample size before the survey is conducted.

Step 4: Forming Segments

The formation of segments, i.e., the actual act of market segmentation, is fundamen-
tally a quantitative task requiring specialized statistical methods. However, any firm
can benefit from a market segmentation, even when that segmentation is informal
(i.e., lacks sophisticated methods). Dolnicar et al. (2018) propose to distinguish
between commonsense and data-driven market segmentation. While the common-
sense segmentation allocates consumers to different groups iteratively using differ-
ent segmentation variables, data-driven segmentation uses those criteria at the same
time along with model-based estimations (Dolnicar et al. 2018). A commonsense
segmentation might be as simple as using just paper and pencil by brainstorming
about why a customer would buy a product or service, derive value from it, and how
a customer is likely to acquire it.

For using more quantitative market segmentations, multiple methods have
evolved over the past decades (Wedel and Kamakura 2000). Initially, researchers
used classical multivariate statistical methods such as cluster analysis, discriminant
analysis, and regression analysis. More recently, the emphasis has shifted to model-
based segmentation methodologies involving more complex optimization and
numerical methods, finite mixtures, and Bayesian approaches given the various
criteria established for effective market segmentation.

The purpose of this section is to give the reader sufficient insights into different
methods to understand their value and offer a guideline to identify the appropriate
method for their market segmentation challenge. In particular, it discusses the
assumptions of different methods about segments. For detailed technical descriptions
of segmentation methods, we refer the reader to other chapters in this handbook (see
chapter▶ “Cluster Analysis in Marketing Research”) and to other sources that focus
on the description of statistical methods and processes. Formingmarket segments that
are useful for business decisions can be broken into three different but related steps:

• Creation of market segments: How many segments do properly represent the
customer heterogeneity of a market? What is the unifying need or behavior within
a segment and what are the key differences between the segments?
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• Profiling of market segments: How can firms classify customers into existing
segments? What are the characteristics of customers within a segment?

• Sizing of market segments: How many customers belong to a segment?

Creation of market segments. Market segmentation is required as a result of the
heterogeneity of customers in a market (Kotler 1997). We, therefore, need first a
description and quantification of this heterogeneity. The “classic” case of segmen-
tation occurs when the company has no or only limited knowledge of customer
heterogeneity, making segmentation an exploratory task. The main goal is to deter-
mine the number of segments based on the collected data and which segments each
customer is assigned to. The most appropriate methods for this task are various
existing clustering methods. Cluster analysis is often seen as synonymous with
segmentation. It is, however, important to note that clustering methods are most
useful for the creation of segments but do not suffice for market segmentation
overall.

Different clustering methods make different assumptions about the nature of
customer heterogeneity. A first assumption is whether or not a customer belongs to
one and only one segment. This leads to the distinction between nonoverlapping,
overlapping, and fuzzy clusters (Hruschka 1986). The first type follows the idea that
segments ought to be mutually exclusive and collectively exhaustive (MECE) while
the other two allow for customers to belong to multiple segments. Fuzzy clustering
provides a probability vector for segment membership and can thus be seen as an
intermediate solution between overlapping and nonoverlapping clusters.

If a customer can belong to multiple segments, then the customer can be exposed
to different, potentially conflicting, marketing actions. On the other hand, it is well
known that customers can belong to different segments, especially when we extend
market segmentation beyond the grouping of customers to a classification of con-
sumption situations or occasions (Arabie 1977). For example, the same customer can
consume beer for different reasons and at different locations. So, the distinction
between nonoverlapping and overlapping clustering is closely related to the question
of what exactly is the “object” that should be grouped in a market segmentation. This
is an important decision that relates to the distinction between strategic and opera-
tional segmentation. From a strategic perspective, it is more appropriate to assume a
customer belongs to only one segment and therefore assume clusters are non-
overlapping. From an operational perspective, when customer activation requires a
combination of marketing actions, forming overlapping clusters can be very useful.

Nonoverlapping clustering methods are the most commonly used methods in
marketing for market segmentation. Because the key question when creating seg-
ments concerns the number of segments, the distinction between hierarchical
clustering and nonhierarchical clustering methods is very important. Hierarchical
methods do not require the specification of several segments. They start with each
customer forming a single-subject cluster. These clusters are then linked in succes-
sive steps until all customers are in the same cluster. This forms a tree-like structure,
hence the term hierarchical clustering. Nonhierarchical methods start from a random
initial division of customers, which is then changed until an optimization criterion is
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achieved given the a priori specified number of segments. Typical optimization
criteria involve some kind of distance measure to account for the within and the
between variances. Hierarchical methods can therefore be seen as even more explor-
atory than nonhierarchical methods. Their disadvantage is the lack of a conceptual
basis to justify a hierarchical structure among customers to characterize heterogene-
ity. This structure also implies that a customer stays in the same cluster irrespective
of how many clusters are formed as the number of clusters is changed through
successive steps of combining clusters.

Determining the appropriate number of clusters is one of the most difficult
problems in the creation of segments. The goal, especially for strategic market
segmentation, is to obtain the smallest number of segments that makes sense for
the firm. A useful approach for this problem is to use multiple methods. Hierarchical
clustering gives an initial estimate of the number of clusters which then can be
applied to nonhierarchical clustering to refine and verify the segmentation. In the
third step, the number of clusters can be systematically increased and decreased. The
cost of increasing the number of segments is increased complexity. For example, if
an increase in the number of segments yields another segment that would not be
targeted, there is little value in increasing the number of segments. Similarly, the size
of the additional segment can be too small to be attractive or meaningful. On the
other hand, a reduction of the number of segments can eliminate a potentially
attractive target segment or an otherwise valuable market insight.

There are statistical methods to determine the optimal number of clusters (e.g.,
Calinski and Harabasz 1974), but it is important to understand that there is no
theoretically correct market segmentation, and the final number of segments is a
subjective decision that is based on statistical metrics and business considerations.
The final criterion is the utility of a final segmentation for the business and its
marketing actions – the business value. For more details about clustering methods,
we refer the reader to chapter “Cluster Analysis in Market Research” in this
handbook.

Profiling of market segments. This business value also depends on the ability to
properly sort customers into the created segments, including customers who were
not part of the data used to create the segments in the first place. In other words,
market segmentation requires a description or profiling of segment members. For
that, we need observable variables as outlined the section “Step 2: Determining the
Segmentation Criteria.”

Clustering and classification methods can be confused because both methods
allocate subjects into several groups or segments. In classification tasks, we know
the number of groups and the membership of existing subjects to those groups. The
objective of clustering methods is to reduce a larger number of items into a smaller
number of homogeneous clusters based on collected data. The objective of classifi-
cation is to assign an item to the appropriate group with the help of a classification
model. Using the terminology of machine learning, classification is a typical task of
directed knowledge discovery while clustering is an example of undirected knowl-
edge discovery. In a classification task, we have a dependent variable – the existing
segments – and independent or predictor variables and we have predictive methods.
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The two most common methods are discriminant analysis and logistic regression.
Both are used when the dependent variable is categorical. Discriminant analysis
creates discriminant function(s) to maximize the difference between the groups on
the function and is only used for categorization. Logistic regression works like
ordinary least squares regression but on the logit of the dependent variable. It can
be used for categorization but more also provides the odds ratio for each variable.
Cluster analysis without a subsequent discriminant or regression analysis does not
yield properly formed and profiled customer segments. An alternative method to
clustering plus discriminant analysis is latent class analysis (LCA; see also chapter
▶ “Finite Mixture Models”), which allows for a segmented analysis of customer
reactions to various marketing actions, especially price, and an integration of
segment creation and profiling (Grover and Srinivasan 1987; Kamakura and Russell
1989).

Predictive methods are also useful in the context of CRM systems when segments
can be formed based on past purchase behavior or customer value estimates, which
then can be linked to available predictor variables. With today’s computing power,
very sophisticated predictive models using Markov Chain Monte Carlo (MCMC)
methods can be deployed to directly approximate the posterior distribution of a
parameter of interest, thereby making the customer heterogeneity visible. Moreover,
the possibility to link it to observable predictors greatly facilitates the description or
profiling of segments.

Decision trees also provide a powerful and easy-to-implement classification
method. The goal is to build a tree that will allow us to predict the dependent
variable based on the values of attributes or independent variables. Decision trees
differ from logistic regression in the way they generate the boundaries between to
separate different classes. Regression “fits” a line to divide the space, whereas
decision trees bisect the space into smaller and smaller regions in a nonlinear
fashion. While decision trees, especially today’s high-power machine learning
methods, have superior classification performance, logistic regression accounts for
the simultaneous effects of all predictors and is usually less costly in terms of sample
size. For a further discussion of the advantages and disadvantages of decision trees,
see Berry and Linoff (1997) or Murthy (1998).

Sizing of market segments. Segmentation schemes offered by consulting compa-
nies, like the VALS™ segmentation, or simple observable variables like zip codes.
The value of these segmentation methods is somewhat limited today. Conceptually,
however, these methods play an important role in the segment formation process.
First, the selection of target segments depends on the evaluation of the attractiveness
of the segments. One important determinant of segment attractiveness is the size of
the segments (see “Step 5: Evaluating the Final Segment Solution”). An accurate
estimation of the size critically depends on the proper sampling of the underlying
population, but without some a priori knowledge of the segment structure, it is all but
impossible to ensure a representative sample for creating the segments. When
Renault launched the Twingo and Ford the Ka, the market segmentation revealed
the presence of design-sensitive buyers of small cars. But the size of these segments
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could not be reliably estimated because the respondents were not recruited with this
type of segmentation in mind.

Second, any overall average market research result calculated across a heteroge-
neous customer group is useless, if not dangerous. The calculation of the average
customer satisfaction across all Starbucks customers depends among other things on
customer acquisition. The rapid store expansion attracted a lot of convenience
buyers who did not value Starbucks as much as the experience buyers, the brand
lovers. It is possible that within both segments, customer satisfaction increases, but a
faster increase in the number of generally less satisfied convenience buyers would
result in a decrease in the average customer satisfaction. Similarly, if Coca-Cola had
segmented people before doing taste tests to develop New Coke, for example, on
simple variables like their brand preference and attitudes, marketing history might be
one disaster shorter.

The third key point is that for strategic market segmentation, the key segment
formation decision is setting the number of clusters. This is a managerial judgment
task guided by statistics. For an operational market segmentation, especially in a
setting where marketing decisions are automated, statistical methods, like machine
learning methods, are essential. They are very powerful, but the daily online
experience with retargeting illustrates the danger of very powerful methods: they
can be precisely wrong.

It should also be clear that the formation of segments is not a simple sequential
process. Segmentation is an iterative process. In particular, the number of segments
and the choice of profiling variables also depends on the organizational applicability
of the segments. The next step reviews how to evaluate the final segment solution. In
sum, it is important to see different methods as complementary and not as sub-
stitutes. A good segmentation process requires descriptive and predictive methods,
and without at least some a priori idea of segmentation (see “Step 1: Characterizing
the Ideal Market Segment”), any single statistical method can yield incomplete
results.

Returning to the Ford Ka example, we conducted a k-means cluster analysis (see
chapter▶ “Cluster Analysis in Marketing Research”) to reveal different segments. In
a k-means cluster analysis, the so-called k-means algorithm iteratively partitions the
data set into a predefined number of groups that are distinct and nonoverlapping.
Each data point is then allocated to a specific group.

In a first step, we created the segments using the k-means algorithm and the R
package. This step was done to determine the number of segments. We simulated
different numbers of clusters and examined to what extent the heterogeneity within
the segments was reduced by adding additional clusters with the elbow method (the
number of segments was chosen at the kink in the line plot, i.e., at four clusters).

Next, we visualized the segments to provide a profile of those segments (Fig. 3a–c).
Specifically, we plotted the segments using the three-, four-, and five-segment solution.
As can be seen, the five-segment solution was overlapping for the first two factors, while
the three- and four-segment solutions were discriminating well between the consumers
on those segments.
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We next used a discriminant analysis to test whether each of the factors contrib-
utes to the separation between the factors. The factors discriminated well between
segments as the following figure illustrates (Figs. 4a–c):

Step 5: Evaluating the Final Segment Solution

After forming segments, firms need to evaluate the viability of the segmentation. For
doing so, several commonly accepted criteria have been established (see Table 4;
Pires et al. 2011).

Identifiability. A key criterion for evaluating a market segmentation is the
identifiability of the segments (Blattberg and Sen 1974; Dolnicar et al. 2018;
Wedel and Kamakura 2012). Identifiability of the segments describes a marketer’s
ability to identify the segments. Typically, firms can use observable criteria to
identify those segments. For instance, when segments differ in terms of age or
gender, it would likely be easy to identify the market segments. By contrast, the
identifiability is low when nearly no, or no observable criteria are considered in the
segmentation. If only unobservable variables such as attitudes are used to distinguish
segments, firms are challenged in distinguishing between segments. In practice,
firms often either use a combination of observable and non-observable variables
(to be able to identify segments without trading off forming meaningful segments) or
even entirely use observable variables to ensure the resulting segments are
identifiable.

Accessibility. A second criterion is whether a consumer segment can be effec-
tively reached by a firm or its “accessibility” (Kotler 1997; Pires et al. 2011). While
the proliferation of new media increases the accessibility of segments and thus this

Fig. 4 a–c The discriminatory power of the factors for the four-segment solution
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criterion seems to be of less practical relevance, it is by no means given that all
segments are equally easy to be reached. Nowadays, consumers can effectively limit
the extent to which they are reached by specific communication efforts and thus
might be less easily accessible by companies. One way of how access to consumer
segments becomes more difficult is the use of ad blockers. Ad blockers restrict the
possibility of firms to effectively reach consumers via online advertising (Goldfarb
and Tucker 2011). More importantly, some segments are more prone to deter display
advertising that they are approached with by a company, i.e., the technology-savvy
consumers who are aware of the latest ad blockers. As a result, firms may not be able
to reach those consumer segments and thus a market segmentation that results in
those segments may create some hardly accessible consumer segments. While this is
only one example of how accessibility to segments can vary across segments,
multiple others exist.

Responsiveness. “Responsiveness” implies that market segments respond to a
firm’s marketing activities, such as response to a particular marketing communica-
tion campaign, to variations in price, or even the product’s features (Myers 1996).
Moreover, the segments’ responses should also differ from each other, which is
sometimes considered to be an extra criterion called “differentiability.” Based on the
segments’ responses, firms can more efficiently specify their marketing activities.
For instance, assume two segments differ in terms of their media habits. While the
first segment predominantly uses traditional media such as TVand radio, the second
segment uses new media and focuses on receiving all information via social media.
The difference between the two segments’ media usage allows firms to align their
media mix in a way that they can reach each of the segments most efficiently. The
firm can target the first segment with classical TV campaigns, while it can target the
second segment by specifying characteristics for their advertisements on social
media. By contrast, if the segments do not differ concerning how they respond to
various marketing activities, the market segmentation has failed to attain its goal of
more efficiently allocating its resources.

Stability. A criterion of market segmentation is the extent to which the segments
are stable (Dolnicar et al. 2018; Hassan et al. 2003; Pires et al. 2011). Put differently,
this criterion examines whether the market segmentation as well as the segments it
formed remain meaningful over time. Segmentation stability is insofar important for

Table 4 Criteria to evaluate final segmentation

Criterion Explanation Ford Ka

Identifiability Firm’s ability to identify the segments using a specific set of
observable criteria

Difficult

Accessibility Extent to which a segment can be effectively reached by a firm Good

Responsiveness Extent to which a segment responds to a particular marketing
program or product position

Good

Stability Extent to which a segment remains similar as well as meaningful
over time over a specific period of time

Probably
good

Substantiality Extent to which segments will yield enough profits such that they
justify being targeted

Unclear
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firms as it allows to craft longer-term strategies based on those segments. Dolnicar
and Leisch (2010) propose repeating the segmentation when a firm is concerned
about changes to assess its stability. Assessing the stability includes evaluating
whether the same segments will form in a similar structure and size over time.
While overall segments might reproduce in different segments over time, individual
segments might form less well over time. This segment level stability refers to “how
often a market segment with the same characteristics is identified across different
repeated calculations of segmentation solutions with the same number of segments”
(Dolnicar et al. 2018; p. 167). Notably, the stability of segmentation solutions
depends on the criteria chosen for segmentation. A market segmentation that relies
on consumers’ values, which are characterized to be stable over time, eventually
results in a more stable segmentation than one that builds on criteria that vary
significantly, e.g., consumers’ sentiment expressions on social media.

Substantiality of segmentation. The final and key criteria for evaluating market
segments is the “substantiality” of the formed segments. Substantiality describes the
extent to which a segment is attractive enough such that it justifies being targeted –
which is typically derived by a segment’s profitability potential. Substantiality thus
depends on a combination of measures, such as the number of consumers assigned to
a segment, economic variables as their customer lifetime value, their purchasing
power, or their price sensitivity (Hassan et al. 2003). While the number of consumers
in a segment is not the only measure, it still remains important as it relates to the
firm’s strategy: Large segments are typically targeted by market leaders (and thus
characterized by more competition), whereas smaller segments form so-called niche
segments, which may be more attractive for smaller firms. It is worth noting,
however, that recent developments have challenged this idea. Production techniques,
as mass customization and personalized communication and dynamic pricing now-
adays allow firms to cater to needs of individual consumers. Accordingly, on an
operational level, firms are nowadays able to target much smaller segments than
previously and to individualize their activities.

We next illustrate the segments using the demographic variables reported at the
outset and added the preference for the Ford Ka. In terms of the established criteria
for segmentation, it will be difficult to easily identify the segments given that they
barely differ in terms of observable attributes such as gender or age. The accessibility
to each of the segments is given as follow-up analyses concluded: They can be
reached using classical communication instruments. As can be seen by the classifi-
cation (see Table 5), the segments differ in their preferences for the Ford Ka, thus,

Table 5 Segment descriptions

Segment Size
Pref
Ka

Gender (%
female) Married Single Age

Income
category

Seg. 1 31% 43.6% 41% 53.8% 35.9% 37.0 3.77

Seg. 2 13% 56.3% 50% 53.1% 37.5% 35.1 3.59

Seg. 3 26% 41.5% 62% 50.8% 40% 37.1 3.28

Seg. 4 30% 46.7% 43% 46.7% 38.7% 35.6 3.97

Market Segmentation 959



they seem to be differently responsive, with Segment 2 being the one that has the
strongest preference for the Ford Ka. While we did not illustrate the stability over
time (as this was a cross-sectional survey), one can assess the substantiality of the
segments: The smallest segment of the four-segment solution seems to be most likely
to consider the Ford Ka among their top three choices. The segment is bolded. This
last problem could potentially be alleviated by extending the targeting to include, for
example, all or part of Segment 4.

Step 6: Implementing the Market Segmentation

The final step is the implementation of a market segmentation. In this phase, firms
need to consider their resources as well as their organization. The key objective of
this section is to emphasize that a market segmentation is a means to an end, which is
to more effectively serve segments of consumers). Three points require attention:

• Allocating sufficient resources to the implementation (in the short- and long-run)
• Closely aligning marketing and sales departments
• Regularly evaluating and updating the market segmentation

To materialize the value of any market segmentation demands to fully embrace it.
This may as well imply substantial organizational changes (Croft 1994) and if firms
are not willing to bear these consequences and thoroughly implement the market
segmentation, even a potentially successful market segmentation may fail (Dibb and
Simkin 1997, 2001). While firms may reorganize and align their marketing activities
in the short run, they should also consider the long run. For example, in our Ford
example, Segment 4 not only seems to be the biggest segment but also the one with
the greatest income. However, this potentially profitable consumer segment does not
prefer the Ford Ka as much and thus does match the product well. Investing
resources to develop a product that meets that segment’s needs might not be worth
the effort.

One of the challenges when implementing a market segmentation is the alignment
of the marketing department and the sales department. Typically, creating a market
segmentation is the task of the former, while the implementation primarily concerns
the latter. This requires a close alignment between both departments, in terms of its
organizational routines or IT systems. The knowledge of the market structure that the
marketing department reveals by means of the market segmentation need to be
internalized into a firm’s a CRM system to grant the sales department easy access.
What is more, the operationalization of the market segmentation can be updated in
real-time in case a firm’s IT systems allow for doing so. For instance, depending on
the information that firms have about visitors of their websites (e.g., obtained by
Google Analytics), firms could display personalized information. The information
though also flows in the opposite direction. A successful segmentation depends on
the availability of data within the CRM system, which are primarily generate or
provided by sales or customer service.
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Besides these formal implementation challenges, the results of a market segmen-
tation should also be actively communicated to a firm’s employees (e.g., product
developers or customer contact personnel) in a way that it is useful. For illustration
purpose, firms can use of so-called “personas” that are actual or fictional profiles
(Pires et al. 2011) that portrait the members of each market segment in a represen-
tative manner. These personas are typically focused on the attitudes and motivations
of that segment and given that they illustrate segments they translate the mere
numbers and descriptive patterns of a market segment into useful visualizations.
While using actual consumers as personas can be more believable (Judge et al.
2012), fictional ones may fit more precisely and may be dynamically changed to
reflect changes in of a given market segment (An et al. 2017). Such illustrations may
support the firm in various considerations. For instance, product developers might
consider such personas, and their projected motivations and goals, as basis for
developing products that appeal to multiple segments (Pires and Stanton 2005).
Moreover, personas and their visual characterization may support customer contact
personnel in identifying members of individual market segments (Pires et al. 2011)
and thus be decisive about whether the market segmentation will be used in practice.
While no personas are indicated, we labeled the segments according to their psy-
chographic profiles (see Table 6).

Many firms see market segmentation as something you do “once in a lifetime.”
Market segments are based on consumer characteristics and these characteristics
change over time. As outlined in Step 5: Evaluating the Final Segment Solution, a
market segmentation should be stable over an extended period of time as it creates
the basis for long-term strategic decisions that are hard to adapt or even reverse. At
the same time, firms should not ignore the implications of consumer trends for
market segmentation. A market segmentation needs to be regularly evaluated against
these trends. When new consumers enter a market, the variables used to identify
segments may need to be adapted. When new consumer needs emerge, the variables
used to create the segments need to be adapted. When both change at the same time,
it is time to change the entire market segmentation.

For example, for a long-time, small cars created customer value through a lower
price. As a result, all manufacturers segmented consumers based on socioeconomic

Table 6 Segment names and descriptions

Segment 1 Segment 2 Segment 3 Segment 4

Description Attention
seekers

Freedom lovers No-nonsense
neutrals

Sensible
classics

Size 31% 13% 26% 30%

Car
preference

Unique car Funky car Basic car Sensible
car

Factor 1 Medium High Low High

Factor 2 High Medium Medium High

Factor 3 Medium High Medium Low

Other
descriptors

Fashion
conscious

Skeptical of government
regulation

Can only afford
small car

Value
conscious
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variables and focused on reducing development and production costs. Consider the
rising popularity of small cars. Various technological, environmental, and social
trends made small cars attractive for other reasons than price (e.g., urban mobility,
environmental footprint). These benefits also attracted new consumer segments to
small cars. It was not until the introduction of the Renault Twingo and the Ford Ka,
that car manufacturers realized the need for new market segmentations.

Conclusions and Managerial Implications

This chapter described the concept and process of market segmentation. The value of
market segmentation has been discussed in light of recent developments, like the
greater ability of firms to deliver individualized offerings, personalized communi-
cation, as well as a much greater degree of price discrimination.

This chapter ascertains that segmentation is as relevant today as it was when the
concept was first introduced into management practice. In fact, technology trends
have further increased the importance of distinguishing between strategic market
segmentation, which guides a firm’s long-term decisions (e.g., positioning or inno-
vation and new product strategies), and operational market segmentation, which
relates to real-time decisions like personalized communication (Jenkins and
McDonald 1997; Sausen et al. 2005). While strategic segmentation is important no
matter the firm’s strategy or products, operational segmentation intuitively depends
on the extent to which firms can adapt to their consumers in real time on an
individual basis, which is facilitated by a greater level of digitalization (e.g., of
communication). Accordingly, the digitalization provides firms with different abil-
ities to customize their offerings and to personalize their communications and in
future, customers will be able to benefit from additional offerings. Nevertheless,
developments in the opposite direction exist, too, such as the increased sensitivity for
privacy issues (Aguirre et al. 2016; Awad and Krishnan 2006) and data protection (as
newer developments like the General Data Protection Regulation). These develop-
ments challenge the proliferation of real-time segmentation.

Despite its undeniable value to any business, market segmentation is not without
controversy. Because the fundamental goal is to customize marketing actions, at
least to some degree, in other words to treat different people differently, segmenta-
tion can be viewed as discrimination with another name. By choosing a target
segment, firms implicitly choose to serve and focus on some customers and not
the entirety of their customers. At a time when society is increasingly sensitive to all
forms of discrimination, marketers can face a dilemma. By creating the basis for
customization, segmentation creates value for consumers. At the same time, it
creates the basis for differentiation and monopoly power, which can be detrimental
to customer value. Moreover, marketing actions based on segmentation can reinforce
stereotypes that at the root of gender inequality or ethical discrimination.

Even though segmentation is a well-established and fundamental concept in
marketing, many firms still struggle with it. Like marketing, successful market
segmentation is science and art; it requires judgment on part of market researchers
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and managers. We conclude this chapter with a list of seven segmentation traps to
avoid.

1. No strategic market segmentation at all. There is still the belief that market
segmentation is something only for big consumer goods firms. Even if the
number of customers is small or real-time customization is possible, segmentation
improves the quality of marketing and business decisions. All firms can benefit
from a strategic market segmentation because the value of segmentation derives
not only from the firm’s own marketing strategy but importantly from a more
detailed understanding of consumers. At least, this can improve the firm’s
understanding of their consumers, reduce complexity, and simplify internal
communications.

2. Seeing market segmentation as a statistical exercise. Developing a marketing
strategy and selecting target customers are fundamental to the strategy processes
of any business. Data alone cannot decide how to segment a market, especially
not for strategic market segmentation. Management judgment is part of the
process. As a result, market segmentation is always a strategic decision and
should not be reduced to a statistical exercise.

3. Confusing segments and product categories. Market segmentation groups con-
sumers and leads to strategies and activities that are specific to the needs and
behaviors of target segments. This includes adapting products and developing a
portfolio of products for the target segments. While a close relationship between
target segments and product categories is important, one should not confuse them.
There is no “small car” segment; there are consumers – a segment – whose needs
are best addressed with a small car – a product category.

4. Market segmentation solely with demographic variables. A specific market
segment should have a uniform reaction to a marketing action or a set of
marketing actions. Consumer behavior is primarily driven by deep motivational
and attitudinal factors and not demographic variables. Thus, only using demo-
graphic segmentation variables is not promising and likely fails to uncover
segments that respond unambiguously to marketing activities.

5. Segments are not identifiable. The flipside of the fourth trap is a market segmen-
tation that fails to assign consumers to the created segments. Deep motivational
and attitudinal factors are not observable; oftentimes, they are at best revealed
over time through consumers’ behavior. To implement marketing actions, the
target segment must be identifiable, which requires the description of segments
with observable variables.

6. Segment attractiveness is segment size. The first goal of segmentation is to
structure the market into internally homogeneous market segments. The sec-
ond goal is to prioritize these segments. Segment attractiveness is not just
determined by size and growth. The profitability of a market segment also
depends on the competition – bigger markets attract more competition –
factors as the segment’s price sensitivity and whether a firm is able to
efficiently serve a segment. Thus, bigger segments might not always be the
more attractive ones.
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7. Considering segmentation as a static process. A key success factor of market
segmentation is to keep it relevant over the years while considering how envi-
ronments and consumers change. It is thus imperative to constantly reevaluate
and potentially update the market segmentation.

To conclude, market segmentation is at the core of any market strategy and is
rightly considered to be one of the most important marketing tools. Newer devel-
opments shape and affect the value of market segmentation and allow firms to
customize and individualize their offerings, prices, and communications. The rise
of digital marketing certainly had and will continue to have a significant impact on
market segmentation, but “big data” and “marketing automation” carry the danger of
turning market segmentation into a technical and operational issue instead of
cementing its place as the foundation of all marketing strategy and actions. Cus-
tomers will continue to exhibit similarities and differences and it is up to firms to
understand them and harness them for their business strategies and thus the value of
market segmentation remains undisputed.
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Abstract

Measuring accurate willingness to pay (WTP) is essential for designing pricing
policies, particularly for pricing new products. Neglecting consumers’WTP may
lead to unexploited surplus when prices are set too low or to low demand when
prices are set too high. Additionally, information on consumers’ WTP serves as
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valuable input to estimate sales and for use in optimization models, thus, to
maximize profit. To date, various approaches to measure WTP exist that differ
regarding their elicitation approach (direct vs. experimental) and whether they
rely on stated or revealed preferences (hypothetical vs. actual WTP). This chapter
provides an overview of the most common methods for measuring WTP and
further discusses determinants of WTP.

We further provide a practical illustration of WTP measurement. Therefore, we
collected data on consumers’WTP for a hypothetical new product offer using two
stated preference approaches (open-ended questions and dichotomous choice
method following a sequential monadic approach) as well as one revealed pref-
erence approach (BDM mechanism). We compare the results of these different
methods and discuss how to apply WTP measures in practice.

Keywords

Willingness to pay · Stated preference methods · Revealed preference methods ·
Hypothetical bias · Drivers of WTP

Introduction

Determining prices is a task that challenges all companies worldwide. As price is the
most effective driver of profitability, superior to cost reductions and increases in sales
quantity (Simon and Fassnacht 1982, pp. 1–24), optimal pricing can be considered
one of the most crucial management decisions. Ideally, pricing decisions should
account for production costs and competitors’ prices, while also considering how
much consumers are willing to spend for the product at maximum (Moorthy 1988).
However, the latter, referred to as consumers’ reservation price or consumers’
willingness to pay (WTP) (Kalish and Nelson 1991, p. 328), is often neglected,
resulting in prices that do not fully exploit consumer surplus: according toMcKinsey,
80–90% of all poorly chosen prices are set too low (Marn et al. 2003). This may lead
to substantial losses in revenue: for example, the car manufacturer Audi lost more
than 200 million Euros because it sold its Q7 luxury SUV too cheap, thus running out
of stock. Similarly, Asus, the Taiwanese electronics company, launched its mini-
notebook “eee PC” in Germany at a price which was set so low that demand exceeded
supply by 900% (Ramanujam and Tacke 2016, p. 22). But even if companies become
aware of their undervaluation before running out of stock, they won’t be able to easily
adjust their prices. Consumers often react negatively to subsequent price increases,
consequently leading to lower perceived value, satisfaction, and future purchase
intentions (Calabuig et al. 2014). They may even boycott the seller (Sen et al. 2001).

In contrast, an overvaluation, i.e., when prices are set too high, may be adjusted
more easily from a consumer’s point of view, but it may often lead to market entry
difficulties or even product failure. For instance, the introduction of Apple’s earlier
devices, the handheld Newton (introduced in 1993) and the gaming machine Pippin
(introduced in 1995), failed completely as they were perceived as too expensive
(Greenberg 2008). Particularly companies that tend to “over-engineer,” i.e.,
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equipping their products with features that consumers do not value, encounter the
problem of overvaluation. For example, Amazon took a 170-million-dollar write-
down in 2014 because its high-end positioned “Fire Phone” was equipped with too
expensive features that consumers were not willing to pay for (Ramanujam and Tacke
2016, pp. 16–17).

Without knowing consumers’ WTP, it is not only difficult to design a profitable
product, it is also impossible to make educated decisions about how a new product
should be introduced and offered, such as whether to create product bundles (Chung
and Rao 2003), to partition prices (Hamilton and Srivastava 2008), or to estimate the
effects of price promotions (Shaffer and Zhang 1995).

Due to the interdependence of price and demand, even small changes in price may
significantly influence both the overall market share and profits (Winer 2005). Thus,
knowing consumers’ true WTP can be considered the most important information
for estimating sales (Jedidi and Jagpal 2009, pp. 37–38) and, ultimately, maximizing
revenue.

As consumers’ true WTP is an unobservable construct, the challenge comprises a
valid elicitation manner to find out its true value (Voelckner 2006, p. 137). Therefore,
various methods for measuring consumers’WTP have already been developed, with
constant efforts to improve weaknesses associated with these measurement
approaches, such as high complexity and costs of measurement, biases, lack of
realism, or insufficient information specificity.

Therefore, this chapter provides an overview of the most common methods to
measure WTP and gives some insights about how to counter these possible weak-
nesses associated with these methods. We further discuss the importance of context
effects. Independent of the method, researchers as well as practitioners have to take
into account that consumers’ WTP is usually not fixed but dependent on the respec-
tive context. Consumer preferences are not stable but are often newly formed during a
choice situation, affected by various personal and contextual factors (e.g., Slovic
1995; Bettman et al. 1998; Hoeffler and Ariely 1999). Considering the importance of
price to be a profit driver, it is therefore essential to know what circumstances
influence consumers’WTP and to understand when and why it changes. In addition
to an overview of common methods to measure WTP, we discuss situational, indi-
vidual, and information-related factors driving consumers’ WTP.

To illustrate the theory, we present a simple example and compare the results of
three elicitation methods. We measure consumers’ WTP for a hypothetical new
product offer using two stated preference approaches (open-ended questions and
dichotomous choice method following a sequential monadic approach) as well as
one revealed preference approach (BDM mechanism). At last, we further discuss
how to apply elicited WTP in practice.

Conceptual Definitions of WTP

When estimating WTP, the aim is to determine the maximum price a consumer
would be prepared to pay, that is “the maximum sacrifice, in terms of [. . .] money,
that one is willing to make to obtain a commodity” (Donaldson 1999, p. 551). This
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means that WTP is not necessarily equivalent to consumers’ estimation of the value
of a product. Consumers may have a WTP below what they believe a product to be
worth if they cannot afford to pay more, that is, if their ability to pay is limited
(Russell 1996). Therefore, measurements of WTP try to determine “the price at or
below which a consumer will demand one unit of the good” (Varian 1992, p. 152).
While this implies that a consumer will definitely make a purchase, other definitions
state that WTP is the price “at which a consumer would no longer purchase” (Hauser
and Urban 1986, p. 449) or “at which a consumer is indifferent between buying and
not buying the product” (Jedidi and Zhang 2002, p. 1352).

These marginal technical differences in the definition of WTP illustrate the
difficulty of generating a specific point estimate, raising the question whether such
a price point exists. From an economic viewpoint, “WTP for a product is the amount
of income that will compensate for the loss of utility obtained from the product”
(Allenby et al. 2014, p. 430). As it is highly difficult for consumers to determine
exactly how much utility they will derive from a product, more recent research
suggests that “rather than specific WTP values for products, consumers probably
have some range of acceptable values” (Ariely et al. 2003, p. 77). If the price falls
below the lower bound of this range (“floor reservation price”), they will definitely
buy; if it exceeds the upper bound of the range (“ceiling reservation price”), they will
definitely not buy. Within this range, consumers’ response is not clearly predictable
(Ariely et al. 2003; Wang et al. 2007). Under the premise that the WTP distribution is
symmetric within the uncertainty interval, expected WTP is the midpoint of this
range (Dost and Wilken 2012, p. 149).

Methods for Measuring Willingness to Pay

Methods for measuring WTP can be differentiated with regard to their elicitation
approach (direct vs. experimental) and whether they rely on stated or revealed
preferences (hypothetical vs. actual WTP) (c. Miller et al. 2011). With stated
preference methods, participants’ answers are taken “as stated,” and their choices
are only of hypothetical nature. Revealed preference methods, in contrast, lead to
real consequences and actual purchases.

The following table provides an overview of common methods used to measure
WTP (Table 1):

Table 1 Overview of common methods for measuring consumers’ WTP

Stated Revealed

Direct Consumer surveys, e.g.,
– Open-ended questions
– Dichotomous choice method
– Payment card method

Expert opinions

Auctions, e.g.,
– Vickrey auctions
– BDM mechanism

Market data

Experimental Conjoint analysis
Choice-based conjoint analysis

Lab experiments
Field experiments
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Direct methods estimate WTP by directly asking

– Consumers how much money they are willing to spend (i.e., open-ended ques-
tions or closed questions using dichotomous choice or payment card methods; or
consumer auctions where consumers have to make bids pursuant to the Vickrey
rule or the BDM mechanism)

– Experts about prices they believe achievable (i.e., expert judgments, management
discussions)

– The market, by analyzing past (i.e., “natural”) market data that give insight about
which prices are accepted

Experimental methods, in contrast, actively create or manipulate choice situations
that are affected by price, deducting WTP from participants’ behavior, without
explicitly asking about the price itself.

These can be

– Hypothetical choice scenarios where participants have to evaluate options or
choose among options (i.e., conjoint analysis, choice-based conjoint analysis)

– Real, but artificial choice situations where participants have to make actual
purchase decisions (i.e., lab experiments)

– Real, natural choice situations, where participants are not aware that their pur-
chase decisions are part of a pricing experiment and that prices are manipulated
for experimental purposes (i.e., field experiments)

In the following, we will explain each method in detail, having a closer look on
the most popular ones. We then discuss advantages and disadvantages associated
with each method and conclude with an overview of method validity and feasibility.

This section concludes with a guide suggesting when to apply which method.

Stated Preference Methods

Direct Stated Preference Methods
Direct stated preference methods can be divided into consumer surveys and expert
opinions. They are usually the fastest and simplest ways to measure consumers’
WTP.

The open-ended questions method asks consumers directly how much they would
be willing to pay for a certain good or service. This is most probably the easiest
method to use. A special variant of the open-ended questions is the van Westendorp
method, a consumer survey that also measures price perception and price sensitivity
(Müller 2009). The van Westendorp method generates a pricing corridor based on
four questions about what price consumers would consider too cheap vs. attractively
cheap as well as expensive but acceptable versus too expensive (van Westendorp
1976). The van Westendorp method thereby generates a price sensitivity meter
(PSM). Figure 1 depicts an example on how to interpret the results of such a survey.
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The intersection of “too cheap” and “cheap” (inverted) and the intersection of
“too expensive” and “expensive” (inverted) mark the lower ends (LE) and upper
ends (UE) of the price corridor for optimal pricing. In the example, the product
should be priced between 410€ and 650€.

The van Westendorp method allows respondents to indicate a price range instead
of one price point, an approach supported by recent research. Wang et al. (2007)
argue that consumers are often not completely sure about their own preferences and
the exact performance of a product, which means that forcing them to state their
WTP as one absolute point does not adequately reflect reality. They therefore
propose to ask respondents at which price they would definitely buy/be indifferent
between buying and not buying/buy with a very low probability, thereby generating
a price range. Dost and Wilken (2012) support this approach by arguing that range-
based methods allow consumers to indicate a price range that reflects their decision-
making uncertainty, whereas point-based methods ignore this uncertainty and force
consumers to make a guess about their WTP that might or might not be true.

However, open-ended questions methods, both point-based methods and price
range methods, require high cognitive effort from consumers, who are used to
evaluating given prices instead of generating prices on their own (Chernev 2003).
Therefore, dichotomous choice methods use closed, polar questions, asking respon-
dents whether they would buy a product at a specific price. Dichotomous choice
methods are easy to implement; however, the consumer’s response only gives
information about whether the price is acceptable or not but lacks information on
precise WTP. Thus, researchers may work with either a large sample size (monadic
approach) or with a sequential approach (sequential monadic approach). Applying
the monadic approach, participants are divided into different groups, with each
group being confronted with a different price. The amount of price points should
be limited, as each requires a new group of participants (Lyon 2002, p. 10). An
alternative approach that does not require such a high sample size is the sequential
monadic approach, sometimes also referred to as Gabor Granger method.

Fig. 1 Example for a price sensitivity meter
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Participants who answer that they would not buy the product at the given price will
be asked the same question again with a lower price (with the exception that the
rejection is based on the fact that the price was too cheap). In contrast, participants
accepting the initial price presented, will be asked whether they would buy the
product at a higher price, until the maximum WTP is determined (Gabor and
Granger 1966).

An undesired effect of this approach is that the price attribute becomes very
dominant in contrast to the other attributes of the good or service. This method also
suffers from a starting point bias, meaning that the first price serves as an anchor and
impacts participants’ evaluation of the subsequent prices (Herriges and Shogren
1996).

The payment card method avoids this bias by presenting participants with an
array of prices, asking them to indicate which of the presented prices reflects their
WTP (Fig. 2). However, here researchers must pay attention to select intervals that
actually cover participants’ differences in WTP, and to choose a decent number of
price points manageable for participants (Rowe et al. 1996).

Direct stated methods are the most common method used for contingent valua-
tion, i.e., for measuring the value of goods that cannot be sold, such as public or
environmental goods (e.g., air quality) (Mitchell 2013). In contingent valuation,
survey participants are asked to imagine how much they would be willing to pay to
improve the status quo or to prevent it from deteriorating (e.g., to prevent a reduction
of air quality), for instance, through taxes or donations that help to improve or
preserve the current status (see Boyle 2017 for a detailed description of how to
conduct a contingent valuation study).

While contingent valuation surveys need a sample of participants that represent
the respective interest group, companies conducting WTP surveys can also rely on
expert opinions, thus questioning internal market experts instead of consumers.
These experts can be marketing managers or sales people who work closely with
consumers and can therefore provide relevant insights for pricing decisions. A
disadvantage of working with market experts is that their judgments might be biased.
Particularly, when their compensation depends on the number of sales, they may

Fig. 2 Example for a contingent valuation survey using the payment card method
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have an incentive to state a lower price than they believe achievable (Hanna and
Dodge 1995, p. 70).

Consumer surveys involve a similar incentive problem: as a direct question
predominantly shifts attention toward the price, consumers are tempted to act
prospectively and state a price lower than their true WTP in order to save money
(Lyon 2002, p. 9).

Qualitative research has therefore made efforts to limit strategic answering by
improving the formulation of direct questions. For instance, instead of asking what
price a respondent would be willing to pay, the researcher could alternatively ask
the respondent to state a price that he/she considers fair for both seller and buyer
or to ask the respondent to guess at which price the product would sell (see
Henderson (2002) for a more detailed description of possible qualitative
questions).

Another, although more complex way to eliminate the problems of consumers’
strategic understatements of their WTP is to use experimental stated preference
methods.

Experimental Stated Preference Methods
Experimental stated preference methods, also known as conjoint analyses, employ
choice scenarios where respondents have to compare and evaluate different options.
These methods are decompositional, which means that the respondents’ ratings of
the presented products, or their choice decisions, are used to deduct WTP for the
overall product and its different features (“top-down approach”). Despite being more
complex and time-consuming than direct surveys, the holistic approach of these
analyses is closer to consumers’ actual product evaluation behavior and puts less
emphasis on the price attribute. It thereby overcomes most of the previously men-
tioned problems of direct WTP measurements, such as strategic or biased answering
behavior or respondents’ difficulties in accurately stating their WTP (Green and
Srinivasan 1990).

The underlying idea of conjoint analyses is that consumers’ WTP for a product
depends on the utility they derive from it, with the overall utility being the sum of the
utilities they derive from the different product attributes.

Traditional conjoint analysis (CA) (Luce and Tukey 1964) determines these
utilities by asking respondents to rank (or rate) different products that are presented
through multiple relevant product attributes and product attribute values (e.g., Green
and Rao 1971; Green and Srinivasan 1978; see Gustafsson (2007) for a detailed
description of different forms and applications of conjoint analysis).

Choice-based conjoint analysis (CBC) (Louviere and Woodworth 1983) does not
demand respondents to rank different products but rather to choose among them,
including the option to choose nothing (Fig. 3). Therefore, the main advantage of
CBC is its similarity to real choice situations (compare Louviere et al. (2000) for a
detailed analysis of both approaches).

CA relies on the assumption that respondents derive more utility from the product
the higher they rank it. CBC infers that the utility of an option that has been chosen is
positive – otherwise the no-choice option would have been selected – and higher
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than the utilities of each of the rejected options (Halme and Kallio 2011). Using
statistical estimation methods, such as monotonic analysis of variance or multiple
regression (c. Green and Srinivasan 1990, p. 5), an additive utility function can then
be generated (see Eq. 1).

Equation 1 Exemplary additive utility function of a consumer h for a product i.

Û h,i ¼ β̂h,0þ β̂h, j¼Price � xi, j¼Priceþ β̂h, j¼Attribute_1,m¼Value_1 � xi, j¼Attribute_1,m¼Value_1

þ . . .þ β̂h, j¼Attribute_n,m¼Value_n � xi, j¼Attribute_n,m¼Value_n

Equation 1 shows an exemplary basic formula of a utility function for a
consumer h and a product i. It starts with a constant (βh,0) that represents the
basic utility that consumer h derives from product i. The function includes the
attribute “price,” which is coded with a vector model, meaning that the utility
increases/decreases linearly with the attribute value, i.e., the price level. The price
parameter (βh,j = Price) is usually negative, meaning the overall utility of a product
decreases with increasing price and vice versa (there are rare exceptions, for
instance in the area of luxury goods). For example, if βh,j = Price is estimated as
�1.5 and the price equals 10 monetary units, the utility of the product decreases
by 15 utility points. Apart from the price attribute, all further relevant attributes
must be considered in the function. Nominal attributes are coded with a part-worth
utility model, which means that a parameter is estimated for each specific attribute
value, with the specific values being incorporated into the function via dummy
variables. By offsetting the utility of an attribute with the price that results in a
utility of zero, WTP can be calculated for each product attribute and consequently,
the overall product if all relevant attributes are considered (Kohli and Mahajan
1991). More precisely, WTP for a specific attribute value is calculated by dividing
its part-worth utility through the nominal value of the price parameter of the utility
function (compare Eq. 2).

Shipping Time

3 Please choose the Bundle you would most likely consider buying.

2 Business Days 2 Business Days

Free of Charge
Free of Charge at a

Minimum Order Value
of 50€

9€ 39€

1 Business Day

Shipping Coast charged

I would not consider to
buy any of these bundles.

29€

Shipping Cost

Monthly Bill

Webinars

Price per Month

Special online account
with access to exclusive
content

Fig. 3 Example for a choice-based conjoint task for an industrial service bundle
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Equation 2 Calculation of WTP using utility parameters

WTPh, j¼Attribute_x,m¼Value_x ¼
β̂h, j¼Attribute_x,m¼Value_x

β̂h, j¼Price

�
�

�
�

For example, if attribute 1 was color, with value 1= “red” and value 2= “blue,” a
parameter of 3 (6) for value 1 (value 2) would indicate that the utility increases by
3 utility points if the product is red, and by 6 utility points if the product is blue. This
means consumer h would be willing to pay 2 monetary units if product i was red (!
3: |�1,5| = 2) and 4 monetary units if it was blue (! 6: |�1,5| = 4). Consequently,
consumer h would be willing to pay 2 monetary units more if product i was blue
instead of red (! (6–3): |�1,5| = 2).

For a more comprehensive description of how to conduct conjoint experiments,
please refer to the chapter “Choice-Based Conjoint Analysis” of this handbook.

Although (choice-based) conjoint analysis relies on several assumptions that are
often flawed in reality (e.g., assuming a compensatory relationship between different
attributes; compare Srinivasan 1988), it has proven to be a reliable tool for estimating
sales and is widely used in both research and practice (Green et al. 2001). However,
like all stated preference methods, it suffers from hypothetical bias.

Hypothetical Bias in Stated Preference Methods
Stated preference methods suffer from hypothetical bias, which occurs when values
are collected in a hypothetical context (Harrison and Rutström 2013). In hypothetical
contexts, consumers tend to neglect thinking about what they could alternatively do
with the money that is required to buy a product, leading to an exaggerated stated
willingness to purchase (Dhar and Gorlin 2013, p. 533). Comparing hypothetical and
real purchases, participants more often indicate that they would buy a product in
hypothetical contexts (Miller et al. 2011). They further tend to report a significantly
higher WTP when they do not have to pay the stated amount in reality (Neill et al.
1994; Voelckner 2006). Consequently, stated purchase intention and related WTP
can differ substantially from real behavior (Kalwani and Silk 1982; Morrison 1979).

As stated preference methods are sometimes indispensable, for example to elicit
WTP for new products that are not available yet, research has tried to address
hypothetical bias in stated preference methods altering qualitative and quantitative
aspects.

One simple suggestion is to make respondents more aware of their hypothetical
answering behavior. Researchers may inform participants about hypothetical bias
and request them to think about what they would really do, i.e., use cheap talk.
However, results of this approach are mixed, with some studies demonstrating a
reduction of hypothetical bias (e.g., Cummings and Taylor 1999) that others could
not confirm (e.g., Blumenschein et al. 2008). Another approach is to remind partic-
ipants of their budget constraints, making them aware that they could also use their
money for something else. Effects of this approach are not consistent either, with
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some research reporting improved results (e.g., Frederick et al. 2009) whereas other
research found no difference (e.g., Loomis et al. 1994).

Another alternative to reduce hypothetical bias is the certainty approach. The
certainty approach only considers data from respondents who are highly sure about
their answer. These responses were shown to be closer to real behavior
(Blumenschein et al. 2008). Similarly, Hofstetter et al. (2013) note that not all
consumers are equally suitable for WTP estimations. Their research on WTP for
innovative products shows that individual personal characteristics of respondents
regarding abilities and motivation have a positive influence on the validity of their
WTP estimates. However, to exclude respondents whose answers are possibly less
viable requires a high number of participants.

Quantitative efforts in research may also reduce hypothetical biases. Lieven and
Lennerts (2013) present a survey method where participants have to make trade-offs
between cash and vouchers that are earmarked for a specific (hypothetical) product/
service. Regardless of its face value, the subjective value of the voucher can
naturally never be higher than participants’ WTP for the respective product. This
method enables researchers to use participants’ choice of cash/voucher combinations
to draw inferences about their WTP. Ding et al. (2005) have developed an approach
that makes conjoint analyses incentive-compatible, leading participants to reveal
their actual WTP. Their research suggests to combine conjoint analysis with the
Becker–DeGroot–Marschak (BDM) mechanism (Becker et al. 1964; see below for a
more detailed description), a revealed preference method (Ding 2007) or to tell
participants that they will have the chance of winning their favorite product that will
be determined through their answers in the analysis (Dong et al. 2010).

Another option to circumvent the problem of hypothetical bias occurring with
stated preference methods is to use revealed preference methods instead.

Revealed Preference Methods

Direct Revealed Preference Methods
Direct revealed preference methods are auctions or the analysis of market data.

Auctions are used in the field (e.g., traditional auctions or online auctions such as
eBay) and in the lab as a direct method to elicit WTP, which is revealed through
participants’ bids and bidding behavior. In the following, we will discuss the most
common auction mechanisms.

In English auctions, the highest bid wins the auction and determines the purchase
price. Competing bidders can overbid each other openly as often as they want what
may lead to a systematic overestimation of WTP: they may bid prices that are higher
than that of the average consumer, thereby distorting the overall data (Barrot et al.
2010). The phenomenon of auction fever exacerbates this problem. A bidder facing
auction fever may be affected by various factors, such as rivalry, social facilitation,
time pressure, or the joy of winning, thus leading to overbidding (Ku et al. 2005).
However, depending on competition intensity, bidders may also bid below their
true WTP.

Willingness to Pay 979



First-price auctions do not suffer from the problem of auction fever, as they allow
only one sealed bid, with the highest bidder obtaining the auctioned good at the price
of his or her bid. However, bidders again have an incentive to bid below their true
WTP, hoping to still win the auction and to obtain the good at a price lower than their
WTP (Hoffman et al. 1993).

In Dutch auctions, the auctioneer sets a high starting price and decreases the price
by a predetermined increment until one bidder is willing to buy the product at this
price. Again, bidders do not have an incentive to bid their true WTP: knowing that
they can acquire the good at a lower price if no one else purchases it, bidders may
refrain from buying, even if the price matches their WTP. Due to higher transaction
costs – with bidders having to wait for the price to decrease – the resulting prices
may be higher than with first-price auctions (Carare and Rothkopf 2005) but still not
necessarily equal to bidders’ actual WTP.

Name-Your-Own-Price (NYOP), also known as reverse pricing, can be consid-
ered a special kind of auction: consumers do not compete with each other but simply
name the price that they are willing to pay, which can be accepted or refused by the
seller depending on a threshold value. When multiple bidding is possible, WTP can
be derived from the consumers’ bidding behavior, assuming that the threshold price
is uniformly distributed on a minimum /maximum price interval and frictional costs
are constant. As consumers will maximize their expected surplus (i.e., (WTP – price
paid)� probability of bid acceptance � frictional costs of submitting bids), it is thus
possible to calculate WTP from the number and values of submitted bids (Spann
et al. 2004). However, NYOP is also described as “online haggling” (Terwiesch et al.
2005), with buyers trying to make a bargain instead of revealing their actual WTP.

The above described auctions are not incentive-compatible, as bidders may
withhold their true WTP. Thus, research has suggested the use of second-price
sealed-bid auctions, also known as Vickrey auctions (Vickrey 1961) and the
Becker–DeGroot–Marschak (BDM) mechanism (Becker et al. 1964) as incentive-
compatible methods.

The mechanism of Vickrey auctions is considered the least prone to biases
(Noussair et al. 2004). In the Vickrey auction, each bidder submits a sealed bid.
Also here, the highest bidder wins the auction, but the purchase price is determined
by the bid of the second-highest bidder (Vickrey 1961). This way, participants do not
have any incentive to withhold their true WTP, as they will never pay more than what
is necessary to win the auction. If they submit a lower bid than their actual WTP, they
may risk losing the auction and the possibility to purchase the product. Bidding
above their true WTP is not an optimal strategy either, because participants may win
the auction but at a price higher than their WTP. Thus, Vickrey auctions are robust
against many kinds of strategic behavior (Barrot et al. 2010). However, there are also
limitations associated with this method. Some researchers criticize that bidders
assuming that their WTP is too low to win the auction do not have an incentive to
bid sincerely (Shogren et al. 2001). They may either submit a lower bid due to lack of
motivation or a higher bid in order to increase the price the winning competitor has to
pay, leading to distorted WTP results. Further limitations refer to operational prob-
lems with the implementation of auctions in general (Wertenbroch and Skiera 2002)
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and to the fact that auctions typically do not meet realistic decision processes in
retailing (Hoffman et al. 1993).

The BDM mechanism (developed by Becker et al. 1964) determines the price
of a product through a random draw. First participants submit a sealed bid then
someone (e.g., the auctioneer) draws a “market” price. Bidders with bids equal to
or higher than the drawn price are obliged to buy the product, whereas those who
submitted bids below the “market” price are not allowed to buy it. The mechanism
is incentive-compatible, as bidding anything else than one’s actual WTP is not an
optimal strategy. Bidding more than one’s WTP does not affect competing bidders
but may result in a purchase obligation at a price above one’s WTP. Bidding below
the WTP bears the risk of not being allowed to purchase the good. As the price
that needs to be paid is determined by a random draw, there is no incentive to
deviate from bidding one’s true WTP in the hope of impacting the final price.
While this mechanism is robust against biases, it suffers from the limitations
associated with auctions: the BDM mechanism is difficult to implement in practice
and also does not reflect most regular purchase situations, as consumers typically
do not have to bid for a limited resource (Wertenbroch and Skiera 2002). Instead,
they are influenced by reference prices, deciding whether or not to purchase the
product at a given price.

This problem occurs with most direct methods: the generated answers do not
fully represent reality. The only direct approach that circumvents this problem is
the use of real instead of generated data, that is, the analysis of market data. These
can be a company’s own sales figures, panel data provided by market research
agencies, or store scanner data from participating stores (Breidert 2006, p. 39).
Based on actual purchase data, market data are incentive-compatible and have high
external validity. However, this approach bears obvious weaknesses: first, market
data are historical data and are therefore unavailable for new products that have
not been put on the market yet. Second, market data only provide information on
how many units were sold at a given price, but not on how many people would
have paid a higher price, or refrained from purchasing a product due to its price.
As this represents a serious constraint to measuring WTP, some researchers have
suggested that the analysis of market data should be combined with stated
preference methods to generate a more complete picture (Ben-Akiva et al.
1994). An additional severe problem is that market data are confounded by
noise, such as promotions or competitor activities, thus, they do not allow for a
systematic, clear variation of prices.

One way to investigate actual purchase behavior contingent on price variations is
to conduct price experiments.

Experimental Revealed Preference Methods
Experimental revealed preference methods estimate WTP using laboratory experi-
ments or field experiments.

When conducting price experiments, researchers create purchase scenarios that
include purchase obligations. Experiments can be conducted in a laboratory,
offering the relevant products for sale to the participants, or in the field, selling
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the products in a real store. When full purchase obligation is not feasible in lab
experiments, a helpful solution may be to include a purchase obligation for only a
fraction of the participants (e.g., 10%) who are determined by lot (Voelckner
2006).

Assuming that consumers buy as long as the price does not exceed their
WTP, the experimenter systematically varies the price and measures the
resulting purchase rates and quantities. In laboratory experiments, participants
are randomly divided into groups that are confronted with the same purchase
situation, but with a variation in price between the groups. In field experiments,
prices are usually varied in predefined time intervals. Analyzing the units sold
across the different time intervals and prices, the average WTP can be
estimated.

Laboratory experiments do not suffer from hypothetical bias; however, partici-
pants’ WTP may be censored by field opportunities. Participants who know the
actual price of a product offered in the laboratory may use this value as a reference
and refuse to pay more than it (Harrison et al. 2004). Furthermore, laboratory
experiments also suffer from experimental bias: participants may behave not the
same way as they would in real purchase settings, knowing that they are participating
in an experiment.

In contrast, field experiments have the highest external validity when it comes to
measuring true WTP, as they measure WTP under reality conditions. A limitation is,
however, that they usually do not allow for the collection of additional controls (e.g.,
age, income, varying context factors). Field experiments also require high organi-
zational and logistic efforts.

Summary of Methods for Measuring WTP

In the following, we compare the presented methods along main criteria that impact
their external validity and feasibility (Table 2).

We then shortly summarize all previously discussed preference measurement
methods, presenting examples on how and when to use the methods and provide
advantages and disadvantages associated with each kind of approach (Table 3).
The tables shall serve as a guidance for academics and practitioners who need to
decide which approach is most suitable in which case.

Drivers of WTP

WTP is difficult to measure not only for methodological reasons, but also due to the
instability of the value itself. Individual WTP is not constant, but is highly context-
dependent and subject to various influencing factors. The following figure provides
an overview of important situational, individual, and information-related factors
affecting WTP (Fig. 4).
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Situational Factors

Consumers usually form their WTP at the point of purchase. Therefore, WTP is
highly susceptible to situational anchors, that is, prices or other numerical cues that
are provided or remembered at the moment of purchase. These can be completely
unrelated stimuli, e.g., prices of completely other products (Nunes and Boatwright
2004) or random figures such as someone’s social security number (Ariely et al.
2003). However, the effect is strongest when the respective anchor has a direct
relation to the source of uncertainty (Simonson and Drolet 2004), thereby providing
a reference for a possible price. These reference prices are very important, because
without them, consumers may have difficulties translating product value into mon-
etary units and articulate their WTP (Chernev 2003). Reference prices serve as
standards when assessing product prices (Monroe 1973) and can be either remem-
bered from past purchases or provided, e.g., by displaying recommended retail prices
or the prices of competitor products (for a detailed review of literature on reference
prices see Mazumdar et al. 2005). Without the possibility of comparing a product
with other alternatives, consumers have difficulties evaluating it and often misjudge
its value and their related WTP (Hsee 1998; Sevdalis and Harvey 2006).

Besides from serving as comparative values, the presence of competitor products
lowers price tolerance, as switching to another attractive alternative is easy (Ander-
son 1996, p. 271). This means that market thickness generally lowers WTP (Chan
et al. 2007); for example, the maturation of private labels has lowered consumers’
WTP for branded products (Steenkamp et al. 2010).

Further, purchase environment and place of purchase play a role, as the same
consumer may have different WTP values for the same product, depending on the
consumption location and occasion. For example, WTP for beverages increases
strongly when they are purchased in a restaurant or discotheque instead of a supermar-
ket. WTP might also depend on the circumstances, e.g., a social or nonsocial setting
(Wakefield and Inman 2003), or the surroundings, e.g., store atmospherics (Borges
et al. 2013; Fiore et al. 2000). Even subtle cues such as colors may impact WTP: for
instance, experiments by Bagchi and Cheema (2013) show that red heightens aggres-
siveness, leading to higher WTP in auctions, but lower WTP in negotiations.

Fig. 4 Drivers of WTP
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Furthermore, WTP depends on both where and how consumers purchase prod-
ucts: for instance, consumers’ WTP may simply increase by paying with a credit
card instead of paying with cash, sometimes to a very large extent (up to 100%)
(Prelec and Simester 2001).

Individual Factors

WTP may also vary due to individual factors, such as consumer-specific attributes
and emotions.

Consumers’ price sensitivity is generally positively related to income (Degeratu
et al. 2000, p. 64). Therefore, consumers’ tolerance for higher prices and the implied
higher WTP increases with rising income, whereas the price search decreases
(Urbany et al. 1996). As there are high between-subject differences with regard to
income, researchers should control for this variable when WTP is measured. As
income is usually relatively stable over a certain amount of time, it is possible to
account for different WTP across consumers by using price discrimination (e.g., to
offer lower prices for students).

In contrast, emotions vary within consumers, with consumers’ WTP changing
from one moment to the next. Positive affect (i.e., positive feelings about owning a
good) was found to increase WTP (Peters et al. 2003), while positive mood did not
seem to have any effect (Capra et al. 2010). Negative mood, however, may impact
consumers’ WTP: if consumers experience a situation that makes them feel dis-
gusted, they afterward display a reduced WTP, as the experienced disgust has
triggered an “avoid taking anything in” goal. Sadness, however, increases WTP
because sadness provokes the urge to change one’s situation (Lerner et al. 2004).

However, there are also more stable types of emotions, such as general satisfac-
tion with a product or seller. Anderson (1996) shows that consumer satisfaction is
likely to decrease price elasticity, which means that satisfied consumers have a
higher price tolerance before switching to competitor products. Similarly, Homburg
et al. (2005) demonstrate a positive impact of satisfaction on WTP. The underlying
relationship can be depicted as an inverse s-form, as disappointment (elation) leads
to a strong decrease (increase) in WTP, whereas a mediocre level of satisfaction does
not impact WTP.

Information-Related Factors

WTP may also vary depending on the information status. Ajzen and Driver (1992)
explain that the WTP that is based on heuristics (i.e., rules of thumb based on few
information) deviates from the WTP that is formed after thoroughly considering the
value of a product.

Therefore, Smith and Nagle (2002) stress the importance of value comprehension
and argue that consumers do not know their WTP until they are fully informed about
the value of a product. Thus, due to high costs for information search and evaluation,
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consumers often underestimate their WTP because they are not fully aware of all the
benefits of a product.

Rao and Sieben (1992) support the importance of knowledge. By measuring
product knowledge, they show that low-knowledge subjects have a significantly
lower WTP than medium- or high-knowledge subjects. Similarly, consumers with
higher involvement, i.e., knowledgeable subjects willing to search for information,
show a lower price consciousness, and thus, a higher tolerance toward higher prices
(Lichtenstein et al. 1988). However, these findings are context-dependent: Chan
et al. (2007) show that experience and extensive search lower WTP in the context of
online auctions. Here, expertise leads bidders to a more realistic estimation of
achievable prices, thus making them more immune to overbidding.

Advertising also plays a decisive role in influencing consumers’ WTP. Adver-
tisements communicate information, such as a product’s unique selling proposition,
advantages, and value, thereby shaping consumers’ product perception. Depending
on the message delivered, WTP may differ; for example, Kaul and Wittink (1995)
show that price advertising increases price sensitivity and therefore lowers WTP,
whereas a rise in non-price advertising increases price tolerance. Kalra and
Goodstein (1998) refine these results by demonstrating that advertising a minor
brand using value positioning reduces WTP, whereas comparisons with premium
brands or advertising a unique brand attribute increases it.

In addition to the content of an ad, the ad execution, such as its quality (Hampel
et al. 2012) or the chosen medium (Li and Meshkova 2013), may further impact
consumers’ WTP, as well as the timing of the ad delivery. For example, ads that
interrupt current consumer activities may significantly reduce consumers’ WTP for
the advertised product (Acquisti and Spiekermann 2011).

Finally, understanding the benefits of a product is not necessarily the only
information consumers seek when determining their WTP. Consumers may be also
concerned with price fairness: their WTP might decrease if they believe prices to be
unfair toward consumers. In contrast, their WTP may increase if they feel that the
seller does not make an adequate profit (Kahneman et al. 1986).

Market Research Application

In this section, we illustrate how to deal with the information on WTP in practice
using some simple examples. Therefore, we collected data on consumers’ WTP
applying direct stated and direct revealed preference methods, in particular the open-
ended question method, the dichotomous choice method, and the BDM mechanism.
We then discuss three different application areas.

Elicitation of Consumers’ WTP

We collected the data on WTP at a large German university campus. The focal
product was described as a fresh, locally sourced salad that was to be offered in three
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variants (Grilled Veggie, Avocado Superfood, and Caesar Chicken) in the students’
cafeteria. The salad was supposed to be sold pre-packaged in standard off-the-shelf
sizes, enabling students to not only eat directly at the cafeteria, but also to take the
salad with them. We provided further information on the size of the product and the
brand (dean&david, a restaurant chain specialized in healthy and locally
sourced food).

We approached students asking them whether they would be willing to take part
in a short study regarding a hypothetical new product offer at the cafeteria. We then
explained the new offer as described above and showed pictures of the salads.

Depending on the method we either asked the students to state how much they
would be willing to pay for such a salad in the cafeteria (open-ended questions
method), to state if they accept or decline a given price (dichotomous choice
method), or to make a bid pursuant to the rules of the BDM mechanism, which we
explained to them in detail.

Measurement 1: Open-Ended Questions
Using this method, participants directly stated their WTP for the focal product. In
sum, 35 students participated and stated prices ranging from 2€ to 5€ for the salad.

Measurement 2: Dichotomous Choice Method
In contrast to measurement 1, participants did not have to state a price, but to agree or
to disagree on a given price. To obtain more precise information on their WTP, we
further applied a sequential approach. Thus, depending on whether the participants
agreed (disagreed) on the given price, they were then asked whether they would be
willing to buy the product at a higher (lower) price. The average market price of
comparable products in the market (comparable products in university cafeterias:
between 3.00€ and 6.00€) was chosen as a starting price, here 4.50€. If participants
rejected (accepted) the price, we lowered (increased) the price by 0.50€ until
participants changed their mind. We then increased (decreased) the price by another
0.25€. Our chosen ending points equal the margins of the market prices (see Fig. 5
for the price pathways used).

In sum, we interviewed 33 students and collected prices between 3.00€ and 5.00€.

Measurement 3: BDM Mechanism
We conducted the BDMmechanism with 30 students of two marketing classes in the
respective lecture rooms. At the end of the classes, we asked the students whether
they would be willing to stay to participate in a small experiment that required the
use of money.

We needed to provide further information on the procedure, as the mechanism is
more complex than the previous methods. Besides giving the students information
on the focal product, we explained them that they could actually buy the salads, or
more specifically a voucher for the respective salads that could be redeemed at a
nearby dean&david store. As the offer did not yet exist in reality, we operationalized
the purchase by using vouchers instead.

The participants were told that no purchase price had been determined yet, but that
one student may draw a price from an envelope containing different price tags. We
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pointed out the consequences of bids above or below the price drawn. We then asked
students to write down theirWTP on an empty paper sheet that had been handed out in
the beginning. After a student had drawn the threshold price, all participants disclosed
their bids by handing out their sheets. We collected all bids and then sold vouchers to
all students whose stated WTP exceeded the threshold price.

Results of the Measurements
A total of 98 students participated in our WTP measurements. Figure 6 shows the
demand functions dependent on the elicitation method.

As we can see from Fig. 6, highest WTP are stated in the Dichotomous Choice
group with mean WTP that equals 3.80€. In contrast, lowest WTP were elicited in
the BDM group (mean WTP = 3.26€). Differences between lowest and highest
group are significant ( p < 0.05, using Satterthwaite approximation). These findings
support previous research that respondents in hypothetical settings tend to overstate
their WTP compared to the actual cash and incentive-compatible setting of the BDM
mechanism, where we observe the lowest WTP. The average WTP is also higher in
the Open-Ended Questions group (mean WTP = 3.39€) compared to the BDM
group, however, the difference is not significant.

It is also salient that the demand functions are particularly steep between 3.00€
and 4.00€. While 83% of respondents in the Open-Ended Questions group were
willing to pay 3.00€ for the salad, only 23% of respondents were willing to pay 4.00
€. More than half of the respondents who were willing to pay 3.00€ were not willing
to pay 33% more. Thus, there seems to be a price threshold at 4.00€, which has to be
considered when determining prices. Table 4 illustrates the decrease between these
price points and the corresponding price elasticities of demand.

In the following we will show how managers can apply this information in
practice based on some simple examples.

Fig. 5 Tree diagram of price pathways used
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Application 1: Price Bundling

Now let us consider that the university cafeteria is indeed interested in expanding the
menu by offering the three variants of fresh salads bundled (with a new organic soft
drink) and/or unbundled. Suppose that the university cafeteria has additionally
identified different segments, which are all of the same size (15,000 per segment)
and has collected WTP data on the salad, the new organic soft drink, and the bundle
of the two products. Table 5 shows average WTP for the two products in the three
different segments.

Let us also assume for simplicity that marginal costs equal zero. Then the
cafeteria has three pricing alternatives to choose from. They can apply a uniform
pricing strategy, i.e., charge only one fixed price for the salad and for the soft drink,
or they can use a pure bundling strategy, i.e., sell the two products in a bundle only.
The third alternative is to apply a mixed bundling strategy and to offer the products
both separately and as a bundle.

Now let us first suppose that the cafeteria applies the uniform pricing strategy.
Then the optimal price for the salad is 3.90€ and for the soft drink is 2.00€, thus
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Fig. 6 Comparison of responses depending on method

Table 4 Decrease in WTP

% of respondents willing to pay Elasticity

3.00 € 4.00 €

BDM 68% 25% �1.89

Open-ended
questions

83% 23% �2.17

Dichotomous
choice

97% 47% �1.54
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resulting in a total revenue of 177,000€. In the second case, the pure bundling
strategy, the optimal price for the bundle is 4.20€, resulting in a total revenue of
189,000€. In the last case, the mixed bundling strategy, optimal price for the salad is
4.50€, 2.50€ for the soft drink and 5.90€ for the bundle. This strategy results in a
revenue of 193,500€. Consequently, the optimal strategy for the cafeteria is to apply
the mixed bundling strategy.

Please note that this a simplified representation of a price bundling case. In
practice, managers usually have to deal with more segments and products, and
have to consider additional costs, thus making the analysis far more complex.

Application 2: Personalized Pricing

Suppose the cafeteria has additionally collected WTP data for the salad from their
university staff as well as external cafeteria visitors who are neither students nor are
affiliated with the university. Table 6 shows the elicited WTP and the segment size.

Assume that marginal costs are zero. The cafeteria can now either apply a uniform
pricing strategy or charge personalized prices. Using the uniform pricing strategy,
the optimal price is 3.50€, resulting in a revenue of 199.500€. However, applying
personalized pricing, thus discriminating between the three segments, results in a
revenue of 210,700€.

Since personalized pricing is commonly used in this type of service sector, it is
easily feasible in this context.

Application 3: Nonlinear Pricing

Now suppose that the student cafeteria on another campus has observed that some
students consume more than one salad and thus is interested to give price discounts
for a higher amount of purchases, i.e., the second salad is cheaper than the first salad
when purchasing two. Assume the following WTP measurements of three different
consumer segments which are all of the same size (n = 3000) for different amounts
of purchases (see Table 7).

We again assume that marginal costs are zero. Using a uniform pricing strategy
without discounting additional purchases, the optimal price would be 2.40€ leading
to a total revenue of 50,400€. Considering the changes in WTP with a higher amount

Table 5 Average WTP for unbundled and bundled products

Average WTP in €

Salad Soft drink Bundle

Segment 1 4.50 0.50 5.00

Segment 2 3.90 2.00 5.90

Segment 3 1.70 2.50 4.20
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of purchases, the cafeteria can also determine the prices sequentially, an approach
referred to as “price-point” method (see Dolan and Simon 1996). Following the
sequential approach, the optimal price for one salad is 2.50€, the optimal price for the
second salad is 2.00€, and for the third salad is 1.70€, resulting in a revenue of
55,800€ (22,500€ + 18,000€ + 15,300€). In this case, the cafeteria yields a higher
revenue when using the price-point method compared to the uniform pricing strat-
egy. Using the price-point method, the cafeteria can sell a higher amount of products:
all three segments will purchase three salads resulting in 27,000 units sold, whereas
in the uniform pricing strategy the cafeteria will only sell 21,000 units.

Also note here that this example is a simplified representation with limited
hypothetical data and without considering costs. Managers seeking to measure
WTP for product bundles or for different amounts of purchases can, for example,
use self-stated data or choice-based data where the design of the offer (bundled/
unbundled) or the amount of products offered is varied.

Conclusion

Accurately measuring consumers’ WTP is of great importance for pricing decisions
and predicting sales. Our chapter gives an overview of common methods for
measuring WTP that are widely used in both theory and practice. We discuss the
advantages and limitations associated with each method. Stated preference
approaches (direct and indirect survey approaches) are advantageous in terms of
feasibility but suffer from hypothetical bias and strategic behavior, whereas revealed
preference methods may overcome the hypothetical bias, but usually involve more
effort (financial and organizational).

We further point to the possible factors influencing WTP and differentiate
situational factors, individual factors, and information-related factors. Depending
on the situation, on individual consumer-specific attributes and emotions, and on the
information status, consumers’ WTP may vary. Firms being aware of the drivers of
WTP can take advantage of this information and react accordingly.

Table 7 Average WTP for different purchase amounts

Average WTP in €

First salad Second salad Third salad

Segment 1 4.00 3.50 3.00

Segment 2 3.50 3.10 2.40

Segment 3 2.50 2.00 1.70

Table 6 WTP for different segments

Students Staff External

Average WTP in € 3.50 4.40 4.60

Segment size 45,000 10,000 2,000
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In the remainder of our chapter, we present a practical application of consumers’
WTP measurement for a potential new product offer. We measure WTP via two
direct stated preference approaches (open-ended question and dichotomous choice
method employing the sequential monadic approach) and one direct revealed pref-
erence approach (BDMmechanism). We compare the three different approaches and
discuss application areas of WTP using three examples.
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Abstract

Customers represent the most important assets of a firm. Customer lifetime value
(CLV) allows assessing their current and future value in a customer base. The
customer relationship management strategy and marketing resource allocation are
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based on this metric. Managers therefore need to predict the retention but also the
purchase behavior of their customers.

This chapter is a systematic review of the most common CLV, retention, and
churn modeling approaches for customer-base analysis and gives practical rec-
ommendations for their applications. These comprise both the classes of deter-
ministic and stochastic approaches and deal with both, contractual and
noncontractual settings. Across those situations, the most common and most
important approaches are then systematically structured, described, and evalu-
ated. To this end, a review of the CLV, retention, as well as churn models and a
taxonomy are done with their assumptions and weaknesses. Next, an empirical
application of the stochastic “standard” Pareto/NBD, and the BG/NBD models,
as well as an explanatory Pareto/NBD model with covariates to grocery retailing
store loyalty program scanner data, is done. The models show their ability to
reproduce the interindividual variations as well as forecasting validity.

Keywords

Customer lifetime value · Customer churn · Customer retention · NBD/Pareto
model · BG/NBD model

Introduction

Customers represent assets and the cost of acquiring them relates to the cash flow
they are expected to generate over time (Bolton et al. 2004; Tarasi et al. 2011).
Customer retention and churn as well as customer lifetime value (CLV), retention,
and churn measurement have become a powerful customer valuation metric (Glady
et al. 2015; Gupta et al. 2004, 2006; Kumar and Reinartz 2006).

Customer retention refers to the ability of a company or product to retain its
customers over some specified period. Defection or churn is the number of cus-
tomers moving out of a cohort in a firm’s database over a specific period of time.
CLV is the value of individual customers, based on their past, present, and projected
future cash flows (Gupta et al. 2004). To model CLV, it is important to measure
customer retention and churn rates. CLV is an important concept on which the
customer relationship management strategy; marketing resource allocation
(to profitable customers), such as promotions; and the assessment of the marketing
efficiency are based on Schulze et al. (2012). The CLV paradigm recognizes
customers as the primary source of both current and future cash flows. According
to this framework, the firm tries to maximize the net present value of both current and
future customers (customer equity, Hogan et al. 2002), which represents a good
proxy for the firm’s value (Borle et al. 2008; Gupta et al. 2004), as well as an
effective segmentation tool. Thus, CLV models offer a powerful means to maximize
the return on marketing investments and guide allocations of the marketing budget
(Blattberg and Deighton 1996; Reinartz et al. 2005).

A CLV model has prototypically three parameters: (1) margin (purchase baskets
minus the costs including retention expenditure), (2) retention probability or lifetime
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duration, and (3) purchase frequency (Kumar 2007). One way of increasing CLV is
to undertake marketing initiatives to reduce churn or the defection rate (and therefore
increase the retention rate) of customers – which will have the impact of increase in
the customer lifetime periods. Putting it another way, CLV analyses involve
distinguishing active customers from defectors and then predicting their lifetime
and future levels of transactions according to their observed past purchase behavior.
Developing a valid measurement framework that adequately describes the process of
birth, purchase activity, and defection is thus a crucial albeit not a trivial task,
particularly due to the randomness of individual purchasing behavior and customer
heterogeneity (Jain and Singh 2002; Reinartz and Kumar 2000). Whereas the
analysis may be easier for contractual, “lost for good” relationships (e.g., subscrip-
tion markets in which the inactivity date is known), it becomes particularly difficult
for noncontractual relationships in which customers do not notify the firm when they
disappear (Dwyer 1989; Jackson 1985); in this scenario, identifying active and
inactive customers in the database at any given time requires systematic investiga-
tion (Schmittlein and Peterson 1994).

The objective of this chapter is to provide a systematic review of the most
common retention and churn modeling approaches to model CLV. These comprise
both the classes of deterministic and stochastic approaches and deal with both,
always-a-share and lost-for-good situations. Across those situations, the most com-
mon and most important approaches are then systematically structured, described,
and evaluated. To this end, first the retention models, their assumptions, and weak-
nesses are reviewed and thus a taxonomy is provided. After having presented the
taxonomy of CLV, churn, and retention measurement models, this article shows in
“ATaxonomy of Customer Lifetime Value Measurement Models” a practical appli-
cation by using some of the presented stochastic models (Pareto/NBD, explanatory
Pareto/NBD, BG/NBD) to model a customer base and the impact of a retail grocery
loyalty program on customer churn, retention, and activity. The goal is to show how
to implement, use, and interpret these sophisticated models by applying them on
firms’ frequently used grocery store loyalty program databases and panel data.

This article then concludes with a discussion, some limitations, and recommen-
dations for future research directions.

A Taxonomy of Customer Lifetime Value Measurement Models

In practice, to choose an adequate CLV measurement model, one has to understand
whether or not customer defection is observable. One thus has to differentiate
between two types of market (Jackson 1985; Dwyer 1989), namely, contractual
(Lost-for-Good) and non-contractual (always-a-share) markets.

In the first type of market, the customer enters into a contractual relationship with
a firm (e.g., phone or insurance services, magazine subscriptions, etc.) and is
consequently faced with a tangible cost of change. Defection is observable and
occurs when consumers end their relationship with the firm. In this scenario, the
seller can identify defection as soon as it occurs. This means it is easy to predict
defection for modeling purposes and one has to adopt a simple retention model
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(Ayache et al. 2006). The notion of lost-for-good merges in practice with the
contractual situation since it considers that absence of transaction means the cus-
tomer has become inactive. In the contractual approach, retention is in fact the most
important aspect. Generally, it goes hand in hand with a more or less constant flow of
income. The models are usually simple with a clear predominance of survival
models.

In markets where the customer has no contractual relationship (typically con-
sumer goods), the cost of switching is low and a buyer can simultaneously purchase
from different suppliers (always-a-share). The supplier has no way of knowing if the
customer has defected. The model therefore focuses on churn probability, customer
migration, and customer “life span” (Berger and Nasr 1998). The longer the period
of inactivity, the more likely it is that the customer has churned. Migration models
more specifically cover this scenario.

Fader and Hardie (2009) add an additional distinction depending on whether the
purchase occurs at a specific moment (discrete time) or whether it can occur at any
time (continuous). This distinction mainly has technical consequences, which can
also be computed more or less approximately in a relatively direct way by taking
more or less extended periods of time into consideration. Fader and Hardie (2009)
themselves admit that this distinction is less meaningful. However, the contractual/
noncontractual distinction is conceptually and methodologically fundamental.

The vast majority of markets concern noncontractual markets (Allenby et al. 1999).
Many researchers and business practitioners have attempted to develop forecasting
systems in this context. Contributions fall into two main categories: purely descriptive
approaches (deterministic) and stochastic approaches. Deterministic approaches are
primarily based on calculations of actuarial values, reflecting financial flows without
the inclusion of random factors or explanatory variables (e.g., expected individual cash
flow models as applied by Berger and Nasr 1998). However, they fail to take
interindividual heterogeneity into account. Calciu and Salerno (2002) highlighted
the relations between these different attempts.

The following table provides an overall view of the models according to the
nature of their affiliation with the company and the methodology (deterministic/
stochastic) used. Some contributions may be found in two different scenarios, in that
they include a comparison of several cases.

Other aspects of model characterization are also included: level of aggregation,
inclusion of the competition, return on investment, and the capacity to optimize
resource allocation. The nature of the model and the level of aggregation help to
determine the model’s sophistication and precision. Taking the competition into
account is likely to affect the results of the models in that the long-term perspective
is more complex when the competitive context is explicitly included. Finally, the
capacity to determine return on investment or to optimize the distribution of mar-
keting investment affects the model’s operational nature.

Table 1 suggests several trends. The first is the increasing focus on stochastic
models as compared to the deterministic models. Since 2005, eight new stochastic
models have been presented against only two in the deterministic context. As already
stated, probabilistic models are significantly more efficient than deterministic
models. This tendency thus seems logical and desirable.
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Table 1 Models of customer retention-churn modeling (Adapted from Villanueva and Hanssens
2007)

Authors
Level of
analysis

Competition
present

Return on
investment

Allocation of
resources

Deterministic models

No application

Rust et al. (2004) Company Yes Yes Yes

Blattberg et al. (2001) Segment No Yes No

Application to contractual cases

Keane and Wang
(1995)

Regions No No No

Blattberg and
Deighton (1996)

Company No Yes No

Dwyer (1997) Segment No No No

Ryals (2005) Individual No No No

Wiesel et al. (2008) Company No No No

Application to noncontractual cases

Dwyer (1997) Segment No No No

Berger and Nasr
(1998)

Individual No No No

Stauss and Friege
(1999)

Individual No No No

Berger and Nasr
(1998)

Company No No No

Gupta et al. (2002) Company No No No

Gupta and Lehman
(2003)

Company No No No

Stochastic models

Application to contractual cases

Bitran and
Mondschein (1996)

Segment No No No

Thomas et al. (2004) Individual No Yes No

Lewis (2005) Individual No Yes No

Villanueva et al.
(2008)

Company No No No

Application to noncontractual cases

Schmittlein et al.
(1987)

Individual No No No

Reinartz and Kumar
(2000)

Consumer No Yes No

Pfeifer and Carraway
(2000)

Segment No Yes No

Libai et al. (2002) Segment No Yes Yes

Rust et al. (2004) Company Yes Yes Yes

Venkatesan and
Kumar (2004)

Individual No Yes Yes

Fader et al. (2005a) Individual No No No

(continued)
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The second underlying trend involves the increasing disaggregation of the
models. From wholly aggregated models, one shifts to an analysis by company,
then to one by segment, and, finally and increasingly often, to one by individual.
While informational limitations may explain the inclusion of a company level,
nothing, on the other hand, justifies grounding a marketing analysis on wholly
aggregated models.

Two aspects have been relatively neglected to date, namely, inclusion of the
competition and the way managers interpret models for resource allocation. Lack of
information is frequently used to explain this shortcoming, but it nonetheless
remains detrimental. This is especially true of the failure to include the competition
insofar as its absence may substantially impact on conclusions and managerial
implications (cf. Fudenberg and Tirole 2000). While the examination of optimized
resource allocation remains fundamental, its absence does not, on the other hand,
imply an analysis bias.

We present these approaches in more detail in a dual customer relations and
methodology framework.

Retention Models for CLV Measurement

These models are divided between deterministic and probabilistic models. To deter-
mine CLV, customer retention and churn have to be modeled. Customer retention
refers to the ability of a company or product to retain its customers over some
specified period. It is measured in the following way (Gupta et al. 2004).

Retention rate ¼ n customers in cohort buying in tð Þ
=ncustomers in cohort buying in t� 1ð Þ � 100

(1)

The period t can refer to specific durations: months or years are the most
frequently used. Customer defection or churn is the number of customers moving
out of a cohort in a firm’s database over a specific period of time. It is measured in the
following way (Gupta et al. 2004):

Table 1 (continued)

Authors
Level of
analysis

Competition
present

Return on
investment

Allocation of
resources

Reinartz et al. (2005) Company Yes Yes No

Villanueva et al.
(2008)

Segment No Non No

Simester et al. (2006) Individual No Yes No

Lewis (2006) Individual No Yes No

Castéran et al.
(2007a, b)

Individual No No No
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Churn rate ¼ 1� Retention rate (2)

Deterministic Models
Berger and Nasr (1998) provide the following general formula for the customer
lifetime value (CLV):

CLV ¼
Xn
t¼1

π tð Þ ρt

1þ dð Þt (3)

with π(t) profit generated in period t, ρ the rate of retention, and d the discount
rate. If one considers profit stability over time for an annual net gain h, then CLV is
formulated as

CLV ¼ h
ρt

1þ dð Þt (4)

We have a monetary component h and an expected number of transactions
(or products, discounted expected transactions). This expression has the advantage
of being extremely simple: one just has to estimate the retention rate to obtain the
CLV. On the other hand, this approach assumes that the retention rate is stable
over time.

However, this assumption fails to take into account the customer base composed
of different segments, over and above all considerations of variation in the retention
srate at individual level. Imagine that a same cohort of customers is composed of
p homogeneous segments, each with an annual retention rate assumed to be constant
from 1 year to the next for purpose of simplicity, with ρi for each segment i. One also
can reason in discrete time for greater simplicity, but the situation can easily be
extrapolated to continuous time. Let us assume that by nature segment 1 has the
highest retention rate. The average retention rate, for example, in the first year is
equal to

r ¼
Pp

i¼1 niρiPp
k¼1 nk

(5)

with ni the size of segment i. Traditionally, portfolio value is calculated on the
basis of this average rate.

However, because of the retention dynamic, the probability of belonging to
segment 1 will converge toward 1, and, at the same time, the average retention
rate will also converge toward the retention rate of segment 1. In effect, according to
Bayes’ theorem, one gets the probability of customer c belonging to segment 1 active
after t years, formulated as
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P c� S1j active after t yearsð Þ ¼ P c� S1ð ÞP active after t years cj � S1ð Þ
P active after t yearsð Þ

¼ p1ρ
t
1Pn

i¼1 piρ
t
i

¼ 1

1þ p2ρ
t
2

p1ρ
t
1

þ � � � þ pnρ
t
n

p1ρ
t
1

¼ 1

1þ p2
p1

ρ2
ρ1

� �t

þ � � � þ pn
p1

ρn
p1

� �t

(6)

However, since, by definition, r1 � ri, 8 i 6¼ 1 then 8i 6¼ 1, limt!þ1
ρi
ρ1

� �t
¼ 0.

So the more time that passes (t becomes large), the higher the probability of
belonging to segment 1, leaning toward a limit of 1. The average retention rate for a
cohort thus converges toward the retention rate of segment 1. Variation in the
retention rate is linked to the heterogeneous nature of the population. The use of
an aggregate rate is not adapted for assessing the CLV. It can however be used by
companies as a proxy for business health. Nowadays, adopting a stable retention rate
represents a very particular case and is often inadequate.

Probabilistic Models
There are two types of probabilistic models: parametric and semi-parametric.

Parametric Models
In terms of parametric models, more elaborate models than the deterministic ones
have been developed in the contractual framework. Thus, Fader and Hardie (2007b)
used a survival function to obtain an expression such as (7)

E CLVð Þ ¼ h
S tð Þ
1þ dð Þt (7)

considering time as discrete. The link with the preceding form is obvious apart
from the fact that S(t) is the survival or retention function on date t and one can no
longer speak about CLV but of expectancy of CLV. The authors assume that life span
is given by a geometric distribution. The customer remains as such from one period
to another with a probability 1-p. In this context, S(t) = (1 � p)t. Interindividual
heterogeneity in terms of probability p is given by a beta distribution (with values
between 0 and 1). One thus obtains the shifted beta-geometric model (sBG).

Naturally, other expressions of survival are possible, notably with the inclusion of
explanatory variables and the shift to continuous time. Schweidel et al. (2008) thus
included explanatory variables while retaining a formulation with latent traits in
continuous time. They developed the formula

S tð Þ ¼
ð
S tj θi,X tð Þ½ �g θið Þ:dθi (8)
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with X(t) as all of the explanatory variables for t and θi a set of individual latent
traits. g(θi) represents the distribution of θi. This formulation ensures the harmonious
integration of latent traits and explanatory variables, giving us a mixed effects model
with fixed and random components.

g(θi) is the distribution that can be used to measure interindividual heterogeneity.
It generally involves a gamma distribution for reasons of flexibility and compatibil-
ity with most survival distributions. It is expressed as follows:

g θi j r, αð Þ ¼ αrθr�1
i e�αθi

Γ rð Þ (9)

One can express the survival function in the form of the hazard function. The
hazard function measures the instantaneous risk of mortality.

S tj θi,X tð Þ½ � ¼ e
�
Pt

v¼1

Ð v

v�1
h u θi, X tð Þj �du½ (10)

If one concentrates on the stochastic dimension, the basic hazard function h0 can
adopt the Weibull distribution:

h0 tj θi, cð Þ ¼ cθit
c�1 (11)

This formulation takes into account risk that evolves over time. Variation in the
retention rate depends as much on heterogeneity (interindividual variations) as on
intrinsic individual variations. If c = 1, one then shifts to the exponential-gamma
(EG) model. Note that in continuous time, this model is the equivalent of the sBG
model (Fader et al. 2003).

Semi-Parametric Models
The most famous representative of semi-parametric models is the Cox model, often
called the proportional hazard model. It models a life span considered as a random
variable with a probability density f(t) and a distribution function F(t). The survival
function is expressed as

S tð Þ ¼ P T � tð Þ ¼ 1� F tð Þ (12)

This function is of course monotonically decreasing.
The hazard function is written as

h tð Þ ¼ lim
dt!0

P t � T < tþ dtð Þ T � tð Þ½ �
dt

¼ f tð Þ
S tð Þ (13)

Instead of taking the hazard function into consideration in a parametric way as in
the preceding point, one estimates it following the Kaplan-Meier procedure. The
cumulated hazard function is expressed as
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H tð Þ ¼
ðt

0

h uð Þ:du ¼ �ln S tð Þ½ � (14)

The addition of explanatory variables in the form of an X matrix allows us to
adopt a semi-parametric formulation:

h tj Xð Þ ¼ h0 tð ÞeXβ (15)

h0(t) only depends on time. With Eq. 15, based on expression (11), the survival
function becomes

S tjXð Þ ¼ S0 tð Þ½ �eXβ (16)

with the same formulation logic as the hazard function.

Migration Models for CLV Measurement

These models represent a generalization of retention models. The absence of trans-
actions at any given moment does not mean that the customer has become inactive.
This is typically the case in a noncontractual situation, in which customer inactivity
cannot be observed.

The main idea is that customers go through different stages in their relationship
with the brand with specific characteristics governing each stage. One therefore
needs to describe the characteristics of these stages as well as the conditions for the
transition from one stage to another.

Deterministic Models
Heuristics are frequently used to identify the situation of a customer in a determin-
istic context. The best known of these is the RFM segmentation (recency, frequency,
and monetary value). Recency is the determinant factor to assess whether or not a
customer is active. Customers are segmented on the basis of more or less valid
thresholds. Traditionally, one distinguishes three levels per criterion R, F, and M,
representing 27 segments. The more recently a customer has made a purchase, the
greater his or her purchasing frequency, and the higher the average basket, the
greater his or her supposed potential. This apparently logical hypothesis is, as
noted earlier, qualified by observation of the behaviors of these different segments
(e.g., Fader et al. 2005b).

At managerial level, a customer is traditionally considered as inactive beyond a
certain length of time without arbitrarily fixed purchases. This method has been
presented to us many times by firms that adopt a customer relation management
approach. Schweidel et al. (2008) also noted its predominance in professional
practice to determine whether or not a customer is active. Likewise, forecasts of
future sales are made through a simple extrapolation of past sales.
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Probabilistic Models
Two forms of approaches coexist. The first is in the form of Markov processes and
the second in the form of combinations of models.

Markov Processes
In terms of migration models, the most widely used method is certainly that of
Markov chains, also called Hidden Markov Models. Popularized by Pfeifer and
Carraway in 2000, it has been the object of numerous extensions through the
integration of sociodemographic or RFM variables. A customer is assumed to be
in a certain relational situation with respect to the company, defined in advance.
Naturally, these stages are never observed but remain latent which explains the term
“Hidden Markov Models.” One can subsequently calculate the probability of tran-
sition from one state to another. Thus, Pfeifer and Carraway (2000) identified five
levels of customer relations, from the most recent customers to buyers that bought
such a long time ago they are considered as “non” or former customers. The
transition pattern can be expressed graphically as follows (Fig. 1):

In this framework, there is perfect sequentiality. At stage 5, customers are
considered as definitively lost with no chance of reactivation. This hypothesis can
easily be changed. These models may be likened to latent class models except that
adherence to a segment in the framework of hidden Markov models is dynamic and
follows a Markov process.

Adapting Kumar (2007), a customer’s CLV may be expressed in the following
way:

CLV ¼
XT
t¼0

MMtPt

1þ dð Þt (17)

with MMt the matrix of probability of transition from one state to another at t,
d the rate of loss, and Pt the value generated by the customer on date t.Over time, the
probability matrices merge with one another. Thus, if one starts from the probability
of initial MM0 transitions, one gets t = 1 MM1 = MM0 � MM0 = (MM0)

2 and so
MMt = (MM0)

t + 1.
A specific application is that of Rust et al. (2004) with a brand change matrix.

Combined with a logit model, this application demonstrates the flexibility and the
potential of the Markov approach.

p3 p4

1

1-p31-p21-p1

p2 2 4 53p1 1

1-p4

Fig. 1 Transition from one stage to another according to a Markov process
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Combinations of Models
This approach was largely developed by Schweidel and Fader (2009). It considers
that a stronger customer relationship with a brand (measured by the number of repeat
purchases) is expressed through greater purchasing stability and so more stable
interpurchase times. In short, it is the transcription of the transition from new
customer to existing customer. There are thus two interpurchase periods that follow
one another, the first characterized by an exponential distribution and the second by
an Erlang 2 distribution. This distribution is a specific case of gamma distributions
with a shape parameter equal to 2. The density is thus written as λ2 xe�λx.

The transition from one state to the other occurs after each purchase with
probability p. One thus arrives at a transition which respects a geometric process.

All the parameters of the different models are assumed heterogeneous. The two
parameters transcribing the rate of transactions (exponential distribution and Erlang
2) are themselves gamma distributed, and probability is distributed according to a
beta law. This line of research is interesting for several reasons: it takes into account
explanatory variables, can be generalized to a larger number of situations and other
distributions, etc.

Continuous Mixed Models: The Family of NBD Models
to Measure CLV

This term is rarely used but allows us to describe the underlying nature of these
models. It involves estimating the different processes simultaneously: consumption,
attrition, etc. To this end, each process is assumed to correspond to a specific law.
Customer heterogeneity is also expressed by a distribution. All the consumption
characteristics are considered to be governed by latent traits. Explanatory variables
may be integrated, depending on the degree of sophistication of the different models.
Fundamentally though, the introduction of explanatory variables is not in accordance
with the philosophy of these models based on stochastic determinants.

The whole palette of statistical tools is used here.

The Pareto/NBD and BG/NBD Model
In this context, continuous mixed models are considered as one of the most
promising lines of research, especially the negative binomial formalization
(NBD) model. The Poisson distribution of data y is combined with a gamma
distribution of purchasing frequency. This approach, developed by Ehrenberg
(1959), has been extended by taking into account the inactivity factor: the
Pareto/NBD model (Schmittlein et al. 1987; Morrison and Schmittlein 1988;
Schmittlein and Peterson 1994; Abe 2009; Jerath et al. 2011) or betaPareto/NBD
model-geometric/NBD model (BG/NBD by Fader et al. 2005a). Thus, consumer
behavior is represented by a continuous representation that, in theory, takes all of
the individual specificities into account.

However, continuous mixed models imply a total parametric specification
(generally Poisson with a specific frequency parameter distribution) that is by nature

1012 H. Castéran et al.



restrictive and very often not very well adapted given the fundamental hypotheses of
these distributions. Semi or nonparametric generalizations are naturally possible.
However, their introduction requires a highly complex mathematical conceptualiza-
tion process. In the same way, the introduction of explanatory variables is also
possible but always at the price of a demanding mathematical formulation (Castéran
et al. 2007a). Consequently, the operational and managerial scope of these models
appears to be greatly reduced.

Finite mixed-effect models have been used for many years. The first principles
were laid down by Newcomb (1886) and Pearson (1894). Finite mixed-effect models
provide a specific case of latent class models (Baltagi 2003). They postulate the
existence of latent classes within the population under study and a specific link
between explained and explanatory variables within each of these classes. In this
way, they underpin the existence of segments with specific behavioral patterns; the
marketing implications are clearly apparent.

However, applications in a specifically marketing framework were initiated
relatively late, mainly by Wedel et al. (1993). They provide a segmentation of the
population beyond traditional behavioral segmentation. While apparently offering
less detailed analysis than a continuous approach, segmentation does provide a clear
interpretation of the results obtained as well as directly accessible managerial and
operational implications. These implications are reinforced by the presence of
explanatory variables. Each segment may be studied according to its own behavioral
characteristics, which are explained by a set of variables. These explanatory vari-
ables help to determine the most effective marketing actions at the level of each
segment. Finite mixed-effect models thus appear to be a promising alternative to
continuous mixed models.

Nonetheless, to our best knowledge, the comparative efficiency of these models
has only been demonstrated one time by Castéran et al. (2008). This comparison in
terms of predictive validity between the finite mixed models and models of the NBD
family (NBD simple, Pareto/NBD, BG/NBD) is worth exploring further.

The Explanatory Pareto/NBD and BG/NBD Model
The fact that all of these models are purely stochastic implies that they only have
limited managerial potential. It is therefore important to reconcile the predictive
validity of these purely stochastic models with an interpretative dimension resulting
from the presence of explanatory variables. The introduction of explanatory vari-
ables within the Pareto/NBD model is a promising approach (Castéran et al. 2007b).
This is done by the introduction of the explanatory variables in the gamma-gamma
model by breaking down the variability of the scale parameter into two elements by
distinguishing two components of parameter λ (purchasing frequency) and by using
a regression with explanatory variables as well as a parameter λ0:

λ ¼ λ0e
X1β (18)

with β the vector of coefficients and X1 the individual characteristics and
marketing actions. Parameter λ0 is distributed according to a gamma law of
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parameters r (form) and α (scale). This parameter captures the residual hetero-
geneity not taken into account by the explanatory variables. Its density is
expressed as

f λ0j r, αð Þ ¼ αr

Γ rð Þ λ0
r�1e�αλ0 (19)

with λ0 > 0 , r > 0 et α > 0.
Then one has to adopt the same process for inactivity with regard to parameter μ.

One notes the matrix of personal characteristics and marketing actions as X2 (this can
partially or entirely correspond to X1). Inactivity thus becomes

μ ¼ μ0e
X2γ (20)

with parameter μ0 following a gamma distribution of parameters s (form) and δ
(scale),

f μ0j s, δð Þ ¼ δs

Γ sð Þ μ0
s�1e�δμ0 (21)

with μ0 > 0, s > 0 et δ > 0.
In addition to the explanatory variables X (composed of X1 and X2), one needs

three additional elements: number of purchases y made during the period [0, T],
recency of the last purchase ty (date of last purchase), and length of the period of
estimation T. H is the combination of all three variables, H = (y, ty, T ), and Θ the
vector of all the coefficients, Θ = (r, α, s, β, γ).

The limitation is due to the fact that one only deals with variables without a
dynamic perspective, as they are constant over time.

Finally, Fader and Hardie (2007a) developed a general expression to introduce
invariant explanatory variables over time within Pareto/NBD and BG/NBD models.
The inclusion of these variables is conducted in a less complex way than the
approach of Castéran et al. (2007b).

The Fig. 2 presents an overview of the CLV models.
The fundamental distinction is due to the nature of the relations between the

customer and the company: is the customer’s inactivity observed (contractual rela-
tions) or not? The second criterion comes from the type of model adopted: whole
population, segment, or individual.

Finally, the last parameter is the distinction between continuous and discrete
purchasing opportunities. However, this distinction is less crucial than the others
insofar as certain discrete cases may be considered as continuous cases, while
continuous cases can always be “discrete.”

Casteran et al. (2007b) did not distinguish between variants with or without
explanatory variables in this process. The presence of explanatory variables within
purely stochastic formulations presents a methodological as well as a conceptual
improvement.
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An Application of Stochastic Pareto/NBD and BG/NBD Models
for Customer Base Management

After having presented the taxonomy of CLV, churn, and retention measurement
models, this chapter shows a practical application by using some of the presented
stochastic models (Pareto/NBD, BG/NBD) to model a customer base and the impact
of a retail grocery loyalty program on customer churn, retention, and activity. The
goal is to show how to implement, use, and interpret these sophisticated models by
Customer base managementapplying them on firms’ frequently used grocery store
loyalty program databases and panel data.

Data and Methodology

The data for the practical application of customer base analysis come from a store
loyalty program (LP) database of a large French grocery retailer (surface area
9,000 m2).

An LP consists of integrated and ruled systems of marketing actions (based on
collection and redemption rules) that aim to encourage repeat purchases and increase
the cost of switching as well as retention and subsequently CLV by providing short-
and long-term incentives (Meyer-Waarden 2007; Blattberg et al. 2008; Bijmolt et al.
2010) and enhance “true loyalty,” that is, increase behavioral (e.g., cross purchases,
repeat purchases, mean basket size) and attitudinal (relationship building through
positives attitudes, trust, attachment; Morgan and Hunt 1994) loyalty.

Loyalty programs (LP) are vastly popular – 90% of Europeans and 90% of US
shoppers own at least one loyalty card. In 2010, the number of LP memberships in
the United States exceeded 2.1 billion memberships, growing by 16% from the
previous year despite the worldwide recession (Hlavinka and Sullivan 2011). For
example, research estimates that the UK pharmacy chain Boots invested 30 million
British pounds in the launch of its Advantage Card LP (Temporal and Trott 2001),
and the U.K. retailer Tesco has spent an estimated 60 million pounds to operate its
Clubcard LP (Bijmolt et al. 2010).

The store’s loyalty program, launched in 1994, is free and provides price dis-
counts, points exchangeable for gifts, and purchase vouchers on a varying set of
items. The value of points won increases linearly according to the amount customers
spend. Cardholder purchases account for 70% of store revenues. In the analysis,
cardholder information is used, identifiable on an individual basis, which includes
the majority of customers. The data set contains also information about competing
loyalty card memberships and household characteristics (e.g., age, revenue). Scanner
data include the transaction details, such as date of purchase and amount paid.
Because people often shop on a weekly basis, the daily purchases are aggregated
by individuals into a weekly frequency. The transaction data pertain to 5,000
households over a period of 156 weeks (week 2/1998 to week 2/2001).

The LP data is matched with BehaviorScan panel test market data from Angers,
France. Scanning technology provides exhaustive recording of the purchasing
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behavior (95% of fast-moving consumer goods sales in the area) of the panelist
households, which are representative of the national population.

The implementation conditions of the models with LP data relate to two aspects:
the consideration of new customers that have realized their first purchase, with
certainty, and the duration of the estimation period. The date of first purchase in a
noncontractual framework may be considered known, whether because of the nature
of the data (e.g., Fader et al. 2005b) or the data processing method (Batislam et al.
2007). The Pareto/NBD, BG/NBD, and PDO models forecast all purchases by
combining the number of customers at a given date with the unconditional expec-
tancy of the number of purchases, according to the customer maturity level (Fader
et al. 2005a). As stated higher, the first purchase is easy to identify in certain settings,
when the entire customer history is available. Nevertheless, it is difficult, in most
noncontractual relationships, to determine an exact date of the actual first purchase.
(An exception are mail order business or e-commerce retail settings, where the
shipping address of the customer is known and the purchase can be identified.) In
grocery retailing, data from a loyalty program (LP) are left censored, and the first
purchase cannot be characterized with certainty, because customers probably pur-
chase before they enroll in a loyalty scheme. Therefore, it is unclear what types of
customers are observed: “real” new customers, previously existing customers who
have lately adopted the LP or customers who had lapsed or have low usage patterns.
Batislam et al. (2007) and Jerath et al. (2011) both resort to drastic truncations to
achieve a sample that consists entirely of new customers, who made no purchases in
the first 13 months of their observations, whom they logically argue are genuine new
customers. This approach means the loss of substantial information and raises
questions regarding sample representativeness. For example, consumers who make
their first purchases at different times, later or earlier, behave differently in their
purchase frequency and loyalty in business settings (Schmittlein and Peterson 1994).
The best customers often self-select as early adopters (Meyer-Waarden and Benavent
2009; Rogers 2003), so truncating samples could exclude insights into some of the
firm’s best customers and earliest adopters. Another option to solve the left-censored
data issue is to treat the first customer purchase observed in the LP database as the
customer’s first actual buying act. This method creates the risk of combining
different cohorts though, with different actual dates of first purchase; its conse-
quences for models’ predictive validity have never been examined.

Both the Pareto/NBD and the BG/NBD models require tracking customer trans-
actions, starting with their initial purchases, which raises the possibility of left-
censored data, because one does not know when people became aware of the outlet’s
loyalty program and if the first purchases recorded after enrollment are really their
first transactions. In other words, households may have bought before adopting the
loyalty scheme. Because the store does not have information about the initial
purchases of cardholders, this methodological problem treated by left-filtering the
panel customer records with transactions before October 14, 1998, which guarantees
that the customers in the analysis are newcomers with known initial purchase times
data (see Batislam et al. 2007). Thus, 5,000 households of a cohort of 997 new
households is extracted that made their first purchases within the same 3-month
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period (October–January) and realized a total of 6,005 transactions. The panel data is
left-filtered and aggregated on a weekly basis, and the final observation window
covers 78 weeks, from October 14, 1998, to April 13, 2000. The estimation period is
restrained to 26 weeks and the calibration period to 52 weeks (hold-out sample) to
establish the predictive validity of the models.

Finally, we get a matrix with one row for each customer, and at least three
columns:

1. Customer’s frequency, y: number of repeated transactions made in the estimation
period

2. Customer’s recency, ty: the time of their last transaction
3. Customer’s total time observed in the estimation period, T

Other columns can be added, one for each explanatory variable. The explanatory
variables have to be quantitative or dummy variables.

Estimation

Parameter estimation of the Pareto/NBD model is more complex (Fader et al. 2005a;
Reinartz and Kumar 2003; Fader and Hardie 2013); in particular, the maximum
likelihood estimation (MLE) approach to estimating key parameters used requires a
numerical search algorithm that must evaluate the Gauss hypergeometric function
(Schmittlein and Peterson 1994).

For the estimation, free statistical software R 3.3.1 (R Development Core Team
2010) is used. Our advice is to adopt a two-step approach. Firstly, we estimate the
purely stochastic model parameters (Pareto/NBD or BG/NBD) without explanatory
variables. Secondly, we incorporate the explanatory variables and launch a new
estimation process based on the results of the first estimation.

Estimation of the Purely Stochastic Parameters
The easiest way for estimating simple Pareto/NBD and BG/NBD models is now to
use a dedicated package BYTD (https://CRAN.R-project.org/package=BTYD)
“Buy 'Til You Die Models” (Dziurzynski et al. 2014). The estimation of the
parameters is made through, respectively, the functions pnbd.EstimateParameters
(Pareto/NBD) and bgnbd.EstimateParameters (NG/NBD).

There are two major estimation issues. First, the procedures are time-consuming,
especially with regard to the initial values. Second, depending on these values,
non-convergence might be faced, which makes it even more difficult to find an
operational set of initial values. Many tries can be required in order to assure a clear
convergence. The best choice, even if convergence occurs, is to relaunch with
several starting points in order to compare the results and the value of the
log-likelihood.

A good starting point is to consider that the average purchase rate is the ratio r/α.
It is not sufficient to determine the exact starting values of the parameters, but it can
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be useful that the initial values of r and α are chosen with respect to the average
purchase rate of the dataset.

Since an optimal (in sense of log-likelihood maximization) set of parameters is
found, the incorporation of explanatory variables can begin.

Estimation of the Parameters Including Explanatory Variables
The first step is to declare the explanatory variables. If mydata is the name of the
dataset, the vector of the explanatory variables for the purchasing frequency X1

could be the following:

X1=cbind(mydata$LoyCard, mydata$HhSize, mydata$NumbCard,

mydata$DisStore, mydata$SeniorManager, mydata$Unemployment,

mydata$Income_6, mydata$Income6_12, mydata$Income12_18,

mydata$Income18_24, mydata$Income24_30, mydata$A30_39,

mydata$A40_49, mydata$A50+)

Our variables describe:

1. The characteristics of the individuals: the household size (HhSize), their age (the
A. . . dummy variables), their net wages (the Income. . . dummy variables), and
the professional occupation (SeniorManager, Unemployment)

2. The relationship to the store: the distance in kilometers from the store (DisStore),
the owning of loyalty cards (LoyCard), and the total number of loyalty cards
owned by the household (NumbCard)

X2=X1 #Explanatory variable vector for inactivity part

At the beginning, the explanatory variables for purchasing frequency and inac-
tivity can be the same. Further, during the selection process, the two sets will become
different.

In order to incorporate qualitative variables, we divide them into dummy vari-
ables (e.g., income or customer age). To avoid overidentification, one modality of
each variable shall be excluded from the estimation process. Whatever the modality
is, the exclusion of one modality per qualitative variable is mandatory.

The set of initial values (b0 in the example) is determined on the basis of the first
estimation with pnbd.EstimateParameters (Pareto/NBD). Those parameters are
called params here.

b0<-c(params, rep(0, ncol(X1)+ncol(X2)))

The initial values for the explanatory variables are set to 0 in order to relaunch the
estimation process at the same initial state as purely stochastic approaches. The
reestimation process can now begin.

For the maximization of the log-likelihood function and estimation of the param-
eters, two functions are employed: nlminb and optim. The nlminb procedure is more
flexible and presents fewer convergence problems. After estimating nlminb, the
optim is used to compute the Hessian matrix for estimating the covariance matrix
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(standard error of the coefficients). In the following example however, we directly
use the optim function.

The estimation of the Pareto/NBDmodel – an effort whose difficulty is frequently
cited as a usage limitation – is considerably facilitated by the gsl package, with the
expression hyperg_2F1, that enables the estimation of a Gaussian hypergeometric
function to increase external validity.

The final log-likelihood of the explanatory Pareto/NBD model can be written as

LL Θi Hi,Xijð Þ ¼ ln Γ r þ yð Þ � ln Γ rð Þ þ r ln αþ s ln δþ y ln B
þ ln A1A2 þ A3A0½ � (22)

with

(i) B ¼ eX1β and G ¼ eX2γ

(ii) Due to the presence of the Gaussian hypergeometric function and the form of the
integrals, we must distinguish two cases: when αeX2γ � δeX1β and the opposite
case. For each case, we note a different expression for A0:
If αG � δB,

A0 ¼
B
G

� �sþ1

B

x

2F
21 sþ 1

r þ sþ y
; r þ sþ yþ 1;

α� δ
B

G
αþ tyB

0
B@

1
CA

αþ tyB
� � rþsþyð Þ �

2F
21 sþ 1

r þ sþ y
; r þ sþ yþ 1;

α� δ
B

G
αþ TB

0
B@

1
CA

αþ TBð Þ rþsþyð Þ

2
666666664

3
777777775

(23)

If αG � δB,

A0 ¼
G
B

� �rþy

G

x

2F
21 r þ y

r þ sþ y
; r þ sþ yþ 1;

δ� α
G

B
δþ tyG

0
B@

1
CA

δþ tyG
� � rþsþyð Þ �

2F
21 r þ y

r þ sþ y
; r þ sþ yþ 1;

δ� α
G

B
δþ TG

0
B@

1
CA

δþ TGð Þ rþsþyð Þ

2
666666664

3
777777775

(24)

(iii) A1 = (TB + α)�(r + y) and A2 = (TG + δ)�s

(iv) A3 ¼ Gs
rþsþy
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Since optimization algorithms classically perform minimization, we use the
negative form of the log-likelihood function.

library(gsl)

LL_Paretoexp <-function(p) {

# Parameters vector

r<-p[1]

alpha<-p[2]

s<-p[3]

delta<-p[4]

# Number of covariates

nX1=ncol(X1) # for purchasing frequency

nX2=length(p)-4-nX1 # for inactivity process

# Coefficients of explanatory variables

b1=p[5:(4+nX1)] # for purchasing frequency

g1=p[(5+nX1):length(p)] # for inactivity process

# Regressions

B<-exp(as.matrix(X1)%*%b1)

G<-exp(as.matrix(X2)%*%g1)

#Meta-functions

A1<-(B*T+alpha)^(-r-y)

A2<-(G*T+delta)^(-s)

A3<-G*s/(r+s+y)

# A0 expression

coef1<-(B^s)/(G^(s+1))

arg11<-hyperg_2F1(s+1, r+s+y, r+s+y+1, (alpha-delta*B/G)/

(alpha+t_y*B))/((alpha+t_y*B)^(r+s+y)) # t_y = ty

arg12<-hyperg_2F1(s+1, r+s+y, r+s+y+1, (alpha-delta*B/G)/

(alpha+T*B))/((alpha+T*B)^(r+s+y))

coef2<-((G/B)^(r+y))/G

arg21<-hyperg_2F1(r+y, r+s+y, r+s+y+1, (delta-alpha*G/B)/

(delta+t_y*G))/((delta+t_y*G)^(r+s+y))

arg22<-hyperg_2F1(r+y, r+s+y, r+s+y+1, (delta-alpha*G/B)/

(delta+T*G))/((delta+T*G)^(r+s+y))

A0<-ifelse(alpha*G>delta*B, coef1*(arg11-arg12), coef2*

(arg21-arg22))

# Log-likelihood function

-sum(lgamma(r+y)-lgamma(r)+ r*log(alpha)+ s*log(delta)+ y*log

(B)+ log(A1*A2+A3*A0))

}

The lower bounds are 10�3 for the stochastic parameters:

min<-c(rep(1e-3,4), rep(-Inf,length(b0)-4))

max<-rep(Inf, length(b0))
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The selection of the explanatory variables represents a significant challenge. On
the basis of the Hessian matrix, small set of variables is kept, though traditionally,
modeling purchase behavior is quite complex and the identification of relevant
variables very difficult (Ehrenberg 1988).

optimal<-optim(b0, fn=LL_Paretoexp, method="L-BFGS-B",

control=list(trace=6, REPORT=1), hessian=TRUE, lower=min,

upper=max)

optimal # Result of the estimation process

Let us remind that we get the standard errors by taking the square root of the
diagonal elements of the covariance matrix. The covariance matrix is the inverse of
the Hessian matrix obtained through the minimization of the negative log-likelihood:
optimal. All results are presented in a table with the coefficients (Coeffs), the
standard errors (StdError), and the t-values (t). The null hypothesis that the coeffi-
cients are not significantly different from 0 (βi or γi = 0) is rejected at a 5%
significance level if t � ]�1; �1.96] [ [1.96; +1[.

We compute also the Bayesian information criterion BIC, a common indicator,
expressed as –2LL + kln(N ), where k is the number of parameters to be estimated
(length(b0)), N indicates the number of individuals (length(y)), and LL is the
maximum log-likelihood value for the model (-optimal$value).

We recommend a step-by-step descending selection process by removing one
variable at each step:

1. We launch the estimation with the whole set of potential covariates.
2. We remove the covariate with the closest to 0 t-value while the t-value belongs to

]-1.96; 1.96[.
3. We relaunch the estimation process with the new set of variables.
4. We check for the improvement of the BIC value.
5. While we have t-values comprised between �1.96 (excluded) and 1.96

(excluded) and while the BIC value is improving, we return to step 2.

This selection process can be quite slow but allows an appropriate selection of the
covariates.

# Computation of the standard errors

inverse<-solve(optimal$hessian)

result<-cbind(optimal$par, sqrt(diag(inverse)), optimal$par/sqrt

(diag(inverse)))

colnames(result)<-c("Coeffs", "StdError", "t")

rownames(result)<-c("r", "alpha", "s", "delta", colnames(X1),

colnames(X2))

print(result)

# Computation of the Bayesian Information Criterion

BIC<-optimal$value*2+length(b0)*log(length(y))

BIC
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Results

The descriptive results offer a comprehensive overview of the data sets from the
grocery sector which is compared with different data used in previous investigations.
In addition, the parameter estimation and comparison of the different models is
demonstrated.

Of the 997 total customers in the 26-week cohort, 46.3% are zero repurchasers
(Means =1.69, SD = 3.59). The grocery data indicate that the median interpurchase
times, even after excluding zero repurchase, is approximately 10.6 weeks, which is
low compared with the other applications of the Pareto/NBD model, for which the
median interpurchase time is 7 months (office supplies; Schmittlein and Peterson
1994), 17 weeks (catalogue sales; Reinartz and Kumar 2000), or 25 weeks
(computer-related products; Reinartz and Kumar 2000). The grocery category fea-
tures very short purchase cycles, because grocery items are not durable and require
frequent replenishment. In addition, the number and heterogeneity of customers is
higher in the grocery retail context. For example, the online CD customer base used
by Fader et al. (2005a) includes a majority of customers (approximately 85%) who
make zero (60%), one, or two repurchases. 46% of grocery retail customers are zero
repurchasers, and customers with zero, one, or two repurchases constitute
80% of total grocery retail customers. In contrast, Batislam et al. (2007) find that
approximately 40% of grocery retail customers are zero repurchasers, and customers
with zero, one, or two repurchases make up around 65% of total grocery retail
customers. Such high heterogeneity in grocery purchases decreases the precision of
the models.

Parameter Estimations

In order to show a practical application, we interpret the estimated coefficients. They
seem coherent for the Pareto/NBD model, with signs in the correct direction (see
Table 2).

Purchase frequency is positively influenced by a LP, which is coherent with
existing literature (Meyer-Waarden 2007; Leenheer et al. 2007; Liu 2007). The
professional occupation of the household members has a direct impact on the
purchase activity (frequency) and retention, though a professional situation has the
same positive impact on purchase frequency as does lower income. Furthermore,

Table 2 Regression coefficients of the Pareto/NBD model

Frequency regression (β) Inactivity regression (γ)

Loyalty card of the shop +1.01 # of loyalty cards �0.17

Senior manager +0.30 Low wage (dummy) +0.10

Low wage (dummy) +0.29 Unemployment (dummy) +1.10

Over 50 (dummy) �0.73

Notes: The insignificant coefficients ( p > 0.1) are household size, profession (employee, worker),
wages (1,000–2,000 €, > 2,000 €), and age (30–50 years, < 30 years)
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people older than 50 years of age are less mobile than younger people and display
lower purchase frequencies. Younger shoppers are more likely to engage in smaller,
more frequent fill-in trips than are older ones, probably because the former buyers
have more disposable time but less income, which drives them to buy in smaller
quantities at higher frequencies (Kahn and Schmittlein 1989; Bell et al. 1998).
Financial instability of households (i.e., low wages, unemployment) has a negative
impact on inactivity. Grocery patronage behavior depends on the level of education
and income, which increase the chances that the consumers uses a more rational
purchase process and thus attaches less importance to marketing variables (e.g., store
advertisement, promotions, loyalty program rewards). Generally, the more education
people possess, the less sensitive they are to a store’s promotions or other marketing
actions, and the less loyal they are, which means their defection probability is higher
and retention is lower (Narasimhan 1984). Less educated households with lower
incomes tend to remain loyal, because they experience more influence from store
marketing variables. According to an alternative but not incompatible explanation,
they also probably have higher switching costs related to mobility constraints
(money, transports), which increases the utility of the closest and most familiar store.

Multiple LP memberships relate positively to inactivity, which is coherent with
the results of Meyer-Waarden (2007) and may indicate a learning effect with regard
to the use of loyalty schemes. Disloyal, opportunistic buyers who regularly shop in
several stores and are members of different loyalty schemes (on average, European
households possess three grocery retailing loyalty cards; ACNielsen 2005) are more
experienced and have smaller switching costs. These purchasers join LP more
readily and quickly (Meyer-Waarden 2007; Leenheer et al. 2007).

Table 3 provides the results of the gamma and beta distributions. The parameters
for frequency do not vary significantly, despite the introduction of explanatory
variables. However, the parameters for the inactivity or dropout rates vary strongly;
the drastic growth of δ probably relates to the explanatory variables.

Table 3 Coefficients of the gamma/beta distributions

Basic
NBD

BG/
NBD

Standard Pareto/
NBD

Explanatory
Pareto/NBD

Index of homogeneity in
purchase rate: r

0.50 0.43 0.57 0.66

α 5.72 3.94 5.60 6.91

Average purchase rate: r/α 0.09 0.10 0.10 0.10

a 0.22

b 1.14

Average inactivity probability:
a/(a + b)

0.16

Index of homogeneity in
inactivity rate: s

0.63 1.56

δ 30.16 107.55

Average inactivity rate: s/δ 0.02 0.01
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The parameters r (which can be seen as purchase rates) and s (which can be seen
as churn rates) increase in the explanatory model. Both provide an index of homo-
geneity (Schmittlein et al. 1987), and their increase denotes more significant homo-
geneity across customers in the explanatory model. For the explanatory formulation,
gamma functions capture residual heterogeneity, not all the heterogeneity, as in the
case of purely stochastic formulations.

Purchase Prediction Validity

Empirical analysis carried out for both the 26- and 52-week observation periods for the
cohort relies on a popular criterion for adjustment, the Bayesian information criterion
(BIC), whose values are based on a log scale. The expression is written as follows:
BIC = � 2LL + k ln(n), where k the number of parameters and n the sample size.

The adjustment differences between the BG/NBD approach and the explanatory
Pareto/NBD model are not very important, and the BIC is very close for both (see
Table 4). If one considers the mean absolute percent error (MAPE) as an empirical
criterion, the explanatory Pareto/NBD model has slightly worse results than either the
standard or the BG/NBD model (15.5% vs. 12% and 10.5%; the basic NBD achieves
the worst results at 38.1%). This result makes sense. According to Fader et al. (2005a),
the BG/NBD forecasts are better when purchase frequency is high, as in the grocery
retailing context, because of the differences among the model structures. Under the
Pareto/NBD model, dropout occurs at any time – even before a customer has made a
first purchase. However, under the BG/NBD, a customer cannot become inactive before
making his or her first purchase. If buying rates are fairly high, BG/NBD and Pareto/
NBD perform similarly well. However, in contexts in which purchase frequencies are
low, the BG/NBD model suffers in comparison with the Pareto/NBD approach.

After having tested the robustness of the models, a more thorough investigation of
their performance is completed. The accuracies of the different models are not
similar (Fig. 3).

During the validation period, the BG/NBD model performs quite well, whereas
the Pareto/NBD and explanatory Pareto/NBD formulations underestimate the
weekly purchase frequency. The basic NBD model does not perform well at all.
With the exception of the basic NBD model, the approaches converge to actual
repeat purchases during the forecast period. Weekly sales rise during the first
14 weeks, due to new customers in the cohort and their repeat purchases. All models
underestimate the peak in weekly actual purchases in the initial weeks, probably

Table 4 Log-likelihood and Bayesian information criterion

Basic
NBD

BG/
NBD

Standard Pareto/
NBD

Explanatory Pareto/
NBD

Log-Likelihood �4,954 �4,922 �4,935 �4,900

Bayesian information
criterion

9,922 9,872 9,898 9,876
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because they miss the increasing trend in repeat purchases due to promotions during
the same period. Later in the observation period, all models (with the exception of
the basic NBD) match the actual purchases.

The deviation of weekly estimates from actual purchases during the initial weeks
leads to an underestimation of the cumulative repeat purchases in the initial weeks as
well (see Fig. 4).

During the forecast period (52 weeks), the models underestimate actual purchases
(Pareto/NBD model: �9%, explanatory Pareto/NBD model: –14%, BG/NBD
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model: �2%). The fairly high purchase frequency rates in grocery shopping may
explain the strong results derived from the BG/NBD model. In this case, the
assumption that a customer is active until he or she makes a repeat purchase is not
a problem. However, purchase frequency is not too high to affect the dropout time
(“exhaustion” effect) of the BG/NBD model.

We measure individual-level performance according to the conditional expecta-
tions for the forecast period, depending on the number of repeat purchases in the
observation period (Fig. 5). That is, for each value of x in the observation period, an
average of the actual number of purchases in the forecast period is compared.

The forecasts of the BG/NBD and the standard Pareto/NBDmodels are very close
and provide acceptable predictions of the expected number of transactions in the
holdout period, consistent with the results of Fader et al. (2005b). The Pareto/NBD
model offers slightly better predictions than the BG/NBD, but it is important to keep
in mind that the number of heavy buyers is small. The explanatory model and the
basic NBD model systematically overestimate the number of repeat purchases,
especially for heavy customers.

Another way to assess the predictive validity of the models is to group customers
on the basis of their recency and frequency characteristics. One can then compare the
results with traditional recency/frequency (RF) segmentation analysis.

Each of the customers is assigned to a RF segment in the following manner. The
terciles for recency and frequency (the customers who made no repeat purchases are
coded as R= F= 0) have to be determined. High recency means a low number of days
since the last purchase, i.e., a recent repurchaser. At the opposite, a low recency
characterizes an exceptional repurchase. In Table 5, the size of each RF group is shown.
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Only 15% of the customers are frequent and recent repurchasers. On the other
hand, the zero repurchasers during the estimation period represent almost half of the
customers. In a traditional approach, managers in the retailing sector would assume
that, after a half year of inactivity, a customer is inactive.

In fact, the average number of purchases made by those customers, during the
following 52 weeks, is four times lower in average than the same number made by
other segments. However, due to the size of this group, their contribution is really
impressive: they represent 18.3% of the total of the purchases of the following
52 weeks, the second contribution of all the segments. This aspect is very interesting.
It is taken into account by the models (even the contribution of the zero repurchaser
is underestimated between 9.6% and 11.7% instead of 18.3%) (Fig. 6).

Table 5 Repartition of the customers between RF segmentation

Recency
Frequency of repeat purchases (estimation period:
26 weeks)

# of
customers

No repeat purchase 0 46.3%

Low recency 1 3.0%

2 0.5%

Total low recency 3.5%

Medium recency 1 14.1%

2 5.6%

3+ 5.1%

Total medium
recency

24.9%

High recency 1 5.2%

2 4.9%

3+ 15.1%

Total high recency 25.3%
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Conclusion

We have seen an operational form of CLV, retention, and churn models, (namely, the
Pareto/NBD, BG/NBD, and explanatory Pareto/NBD models) and their high degree
of validity for customer base analysis and for forecasting a customer’s future
purchasing, conditional on his or her past buying behavior. The Pareto/NBD,
BG/NBD, and explanatory Pareto/NBD models systematically outperform the
basic NBD model, because it does not consider inactivity.

The Pareto/NBD and explanatory Pareto/NBD formulations underestimate
weekly purchase frequency, whereas the BG/NBD model performs quite well.
These results show that explanatory variables introduce more information and
therefore generate a better forecast.

However, even if the predictive validity of the explanatory NBD/Pareto model is
not necessarily better, its performance does not suffer in comparison with the Pareto/
NBD and the BG/NBD models. Nevertheless, the advantages of the explanatory
approach relate more to the opportunity to explain the impact of personal character-
istics and the impact of marketing actions rather than the accuracy of the forecasts at
an aggregate level. The ability of the explanatory Pareto/NBD model to predict
future purchases is quite good. Even with a reduced set of explanatory variables, the
explanatory Pareto/NBD model is as accurate as the standard formulation. Never-
theless, the results are not better than those of the BG/NBD approach. However,
improvements are possible with other sets of variables (i.e., more marketing mix
variables).

These CLV, retention, and churn models for customer base analysis can help
managers understand why their marketing operations work, or do not work, and how
and to which customer segments they should improve their efforts. The explanatory
model approach represents a promising way to understand buyer behavior. The
applications are broad, including segmentation, understanding customer life cycles,
determining elasticities and elements that influence loyalty and purchase behavior,
the possibility of analyzing marketing actions and personal characteristics, and a
means to establish more valid customer CLV models to predict customer value.

Managers should be encouraged to use these models to determine their customer
base analysis, CLV calculations, and resource allocations, using their often large
longitudinal databases.

Further research should address underlying model assumptions that are unrealis-
tic and not compatible with extant literature about purchasing behavior. For example,
researchers could relax the Poisson distribution assumptions and perhaps use a
Weibull distribution instead. The BG/NBD formulation suffers a major weakness
because its underlying conditions (i.e., dropout rates independent of purchase
frequencies) demand inactivity appear immediately after each repurchase act. This
behavioral assumption is not compatible with purchasing behavior literature. In the
same sense, the Pareto/NBD model supposes independence between purchase fre-
quency and inactivity, which may be reasonable only in “always-a-share” markets
(Reinartz and Kumar 2000). Some other authors also suppose a link between both
variables (East et al. 2000).
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Few current models explicitly incorporate competition, yet heightened competi-
tion can affect customer CLV in several ways – shortened expected lifetime,
decreased prices, and increased acquisition costs. Panel data provide a promising
source for some firms, and surveys can be very useful in capturing the effect of
competition. Other empirical investigations should examine in which conditions
(high/low purchase frequencies) and with which type of data (internal, panel) the
different models perform best.

Compared with predicting purchase frequency and weekly repeat purchases,
forecasts of individual purchases include more customer information and should
provide higher accuracy in individual-level forecasts. However, it remains difficult
to model individual purchase behavior, especially with regard to the highly hetero-
geneous purchase behavior encountered in grocery sales (Fader and Hardie 2013).

Finally, to allocate optimally, managers cannot simply measure CLV but instead
must know how CLV reacts to changes in the marketing mix. Additional research
should address this concern.
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Abstract

In this chapter, we describe an approach to estimating the total long-term impact
of brand perceptions on financial performance. The approach relies on modeling
the stock market reactions to changes in brand perceptions and allows estimating
their total impact even with limited time-series data. We present an application of
the method to the Y&R Brand Asset Valuator (BAV) data. The analyses show
that, on average, the bulk of brand impact on financial performance is realized in
the future and the contemporaneous effects reflect only a small portion of the total
impact. The analyses, however, also show considerable heterogeneity across
industries: while in some industries the whole impact of brand asset occurs in
current period only (restaurants), in other industries it occurs in future periods
only (high-tech). Further, some components of consumer perceptions have dif-
ferential effects in different industries. Returns to brand building, and to
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marketing efforts in general, should not be evaluated based on contemporaneous
outcomes, but should rather be evaluated over a long-time horizon.

Keywords

Brand equity · Customer mindset · Financial impact · Heterogeneity · Dynamic
panel · Instrumental variables

Introduction

Aaker (2012, p. 7) defines brand equity as a “set of assets (and liabilities) linked to a
brand’s name and symbol that adds to (or subtracts from) the value provided by a
product or service to a firm and/or that firm’s customers.” Brand equity stems from
the ability of a brand to create awareness and favorable image in consumer minds. It
allows the branded product to accrue extra profit over an extended period of time
compared to a nonbranded product with comparable physical attributes. The benefits
of strong brand equity can be observed in greater sales, higher profitability, or greater
market valuation of a firm. There is, however, no easy method for assessing financial
impact of a brand, and there is no comprehensive and unambiguous approach to the
measurement of brand equity.

One reason a standardized approach to brand equity measurement and assessment
of its impact on financial performance is lacking is that brand is an abstract construct,
a mental structure of values, perceptions, and attitudes that resides in consumer
minds (Pavlov and Mizik 2017). The process of brand equity formation is inherently
psychological and is very complex (Keller 1993). Much work is still needed to
understand the mental structure that represents a brand and to achieve consensus
within academic and practitioner community on the concept and general model of
brand equity.

Another complication impeding the development of a standardized tool for
measuring brand equity stems from the fact that brand equity is often a product of
long-term marketing effort. It takes a long time to build brand equity because the
effect of marketing effort on consumer perceptions, associations, and attitudes is not
immediate, but rather can take a long time to materialize. That is, there is a high level
of persistence and inertia to brand equity.

Please consider the case of Martha Stewart Living Omnimedia, Inc. Following
the 2002 scandal involving Martha Stewart’s sale of ImClone stock – which pro-
mpted insider trading and perjury investigations by the SEC and FBI –both the
Martha Stewart brand perceptions and the stock price of Martha Stewart Living
Omnimedia plummeted (Fig. 1). The negative impact of brand damage on sales and
profits, however, took several years to manifest itself (Fig. 2) and in the long run
neither the brand perceptions nor firm performance ever fully recovered to the
prescandal levels. The Martha Stewart case shows that contemporaneous accounting
performance metrics (such as sales or operating income) can severely underestimate
the full impact of a brand.
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In this chapter, we describe an approach to estimating the total long-term impact
of brand perceptions on financial performance. The approach relies on modeling the
stock market reactions to changes in brand perceptions and closely follows Mizik
(2014). Just as the case of Martha Stewart’s scandal suggests, the analyses show that
the bulk of brand impact on financial performance is realized in the future and the
contemporaneous effects significantly underestimate the total impact. The analyses
also show considerable heterogeneity across industries: while in some industries the
whole impact of brand assets occurs in the current period only (restaurants), in other
industries it occurs in future periods only (high-tech). Further, different components
of consumer perceptions have differential effects across industries.

Marketing Academics’ Views on the Measurement of Brand
Equity

Academic researchers of brand equity have approached the construct from different
viewpoints and proposed various metrics and methods for assessing brand equity.
Keller and Lehmann (2003) suggest that brand equity can be measured at three
different levels: customer mindset, product market, and financial market. Customer-
mindset approach to measuring brand equity stems from the psychological value
consumers attach to a branded product, and focuses on assessing two major con-
structs of brand awareness and brand image. This method primarily relies on
consumer surveys. Product-market approach to measuring brand equity (e.g., Kama-
kura and Russel 1993; Ailawadi et al. 2003; Srinivasan et al. 2005) evaluates

Fig. 1 Martha Stewart Living Omnimedia, Inc. stock price and Brand Perceptions of Martha
Stewart brand (Brand Index)Brand Index is computed as a z-standardized equally weighted average
of perceived brand Differentiation, Relevance, Esteem, Knowledge, and Energy over the sample of
publicly traded monobrand firms in the BAV database in the 2000–2010 period
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incremental preference for a branded compared to a nonbranded product which
manifests in incremental market share or price, revenue, or profit premium for the
branded product. This approach combines survey-based methods with secondary
data and makes use of conjoint analysis or purchase histories and scanner panel data.
Financial-market-based approach (e.g., Simon and Sullivan 1993; Aaker and
Jacobson 1994, 2001; Mizik and Jacobson 2009) aims to estimate incremental
value (cash flows) arising from brand assets. Under this method, survey data is
combined with secondary data from the stock market and accounting/financial
statements to estimate the total value brand asset is expected to generate for its
owner in the long run.

Customer Mindset Brand Equity

From a customer mindset perspective, positive brand equity exists when “consumer
is familiar with the brand and holds some favorable, strong, and unique brand
associations in memory” (Keller 1993, p. 2). Measuring brand equity from a
consumer mindset perspective means dealing with familiarity and associations –
constructs which are highly subjective and not directly observable. The abstract
nature of consumer mindset-based brand equity gave rise to various proposals on
what brand equity components are and what metrics are appropriate (e.g., Pappu et
al. 2005; Lassar et al. 1995; Yoo and Donthu 2001). Most discussions of customer
mindset-based brand equity center on constructs of brand familiarity and brand
associations customers hold. Most of the proposed measurement approaches are,
naturally, based on surveys and questionnaires.

Keller and Lehman (2003, p. 27), for example, recognize five components of
customer mindset-based brand equity: awareness, associations, attitudes, attach-
ment, and activity. Aaker (1996) advocates the idea of “Brand Equity Ten” – ten
indicators contributing to brand asset value. Of the five subcategories (awareness,
associations/differentiation, perceived quality/leadership, loyalty, market behavior),
the first four are survey-based measures. Aaker (2012) notes that survey-based
measures “can be expensive, inconvenient, time consuming, hard to implement/
interpret.” Indeed, they are. With advent of the Web 2.0, however, it is becoming
cheaper and easier to collect some customer mind-set branding data (Lee and
Bradlow 2011; Netzer et al. 2012; Liu et al. 2017). These new approaches are
often based on natural language processing techniques. They allow compiling
relevant customer mindset-based metrics bypassing costly traditional surveying.

The various approaches to assess customer mindset-based brand equity can be
classified into two broad categories: direct and indirect. Surveys fall into the
category of “direct” measurement of customer mindset brand equity. Direct
approaches also include studying customer response to marketing activities through
experiments: the treatment group is exposed to marketing actions attributed to a
particular brand, while control group is exposed to marketing actions attributed to a
generic or unknown brand (Keller 1993, p. 13). “Blind” tests are examples of such
experiments (Allison and Uhl 1964). Conjoint analysis is another direct method,
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which allows to rank relative importance of product/service attributes/features based
on customers’ stated preferences and perceptions and to estimate price premium due
to the brand (Rangaswamy et al. 1993). Cobb-Walgren et al. (1995, p.35), for
example, conduct a conjoint analysis for the hotel industry and find that brand
name is the fourth most important attribute after price, bed size, and availability of
a pool. “Indirect” approach includes association tasks, interpretation of imagery,
brand personality descriptors, etc. (Keller 1993, p. 12), and is far less suitable for
translating into financial value.

Some brand perceptions and attitudes are collected through large-scale consumer
surveys. Brand Asset Valuator by Young and Rubicam, EquiTrend by Harris Poll,
Millward Brown’s Brand Z are the main industry providers in this area. While brand
attitude and perceptions data can be very valuable for brand management per se, they
do not offer direct insight into the financial value of the brand. These perceptions and
attitude data, however, can be used as a building block in the development of
financial market-based measures of brand equity. We discuss these methods later
in this chapter in more detail.

Product Market-Based Brand Equity

Under the product-market approach, brand equity is understood as the incremental
value (e.g., in terms of market share, price, revenue, or profit) a branded product
generates compared to its nonbranded analogue. For instance, in Park and Srinivasan
(1994, p. 273), brand equity is conceptualized as an “incremental preference endo-
wed by the brand to the product as perceived by an individual consumer.” The
authors suggest that brand equity stems from the difference between the overall
product preference and objective preference, which is based on attribute-by-attribute
evaluation. They use individual-level secondary data on actual in-store purchases to
estimate this difference. Based on an empirical application of the model to the
market of toothpaste and mouthwash, the authors found substantial effects of brand’s
equity on market share. For example, 12.2% of Colgate’s 21.8% market share was
attributed to brand equity and, compared to the store brand, Colgate-Palmolive was
able to charge an estimated 37 cents more. The measures of brand equity obtained
using this approach are relative: they do not reflect the absolute value of brand equity
for a given brand. Rather, they provide an estimate of brand equity in comparison to
another brand.

Srinivasan et al. (2005, p. 1433) define brand equity as an “incremental contri-
bution per year obtained by the brand in comparison to the same product (or service)
at the same price but without brand-building efforts (i.e., base product).” Using
individual-level data the authors estimate incremental choice probability of a
branded versus a base product for an individual customer. Three distinct sources
of brand equity value were considered: brand awareness, nonattribute preference,
and enhanced attribute perceptions (i.e., attribute perceptions compared to the base
product’s attribute perceptions). Using consumer data from the mobile phone market
in South Korea, the authors obtain estimates of brand equity and its components for
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four leading companies. Brand equity of Samsung is estimated to provide 34.8% of
Samsung’s 52.5% market share. Total value of brand equity obtained from incre-
mental choice probabilities is estimated at $127 MM for Samsung, $69 MM for LG,
$32 MM for Motorola, and $9 MM for Qualcomm (p. 1445). As for components of
brand equity, awareness was found to have the strongest effect, followed by non-
attribute preference and enhanced attribute perceptions.

Ailawadi et al. (2003) propose revenue premium – the difference in revenue
between a branded good and a corresponding private label – as a measure of brand
equity. The advantage of this measure is in simultaneously capturing the effects of
brand equity on both price and volume. Studying a major grocery retailer in
1991–1996, the authors calculated yearly revenue premia for 111 brands and
documented a median decrease in revenue premia of 11%. One of the challenges
for the revenue premium calculation lies in identifying an appropriate benchmark
brand or generic to compare prices and volumes with. That is, the revenue premium
is a relative and not an absolute measure of brand equity as store brands are brands in
their own right. Another challenge is the proper market definition for a particular
brand. The revenue premium measure reflects the effect of competition. That is, the
same brand might have a much greater revenue premium in the market where few
competitors are present versus the market where there are many options for con-
sumers to choose from. Other concerns with the revenue premium model have been
noted in the literature and include its failure to account for the costs of brand
management and maintenance and the lack of temporal dimension (only contempo-
raneous effects on sales are captured). For example, Srinivasan et al. (2005) suggest
that profit premium would be a better measure of brand equity and advocate for
assessing long-term brand-induced incremental profits.

Product-market models for estimating brand equity value provide important
insights by leveraging secondary data (often, scanner panel data of actual purchase
histories). They allow attributing observed differences in market shares and prices
charged by producers in the same product category to psychological value con-
sumers derive from choosing a particular brand. The limitations of product market-
based models stem from (1) the relative nature of brand equity estimates (i.e.,
estimate of brand equity is defined in comparison to another brand) (2) subjectivity
involved in the choice of an appropriate benchmark and/or a market definition, and
(3) lack of temporal consideration for the brand effects. As the case of Martha
Stewart illustrates, a large portion of the brand value might be missing in contem-
poraneous (same-year) product market performance metrics.

Financial Market-Based Brand Equity

The financial market-based approach to valuing brands views brands as assets
capable of generating stream of profits over a long period of time. Financial
market-based valuation of brand equity is “forward-looking” (Simon and Sullivan
1993, p. 32) in the sense that it reflects the sum of the discounted incremental future
cash flows attributable to the brand. Under this view, the value of brand assets is a
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portion of the company’s stock market capitalization. As such, any changes in the
brand assets will be reflected in the market valuation of the company.

Accounting Valuation of Brands
It is important to highlight the distinction between the market-based and accounting-
based valuation of brands. Internally generated intangibles, including brands, are not
included on the balance sheet. Exclusion of brands and other intangibles from the
balance sheet gives rise to sizeable discrepancies between the book value and the
market value of a company. For example, Sinclair and Keller (2014, p. 294) discuss
the $200 billion market capitalization of Procter & Gamble at the time when its net
tangible assets are a negative $18.7 billion.

Although internally generated brand assets are not on the balance sheets, brand
assets acquired in business combinations (e.g., acquisitions) are recognized as assets
and placed on the balance sheet of the acquirer (Cañibano et al. 2000; Austin 2007).
Various valuation methods are used to arrive at the value of acquired brands. The
most commonly used approaches employ earnings split (estimating the portion of
the earnings attributable to the brand and projecting future earnings and discount
factors) and relief from royalty (estimating the “royalty savings” from owning a
brand based on a set of comparable brands, where royalty structure is known, and
projecting future earnings) analyses. Both types of analyses involve significant
subjective judgment in attributing earnings or selecting comparables and projecting
future earnings and discount factors. Bahadir et al. (2008) report that the recognized
value of brands in M&A transactions varies widely (it ranged from 1.16% to 49.7%
of the transaction value) and comment that the value of a brand lies “in the eye of the
beholder.”

Financial Market Value-Relevance of Brands
Simon and Sullivan (1993, p. 29) define brand equity as “the incremental cash flows
which accrue to branded products over and above the cash flows which would result
from the sale of unbranded products.” They criticize product market-based metrics
of assessing brand equity such as price premium. Price premium method (1) does not
account for brand’s ability to reduce marketing costs in future periods and (2) it
might be confounded with high-quality product attributes, resulting in biased esti-
mates of brand equity value. Simon and Sullivan (1993) estimate that brand equity
accounts for 19% of tangible asset value for the 638 firms in their sample.

Barth et al. (1998) analyzed stock market valuation of Interbrand’s brand value
measures. Controlling for fiscal year fixed effect, book value of equity per share,
earnings per share from continuing operations, the authors found a significant
association between stock price at the end of fiscal year and the Interbrand’s brand
value estimate. Madden et al. (2006) used World’s Most Valuable brands (WMVB)
ranking by Interbrand to compare performance of companies owning highly valu-
able brands to companies that do not. They construct a portfolio of 111 companies on
the WMVB list and compare its performance against a benchmark portfolio com-
prised of all other companies in the CRSP database. The WMVB portfolio
outperformed the benchmark and delivered higher returns with significantly smaller
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risk, as measured by market Beta (the coefficient on market return in Fama-French
model). A concern that has been raised with these analyses relates to the fact that
Interbrand and other providers are not fully transparent on how brand values are
calculated and that they use market capitalization of the firm as one of the inputs in
their calculations of brand value (Hrustic 2012).

A few studies have lined customer mindset-based measures of brand equity
directly to company stock performance. Aaker and Jacobson (1994) study the
association between perceived product quality (EquiTrend) and stock returns. The
authors find that perceived quality is significantly associated with stock market
returns and has incremental explanatory power over ROI (profitability). Aaker and
Jacobson (2001) apply a similar approach to a survey-based brand attitude measure
(positive/neutral/negative) for a high-tech company (Techtel) and find a significant
positive effect of brand attitude on abnormal stock return.

Mizik and Jacobson (2008) used Young & Rubicam Brand Asset Valuator (BAV)
data to assess the financial value relevance of perceptual brand attributes. Based on
eight waves of a large-scale annual customer survey, they examined five pillars of
brand perceptions (differentiation, relevance, esteem, knowledge, and energy) to
assess their incremental information content. Of the five pillars, relevance and
energy were found to be significantly positively associated with abnormal stock
returns and no contemporaneous effect of differentiation, esteem, or knowledge on
stock returns has been found. However, the authors detected a significant effect of
prior year change in differentiation on unanticipated changes in earnings, which
suggested the existence of a market anomaly: past changes in brand differentiation
predicting current abnormal returns. Additional analyses revealed a significant
difference in mean abnormal stock returns for companies with brands which gained
in perceived brand differentiation in the prior year versus companies with decreased
brand differentiation in prior year and attributed this anomaly to the lack of trans-
parency (private information) in brand strategy.

Most empirical studies employing financial market-based approach have focused
on assessing the value relevance and incremental information content of various
brand metrics (see Mizik and Jacobson (2009) for an exception and an illustration of
comparables-based valuation approach to valuing brand assets). Mizik (2014) pro-
posed extending the method to explicitly address their total long-term financial
impact. We discuss the theoretical and empirical foundations of this approach and
present an empirical illustration below.

Assessing Long-Term Impact of Brand Equity

Brands have both contemporaneous and delayed effects on firm profitability. Figure 3
depicts the dynamic framework of brand financial impact. γ0 is the contemporaneous
effect of brand asset on earnings. It reflects both the costs associated with developing
the brand asset at time t and the realized incremental revenue which accrued due to
the brand asset at time t. γ0 can be positive or negative, depending on whether the
costs or the incremental revenue effect dominates. λ0 is the contemporaneous impact
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of earnings on brand asset. It too can be positive (if the firms increase brand asset
building effort when profits increase) or negative (if the firms increase brand asset
building when profitability falters).

γ1 represents the impact of brand asset developed at time t on earnings in period
tþ1. Because the brand asset was developed in time period t (i.e., the development
cost occurred in period t), γ1 is nonnegative for value-generating brand assets (it is
negative if the brand asset is value destroying, like poor reputation). γk represents the
delayed impact of brand asset and is the direct impact of Brand Asset (t) on earnings
in period (tþk).

The total long-term impact of brand asset on profitability, however, exceeds the
sum of its direct impacts described above. Because earnings persist (in Fig. 3, the
dynamic coefficients ϕk indicate that current level of earnings depends on previous
period earnings), a portion of contemporaneous impact of brand asset is carried over
to future periods through earnings dynamics. A shock to earnings in period t is
partially carried over to period (tþ1). The indirect effect of brand asset on earnings in
period tþ1 equals to γ0�ϕ1 and the total effect in period tþ1 is equal to γ1 + γ0�ϕ1.
The total long-term impact of Brand Asset (t) on firm financial performance is the
aggregate sum over all direct and indirect effects.

The estimation of the total impact of brand asset on profitability as depicted in
Fig. 3 with standard distributed lag panel data models is typically not feasible
because time series of branding data are often limited. However, under the assump-
tion of efficient markets, the stock market-based approach can be implemented even
with limited time-series data.

Under the hypothesis of financial markets efficiency (Fama 1970), the stock
market value of a firm incorporates all information and rational expectations of a
company’s future financial performance. Unexpected changes in firm’s brand assets

∞φ∞γ
1φ

1φ
2φ2γ

1φ
1φ1γ

0γ

0λ
Current EarningsitBrand Assetit

Earnings 
Persistence

Future Earningsit + 1

Future Earningsit + ∞

Future Earningsit + k

Future Earningsit +2

kγ kφ

…..

…..

Fig. 3 Dynamic performance impact of brand assets
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lead to changes in expected future cash flows and induce investors to recalculate
company valuation. This change in firm valuation serves as an unbiased estimate of
the total impact the change in brand asset is expected to generate in the long run.

Figure 4 summarizes the estimation framework. The interpretation of γ0 and
λ0 coefficients remains the same as in Fig. 3. The future impact of brand asset
(represented by coefficients γk, with k>0, in Fig. 3) is now captured in the β2
coefficient. The framework depicted in Fig. 4 generates the following two estimation
equations:

StkRetit ¼ Eretit þ β1ΔROAit þ β2ΔBrandAssetit þ ϵ1it, (1)

ΔROAit ¼ γ0ΔBrandAssetit þ ϵ2it, where (2)

StkRetit is the stock return for firm i at time t, Eretit is the expected return, ΔROAit

is the unanticipated change in size-adjusted earnings, ΔBrandAssetit is the unantic-
ipated change in the brand asset, ϵ1it and ϵ2it are i.i.d. normal error terms.

Several issues arise with the estimation of Eqs. 1 and 2. First, one needs to obtain
the unanticipated components of ROAit and BrandAssetit series. Second, γ0 in Eq. 2
could be estimated consistently only under no simultaneity condition (i.e., no
feedback from ΔROAit to ΔBrandAssetit). That is, only if λ0 is equal to zero.

Estimating Eqs. 1 and 2 generates both contemporaneous (γ0) and long-term
direct (β2) impact of brand asset on financial performance. The indirect effect of
ΔBrandAssetit on future earnings occurs because the contemporaneous impact of
ΔBrandAssetit onΔROAit is transferred through the earnings-response coefficient β1.

Brand Asset Effect on
Contemporaneous

Performance

Stock Returnit Firm-Specific 
Riskit

ΔCurrent 
Earningsit

ΔBrand 
Assetit

Direct Brand Asset
Effect on Future 
Performance

Earnings-
Response 
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Market-
Wide Riskit

0γ

2β 1β

0λ
Effect of 

Contemporaneous
Performance on Brand 

Asset

Fig. 4 Estimating framework for assessing the total financial impact of band aAsset using the stock
market-based approach
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This indirect effect of brand asset on earnings equals to γ0�β1. Hence, the total
financial impact of brand asset on profitability is equal to the sum of direct future
effect and the indirect effects: β2 + γ0�β1.

Empirical Illustration

The empirical application below draws on several data sources. Stock return data and
the Fama-French-Carhart risk factors come from the Chicago’s Center for Research
in Security Prices (CRSP). The accounting data come from the quarterly Compustat
database. Profitability (ROA) is measured as operating income before depreciation
over assets. Brand perceptions data come from the 2000–2010 Y&R’s BAV data-
base. It includes 444 monobrand publicly traded firms. The measure of Brand Asset
Index is a z-standardized index comprised of five brand perceptions of (1) differen-
tiation, (2) relevance, (3) esteem, (4) knowledge, and (5) energy. The perceptual
constructs used in constructing the Brand Asset Index and their measurement are
discussed in detail in Mizik and Jacobson (2008).

Calculating Abnormal Stock Returns
Abnormal stock returns are calculated using Fama-French (1993) model augmented
with the momentum factor (Carhart’s 1997) and with risk characteristics of size and
book-to-market (Daniel and Titman 1997), but findings are robust to alternative
definitions of abnormal returns:

Retit � Retriskfree, t ¼ at þ βmkt Retmkt, t � Retriskfree, t
� �þ s SMBtð Þ þ h HMLtð Þ

þ m MOMtð Þ þ ηtSizeit�1 þ νtBookMarketit�1

þ uit,where (3)

Retit is stock return of firm i at period t, Retriskfree,t is risk-free return at time t,
Retmkt , t is market return at time t, SMBt is difference between large and small book-
to-market ratio firms at period t, HMLt is difference between high and low capital-
ization firms at period t,MOMt is Carhart’s (1997) momentum at period t, Sizeit � 1 is
firm-specific risk characteristic of size, calculated as log of lagged market value,
BookMarketit � 1 is firm-specific risk characteristic of book-to-market, calculated as
log of lagged book value over market value. Abnormal stock returns are the residuals
from this regression, uit.

Calculating Unanticipated Components of ROA and Brand Asset Index
Estimating Eqs. 1 and 2 requires computing a measure of unanticipated change in
size-adjusted earnings or “earnings surprise” (ΔROAit). Because ROA series exhibit
significant persistence and seasonality, a four-quarter autoregressive fixed effects
model is used to approximate the data-generating process:

ROAiq ¼ ai þ
X4

k¼1

ϕkROAiq�k þ
XQ

q¼1

δq � Timeq þ eiq (4)
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ai is the firm-specific indicator, Timeq is the time period (year-quarter) indicator,
and ϕk is the quarter k autoregressive coefficient. ai and ϕk can be consistently
estimated using Anderson-Hsiao (1982) or Arellano-Bond (1991) instrumental vari-
ables approach. First, the data is recomputed in terms of deviations from year-
quarter-specific means (to cancel out time-period fixed effects δq). Then, first
differences of series are taken to remove fixed effects ai. Lagged values of ROA
serve as instrumental variables for the first lag of ΔROA (ROAiq � 2 and ROAiq � 3

instrument for [ROAiq � 1 � ROAiq � 2]).
Table 1 reports the results of this estimation. The 1st-order and the 4th-order lags

of ROA have the highest autoregressive coefficients indicating the presence of
strong seasonality. The measure of annual earnings surprise (ΔROAit) is computed
as a sum of prediction errors (ROAiq � ^ROAiq) over the four quarters in a given year.

With short time series of branding data it is often impossible to use the same
procedure to estimate unanticipated components of BAIndex. However, instead of
modeling dynamics of the marketing metric directly, one can evaluate the stock
market’s beliefs about its dynamics. The market beliefs about the dynamic properties
of brand equity metric can be assessed with the following model:

AbnormalStkRetit ¼ β1ΔROAit þ β�2 BAIndexit � β0BAIndex it�1ð Þ
� �

þ � it, where (5)

ϕ0 is the persistence in brand index series.
Equation 5 could be rewritten as

AbnormalStkRetit ¼ β1ΔROAit þ β�2BAIndexit þ β02BAIndexit�1 þ ϵit (6)

A finding of β�2 þ β02 ¼ 0would suggest that ϕ0 is equal to one and that BAIndexit
contains a unit root. Because that is the case in our data sample, the surprise in brand
asset index can be defined as the first difference of Brand Asset Index series:
ΔBAIndexit = BAIndexit � BAIndexit � 1. If no unit root in BAIndexit is detected,
then the surprise in brand asset index can be computed as ΔBAIndexit = BAIndexit
� ϕ0BAIndexit � 1, where ϕ0 is the estimate from Eq. (5). In situations when
sufficient time series of a marketing metric are available, the surprise can be

Table 1 Fourth-order autoregressive fixed-effects instrumental variable regression for ROA

Estimate SE t-statistic

ϕ1
a .28131** .02397 11.74

ϕ2 .05048** .01298 3.89

ϕ3 .01645* .00989 1.66

ϕ4 .66795** .00508 131.39

Number of obs 22,526

F-statistic 6509.75

*p < .10; **p < .01
aDenotes the use of IV estimation
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computed following the approach described above for calculating ΔROAit: [1]
estimate an autoregressive panel model for the marketing metric, [2] calculate the
residuals from the autoregressive model. These residuals then serve as ΔBAIndexit.

Assessing the Presence of Simultaneity
Because we are working with short time series of BAIndex, we cannot address
potential simultaneity bias in γ0 directly (an appropriate instrument cannot be
constructed due to short time series of BAIndex). But we can assess potential
simultaneity between earnings (ROA) and BAIndex by estimating the following
dynamic panel models because the ROA time series are sufficiently long such that an
instrument for ROA can be constructed:

BAIndexit ¼ aBA, i þ λ0ROAit þ λ1ROAit�1 þ λ2ROAit�2 þ δtYeart þ κ1, it (7)

BAIndexit ¼ aBA, i þ λ0ROAit þ λ1ROAit�1 þ λ2ROAit�2 þ ϕ1BAIndexit�1

þ ϕ2BAIndexit�2 þ δtYeart þ κ2, it (8)

Here, λ0 measures the contemporaneous impact of earnings on brand perceptions.
A finding of λ0 = 0 would suggest that no simultaneity is present (that is, earnings
do not have a contemporaneous effect on brand perceptions). Estimating Eqs. 7 and
8, again, requires taking the first differences of the data to remove the fixed effects
and using the instrumental variables approach. The estimated coefficient λ̂0 is small
and insignificant in both models. Estimating model Eq. 7 generates λ̂0 ¼ 0.98
(SE=9.90) and λ̂0 = �15.55 (SE=12.69) in model Eq. 8. As such, we find no
evidence of feedback from contemporaneous earnings to Brand Asset Index.

If λ0 6¼ 0, OLS estimate of γ0 in Eq. 2 will be biased and inconsistent due to
presence of feedback loop effect. We refer the reader to Chap. 15 in Greene (2002)
for the discussion on consistent estimation in simultaneous-equations models.

Total Financial Impact of Brand Asset

The total financial impact of Brand Asset Index can be assessed by estimating Eq. 2
and Eq. 9 below. Because no simultaneity is present in our sample, the total financial
impact can also be estimated directly after substituting Eq. 2 into Eq. 9 to obtain
estimating Eq. 10:

AbnRetit ¼ β1ΔROAit þ β2ΔBAIndexit þ e1it (9)

AbnRetit ¼ ψΔBAIndexit þ e2it, whereψ ¼ β2 þ γ0
�β1 (10)

The results of estimating Eqs. 9 and 10 are presented in Table 2. The information
content in BAIndex is significantly and positively associated with abnormal stock
return of a firm. It is positive and significant in both formulations – with and without
including ROA information in the estimating equation. The estimates reported in
Table 2 indicate that Brand Asset Index has a direct impact on stock returns of 0.068,
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which is incremental to ROA. The total impact of Brand Asset Index on stock return
is 0.07568.

Based on the estimates reported in Table 2, one can ascertain the dynamics of
Brand Asset Index impact on stock return and break down the total impact into its
direct and indirect components. Difference in the estimates of BAIndex coefficient in
Eqs. 9 and 10 is 0.07568–0.068=0.008. This difference is the indirect effect of
Brand Asset Index on abnormal returns (which occurs through earnings persistence).
That is, the immediate impact of Brand Asset Index on ROA is equal to 0.0025
(0.008/3.184). This suggests that only approximately 3.3% (0.0025/0.07568) of
Brand Asset Index impact is realized in contemporaneous operating income, and
the bulk of the impact occurs in future periods.

Heterogeneity in Brand Equity Impact

Sector-Specific Differences in the Impact of Brand Asset Index
One interesting research question remains: are the effects of Brand Asset uniform
across different industrial sectors? Results of sector-specific analyses suggest that
there exists a significant heterogeneity in the dynamics of the Brand Asset Index
impact across different industrial sectors. Table 3 presents the results of estimating
models Eq. 9 and 10 in six sectors: financial, distribution/retail, restaurants, com-
puter/Internet, pharmaceuticals, and travel/entertainment.

We observe no significant findings for BAIndex for either finance or for travel/
entertainment sectors. For distribution/retail sector, the estimates of BAIndex are
largely in line with the aggregate findings reported in Table 2: the immediate impact
of BAIndex on ROA is small. It can be calculated as (0.101–0.078)/4.125=0.006,
which is about 5.5% of the total impact. That is, approximately 95% of the effect of
Brand Asset is realized in the future. The pattern for the high-tech sectors (computer/
Internet and pharmaceuticals) suggests that all of the BAIndex effect is realized in
the future periods. This finding implies that a success or failure of brand-building
efforts in these industries cannot be determined using contemporaneous product-
market performance measures. Finally, in the restaurant sector, all of the effect of

Table 2 Direct future and total performance impact of the BAIndexa

Model Eq. 8 Model Eq. 9

Unanticipated change in BAIndex .068**
.080
(.018)

.07568**

.089
(.019)

Unanticipated change in ROA 3.18**
.291
(.235)

F-statistic 99.96 15.67

N 1956 1956

*p < .10; **p < .01
aStandardized regression coefficients are in italics, standard errors are in parentheses
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BAIndex (0.199) comes from its effect on contemporaneous earnings and no direct
future effect exists. That is, if branding initiatives did not generate immediate (same-
year) benefits, there is unlikely to be any benefit in the future periods either.

Component-Specific Differences in the Impact of Brand Perceptions
The insignificant effects of BAIndex for Finance and Travel/Entertainment sector
might be suggesting that brand perceptions are not value-relevant in these sectors.
Alternatively, the insignificant effects might be masking the heterogeneous impact of
the individual perceptual components of Differentiation, Relevance, Esteem, Knowl-
edge, and Energy in these sectors.

Table 4 reports disaggregate analyses for the individual components of Brand
Asset Index in six different industrial sectors. Interestingly, three of the five percep-
tual components in Brand Asset Index – Differentiation, Relevance, and Energy –
are significant in the Finance sector. Because they have opposite signs (increases in
Differentiation have a negative effect while increases in Relevance and Energy have
a positive effect on stock return), their combination in the aggregate Brand Asset
Index is not significant. A similar picture emerges in the Travel/Entertainment
sector: Differentiation has a marginally negative effect while Esteem and Energy
have marginally positive effects. The effect of Relevance is also highly significant in
the Computer/Internet and Restaurants sectors and is marginally significant in the
Distribution/Retail sector.

There is less consistency in the effects of other Brand Asset Index components
across industrial sectors. While Differentiation has a negative effect in the Finance
and Travel/ Entertainment sectors, it has a positive effect in the Pharmaceutical
sector. Esteem has a marginally positive effect in the Distribution/Retail and Travel/

Table 3 Differential impact of brand asset index by sector

Finance
Distribution/
Retail

Computer/
Internet Pharmaceutical Restaurants

Travel/
Entertainment

Panel A. Direct future impact of the BAIndex (equation model 9)

Unanticipated
change in the
BAIndex

0.036
(0.092)

0.078*
(0.041)

0.121***
(0.045)

0.141***
(0.050)

0.083
(0.093)

0.116 (0.135)

Unanticipated
change in
ROA

5.607***
(1.792)

4.125***
(0.565)

2.236***
(0.471)

2.110***
(0.86)

5.968***
(1.103)

3.669 (2.335)

F-stat 5.15 29.79 14.43 6.60 17.06 1.37

N obs 172 379 420 61 106 91

Panel B. Total performance impact of the BAIndex (equation model 10)

Unanticipated
change in the
BAIndex

0.066
(0.094)

0.101**
(0.043)

0.113**
(0.046)

0.144***
(0.060)

0.199*
(0.102)

0.069 (0.132)

F-stat 0.49 5.5 6.06 6.58 3.82 0.27

N obs 172 379 420 61 106 91

*p < .10; **p < .05; ***p < .01
Standard errors in parentheses
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Entertainment sectors only. Energy has a marginally positive effect in the Finance
and Travel/Entertainment sectors only. Interestingly, while most models of brand
equity focus on the construct of brand familiarity, there is no significant positive
association detected between the stock returns and the measure of familiarity
(Knowledge).

Conclusion

Brand assets are crucial to firm performance and are a significant component of firm
value. They are, however, difficult to value and to quantify in financial terms. The
key reasons valuation of brand assets is difficult are the following:

Table 4 Disaggregate analyses: differential impact of brand perceptions by sector Dependent
variable: abnormal stock return

Finance
Distribution/
Retail

Computer/
Internet Pharmaceutical Restaurants

Travel/
Entertainment

Panel A. Direct future impact of the BAIndex (equation model 9)

ΔDifferentiation �0.100*
(0.061)

0.010
(0.025)

�0.007
(0.030)

0.084* (0.044) 0.011
(0.060)

�0.197*
(0.117)

ΔRelevance 0.197*
(0.109)

0.109*
(0.060)

0.199***
(0.064)

0.033 (0.070) 0.310**
(0.130)

0.053 (0.198)

ΔEsteem �0.000
(0.087)

0.075*
(0.046)

0.039
(0.059)

0.004 (0.074) �0.092
(0.110)

0.255*
(0.147)

ΔKnowledge �0.129
(0.190)

�0.101
(0.096)

�0.095
(0.113)

0.100 (0.135) �0.145
(0.180)

0.107 (0.356)

ΔEnergy 0.110*
(0.067)

�0.019
(0.030)

0.024
(0.027)

0.011 (0.042) 0.004
(0.067)

0.143*
(0.087)

Unanticipated
change in ROA

5.103***
(1.889)

4.132***
(0.564)

2.379***
(0.473)

1.971**
(0.890)

6.152***
(1.126)

3.22 (2.389)

F-stat 2.74 11.01 6.23 2.43 6.55 1.48

N obs 172 379 420 61 106 91

Panel B. Total Performance Impact of the BAIndex (equation model 10)

ΔDifferentiation �0.123**
(0.062)

0.017
(0.027)

�0.007
(0.031)

0.088* (0.045) 0.020
(0.068)

�0.216*
(0.116)

ΔRelevance 0.230**
(0.110)

0.105*
(0.064)

0.159***
(0.065)

0.051 (0.072) 0.307**
(0.155)

0.012 (0.196)

ΔEsteem 0.067
(0.085)

0.086*
(0.049)

0.049
(0.061)

0.003 (0.076) 0.062
(0.122)

0.224 (0.146)

ΔKnowledge �0.229
(0.190)

�0.110
(0.102)

�0.083
(0.116)

0.100 (0.140) �0.156
(0.208)

0.208 (0.350)

ΔEnergy 0.116*
(0.068)

�0.010
(0.032)

0.025
(0.028)

�0.001
(0.043)

0.017
(0.077)

0.141 (0.088)

F-stat 1.76 2.16 2.28 1.8 1.47 1.39

N obs 172 379 420 61 106 91

*p < .10; **p < .05; ***p < .01
Standard errors in parentheses
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(1) They are intangible. They reside in consumer minds and are represented by a
mental structure of perceptions and attitudes. Individual components of brand
associations and attitudes comprising customer mindset brand equity have been
proposed and studied, but the research in this domain in not complete. At
present, there is no general agreement on what exactly this mental structure is.
Research continues into which components are relevant and which components
are not relevant in customer mindset-based brand equity.

(2) They are an outcome of a complex psychological process. The mechanism
behind the brand equity formation is complex and probably highly
individualistic.

(3) Nonseparable nature of brand and product equity. The question of whether the
value of brand asset is additive and can be viewed and assessed independently of
its owner or the product it is associated with is unresolved. Brand characteristics
and physical characteristics of the product carrying a brand name are not
independent. Consumers exhibit significant biases in evaluating physical char-
acteristics of branded products and also project their personal experiences and
product perceptions onto the brand.

Brand equity is now measured at three main stages of the brand value chain
(Keller and Lehman 2006). Consumer mindset approach uses survey methods to
capture the psychological value consumers attach to a brand. Product market-based
approach relies on scanner panel data or accounting data to estimate incremental
market share, price, revenue, or profit premium attributable to the brand. Financial
market-based approach uses secondary data from the stock market to estimate
incremental firm value attributable to its brand assets. All these approaches involve
a significant subjective component and judgement in deciding which perceptions to
survey, how to define the market or generic benchmark, how much cash flow or
market value to attribute to the brand versus other intangible assets the firm owns.

This chapter describes a tool that can be used to assess financial impact of brand
perceptions and examine partial dynamics (immediate vs. future and direct vs.
indirect) of this impact. This is conceptually and empirically different from measur-
ing the value of brand equity. The presented approach has a limitation in that it
allows estimating only partial (not full) dynamics of the effect. It does not allow
estimating exactly how many years it will take for full benefits of brand development
to be realized or what the pattern of the benefits in each future time period is. Also,
the estimates are based on a set of monobrand firms. It is, however, likely (but
remains to be confirmed) that the key insights are transferrable to individual product
brands in multibrand firms.

With increasing availability of longer time series of brand metrics and brand
performance outcome measures, addressing the full dynamics of brand impact will
become feasible with standard time series and panel data approaches even at product
brand level. Meanwhile, the approach described in this chapter allows assessing the
long-term financial impact of marketing metrics with even limited time-series data to
derive valuable insights. For example, in the empirical application of the method to
disaggregate components of brand asset, important lessons are learned: most of the
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financial impact of brand typically occurs in the future periods and brand perceptions
have very different impact in different industrial sectors.
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Abstract

Sales promotions are an important marketing tool for both manufacturers and
retailers. They include, for example, temporary price reductions, coupons, fea-
tures, displays, sampling, and premiums. The bad news about promotions is that
many of them are not profitable. The good news is that promotion effectiveness
can be measured so that managers can identify the promotions which generate a
profit and eliminate the ones that do not. This chapter presents data and models
that can be used for this purpose. It focuses on panel data which is available at the
aggregate (i.e., store) level and at the disaggregate (i.e., consumer) level. While
aggregate data is more readily available and easier to analyze, disaggregate data
allows for more detailed analyses. Several examples illustrate how models build
on these data to measure promotion effectiveness. Since panel data has its
limitations, it is often useful to complement it with surveys and/or experiments.
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Introduction

Sales Promotions are a key marketing instrument for many companies. For example,
firms sell their products with temporary price reductions (TPR), offer premiums,
sweepstakes, or samples, and use feature advertising and displays to draw shoppers’
attention to the promoted products. Manufacturer spendings on sales promotions are
high, e.g., manufacturers of consumer packaged goods (CPG) in the USA spend
55% of their marketing budget on sales promotions (Cadent Consulting Group
2017). And retailers generate a large percentage of their sales with promoted
products, e.g., in Europe 28% of volume sales in grocery retailing (IRI 2016).

Despite their widespread use, sales promotions are often not successful. McKinsey
analyzed 5000 promotions in six European countries in 2002, finding that only 40%
are profitable for the manufacturers of the promoted brands (N.N. 2002). Ailawadi
et al. (2006) in their analysis of all promotions run by the drugstore chain CVS in
2003, find that less than half of them are profitable for the retailer.

Thus, managers may think that – similar to the famous quote for advertising – half
the money they spend on promotions is wasted. Compared to advertising, however,
it is much easier to find out which half this is. Effects of promotions are more
immediate, so that, it is easier to establish causal relationships. There is plenty of data
available for measuring promotion effectiveness, especially for CPG, and
researchers have developed and tested models with which to analyze these data.
Note that such analyses are not trivial – but given the huge investments in sales
promotions, they are typically well worth the effort.

This chapter provides an overview of relevant data sources and approaches for
analyzing these data. It focuses on promotions directed at consumers by manufac-
turers and retailers, as opposed to trade promotions, which manufacturers offer to
retailers. The following section presents key sales promotion tools and their potential
effects that need to be measured. Next, an overview of measurement approaches with
a focus on relevant data sources and the opportunities they offer for analyzing sales
promotion effectiveness. Since sales promotions are most heavily used for CPG, and
the analysis of promotion effectiveness in this industry relies heavily on panel data, I
describe some examples for this type of analysis in the remainder of the chapter.

Sales Promotion Tools and Their Effects

Promotions offered to consumers can be distinguished in price versus non-price
promotions (Gedenk 2002; Gedenk et al. 2010). The most common type of price
promotion is a temporary price reduction (TPR), where the product is offered at a
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reduced price for a limited time (e.g., “normally 2.99 € – this week only 1.99 €”).
Other types of price promotions include rebates (consumers pay full price and send
in their receipt to receive a discount) and multi-item promotions (consumers only get
a discount when they buy multiple units, e.g., “buy two – get one free”). Retailers
and manufacturers can also distribute coupons through different media (e.g., news-
papers, websites, or direct mail) and consumers receive a discount (for one or
multiple items), when they present the coupon at the point-of purchase.

Non-price promotions can be “supportive” or “true” (Gedenk 2002; Gedenk et al.
2010). “Supportive” non-price promotions include, for example, displays, features
(i.e., retailers’ weekly flyers), and other POS materials. They are typically used to
draw attention to price promotions, and in most consumers’minds, they are therefore
closely linked to price cuts. Note, however, that “supportive” non-price promotions
can also stand alone to highlight products at regular price. “True” non-price pro-
motions, in contrast, clearly focus on the brand or store, not on price. Tools like
samples, contests, and sweepstakes, as well as premiums, fall into this category.
While managers typically use price and “supportive” non-price promotions to
achieve short-term increases in sales and profit, “true” non-price promotions often
focus more on long-term goals like building awareness for a brand and enhancing its
image and thus increasing profit in the time after the promotion. Note that promotion
campaigns by manufacturers and retailers often combine several of the above-
mentioned tools.

Managers, who want to measure promotion effectiveness, need to make sure that
they take into account all relevant effects. Even if the primary goal of a promotion is
to increase sales in the short term, potential long-term effects must not be ignored.
Also, the short-term sales bump needs to be decomposed to determine which part of
it is truly incremental for manufacturers and retailers. Figure 1 details the different
effects of promotions on sales of the promoted product in the focal store.

Suppose that chocolate by the brand Milka is on promotion at the German retailer
Rewe. In this case, the sales of Milka at Rewe will evince a short-term increase
in sales. This sales bump is made up of different components and can be decomposed
by asking “what would consumers have done without the promotion?”. There are
several answers to this question: The bump can occur because consumers otherwise
would have bought their chocolate at Edeka (store switching), would have bought
chocolate by Ritter Sport (brand switching), would have bought cookies instead
of chocolate (category switching), or would have bought later or a smaller amount
of chocolate (purchase acceleration). It is important to make this decomposition
because effects that are advantageous for the retailer are not necessarily good for
the manufacturer and vice versa. For example, brand switching increases sales for the
manufacturer but not for the retailer, who only shifts sales from one brand to another.
The opposite holds for store switching which increases sales for the retailer, while the
manufacturer only shifts sales of its brand from one retailer to another. To determine
whether purchase acceleration is advantageous, it needs to be decomposed further. If
consumers buymore or buy earlier than they would have done without the promotion,
in many product categories this leads to increased consumption, i.e., consumers eat
more chocolate. This effect is positive for both manufacturers and retailers. However,
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purchase accelerationmay also result in consumers stockpiling the promoted product.
In other words: The promotion steals sales from the future – without the promotion,
the consumers would have purchased (more) at a later time. In this case, an interesting
question arises: Does the promotion steal sales from the promoted brand in the focal
store (loyal acceleration), or does it steal from the competition, i.e., other brands
and/or other retailers (preemptive switching) (Ailawadi et al. 2007)? Preemptive
switching results in an incremental sales effect for the focal brand/retailer, while
loyal acceleration only shifts sales from one period to another.

In the long-term, promotions can affect consumers’ loyalty to stores, brands, and
product categories. The effect of price promotions on brand loyalty is often negative,
in part because price cuts lead to lower reference prices and because consumers learn
to buy on promotion (Gedenk 2002, pp. 245 ff.). This can result in conflicts within
manufacturing firms, where the sales department often focuses primarily on short-
term sales, whereas the marketing department is also interested in brand building.
Store loyalty may improve because of a better price image but may also decrease
because consumers learn to search for deals.

Note that Fig. 1 only captures effects of promotions on sales of the promoted
brand in the store that runs the promotion. In addition, it can be interesting –
especially for retailers – to look at effects on other product categories. Promotions
can attract customers to the store who then buy other products that are not on
promotion. Finally, in addition to effects on sales, managers need to consider prices
and costs to determine the profitability of promotions.

Fig. 1 Sales effects of promotions (Gedenk 2002, p. 104)
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Data for Measuring Sales Promotion Effectiveness

Figure 2 depicts a classification of relevant data sources, distinguishing between
surveys versus observed behavior and between experimental versus non-experimental
data.

Non-experimental Data on Observed Behavior

The large majority of academic research on sales promotions uses non-experimental
data on observed behavior (cell I in Fig. 2), i.e., market data, especially panel data.
For managers also, this is a key data source, especially for CPG sold through grocery
retailers. Such data can have different levels of aggregation.

Sales data aggregated to the level of stores or retailers are available for many
industries. Often retailers share their sales data with manufacturers, since both
benefit from in-depth analyses of the data. Scanner panels provided by market
research companies allow even more meaningful analyses, because they combine
data from several retailers and include systematic information on sales promotions.
The leading suppliers of such panels are IRI and Nielsen. They collect sales and price
data from grocery retailers (including drugstores), who share the information from
their databases. The retailers gather sales data by scanning consumers’ purchases at
the check-out. In addition, employees of the market research companies visit the
participating stores each week to collect information on non-price promotions like
displays and features.

Disaggregate data that captures purchases at the level of consumers is available
to many companies in the form of consumer panels, provided, for example, by

Non-experimental data Experiments
• Field experiments
• Lab experiments

Observed behavior
• Store-level data

- Retailer sales data
- Scanner panels

• Consumer-level data
- Consumer panels
- Single-source panels
- Loyalty card data

I
(majority of 
promotion 
research)

II

Survey III IV

Fig. 2 Data for measuring promotion success (Gedenk 2006, S. 586)
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GfK. In a consumer panel, a large number of households record their purchases in
the focal product categories (typically via in-home scanning), and send that
information to the market research institute running the panel. For the analysis
of sales promotions, consumer panel data need to be augmented with data on the
promotions that were available in the stores where the panelists went shopping.
Consumers’ self-reports on the promotions they encountered are not very reliable
and available only for the products purchased, but not for competing products.
Thus, it is more promising to collect promotion information from other sources
like retailer features. In Europe, this approach is used, for example, by the data
provider FOCUS Marketing Research. It works well if many promotions are
featured, which in turn requires coordination across the stores belonging to a retail
chain.

A better matching of purchase with promotion data is achieved by single-source
panels, like BehaviorScan by GfK. They combine a consumer panel with store panel
data. In the German BehaviorScan market in Haßloch (Pfalz), 3000 households
participate as well as most of the grocery retail stores in town. Households show ID
cards when they go shopping, so that all their purchases are recorded. Retailers
provide information on prices, and employees of GfK visit the stores to record non-
price promotions. In addition, the participating households can receive targeted
advertising – but that is typically only of minor relevance for the analysis of
promotion effectiveness.

Loyalty card data also combine purchase with promotion information: Retailers
know their prices and promotions, and can observe the purchase behavior of
households participating in the loyalty program. The key problem here is that only
purchases in the stores participating in the loyalty program are captured, while
purchases at competing retailers cannot be observed.

Aggregate and disaggregate sales data allow for different types of analyses. Store-
level data are good for measuring the short-term increase in sales caused by pro-
motions. Researchers have also used aggregate data to decompose the short-term
sales bump into its components and to measure long-term effects (e.g., Nijs et al.
2001; van Heerde et al. 2000, 2004). However, there is always the danger of an
aggregation bias in these approaches. Neslin and Schneider Stone (1996) explain this
in depth for the measurement of stockpiling effects. Their starting point is the
observation that studies based on aggregate data typically do not find a post-
promotion dip, while studies based on disaggregate data do find evidence for
stockpiling. Neslin and Schneider Stone discuss several explanations for this phe-
nomenon, mostly related to aggregation bias. For example, households have differ-
ent interpurchase times, so that each household that stockpiles has its personal post-
promotion dip at a different time, and an overall dip is not visible when data are
aggregated across households. Also, deal-to-deal buying – an extreme form of
stockpiling where households only buy a product when it is on promotion – cannot
be detected in aggregate data.

A more precise decomposition of the short-term sales bump can be done with
disaggregate data at the consumer level. It allows for a detailed analysis of consumer
response to promotions: Researchers can not only model aggregate sales but rather

1060 K. Gedenk



different consumer decisions like store choice, product category purchase incidence,
brand choice, and decisions on purchase quantity. Often, researchers use models of
purchase incidence, brand choice, and purchase quantity to identify brand switching
and purchase acceleration (e.g., Gupta 1988; Bell et al. 1999; Ailawadi et al. 2007).
Van Heerde et al. (2003) point out that this decomposition should be done based on
unit sales rather than on elasticities. Otherwise, the importance of brand switching
relative to purchase acceleration will be overstated.

Thus, researchers face a trade-off when choosing between aggregate and disag-
gregate data for analyzing promotion effectiveness. On the one hand, disaggregate
data allow for more detailed analyses. On the other hand, aggregate data are cheaper,
and the analysis requires less effort. Therefore, managers mostly analyze store-level
data, while academics also use consumer-level data to provide deeper insights into
promotion effectiveness (for a review, see Gedenk 2002; Gedenk et al. 2010).
Academic research on sales promotions often relies on market data provided by
market research institutes, manufactures, and retailers. An example of a publically
available database is described by Bronnenberg et al. (2008), and organizations like
AiMark and the Kilts Center for Marketing at Chicago Booth make other databases
available to academics.

In sum, non-experimental data on observed behavior can provide many insights
into promotion effectiveness. However, it also has limitations:

• Market data is not readily available for all product categories. It abounds for CPG
and grocery retailing, but may be difficult to come by in other industries.

• Market data is only available for products that are already on the market and for
promotions that have already been used.

• Consumers’ purchase behavior is driven by many factors beyond sales promo-
tions, and it is often hard to control for these factors such that promotion effects
can be properly identified. Also, endogeneity of the promotion variables may bias
results.

• Market data can be used to measure consumers’ behavior, but it does not contain
information about attitudes, emotions, and motives that may explain this
behavior.

Therefore, the measurement of promotion effectiveness is often supplemented by
using other types of data.

Further Sources of Data

Surveys can be used to measure attitudes, emotions, motives, and behavioral inten-
tions. They can solve all of the four problems mentioned above: Surveys can inquire
into new products and new promotions in any product category and provide expla-
nations for behavior, while controlling for extraneous factors. They can also easily
capture characteristics of promotions, products, and consumers, as well as other
factors which potentially moderate promotion response. A downside of surveys, of
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course, is their limited external validity. Do respondents indicate their true attitude,
and will they really behave as stated in a survey?

Non-experimental surveys (cell III in Fig. 2) have been used, for example, to
measure deal proneness, i.e., to find out which consumers respond most strongly to
promotions (e.g., Ailawadi et al. 2001). More frequently, however, surveys contain
experiments, in which promotions are manipulated systematically to test the effects
of different promotion designs (cell IV in Fig. 2). Experiments attempt to keep all
variables besides the treatment variables constant, and therefore allow the diagnosis
of causal effects, in this case, the identification of promotion effects and their
moderators. For example, Arora and Henderson (2007) study the effect of cause-
related marketing campaigns, which is difficult to isolate in field data. Also, many
survey-based experiments have looked into the framing of price promotions. They
have studied, for example, under which conditions a price cut should be indicated in
percent versus as an absolute value (e.g., Chen et al. 1998).

Finally, field experiments with observed behavior (cell II in Fig. 2) are a valuable
data source for measuring promotion effectiveness. They combine the high external
validity of market data with the high internal validity of an experiment. Compared to
non-experimental market data, promotion effects can be identified more clearly.
Unfortunately, managers are often reluctant to run field experiments, maybe because
they worry about high costs or about offending customers who receive unfavorable
treatments. Yet, even simple store tests can yield very interesting results. For example,
Wansink et al. (1998) show that quantity restrictions on price promotions (“maximum
of X units”) can increase the average quantity bought. One explanation for this
surprising effect is anchoring and adjustment, such that consumers use the quantity
indicated in the restriction as an anchor and adjust their purchase quantity to it.

Note that the discussion so far has focused on promotions in offline retail
channels. For digital promotions in the online and mobile channels, managers
have some additional options for observing consumer behavior. In particular, they
have information not only on purchases but also on consumers’ search behavior. In
mobile marketing, they can make use of information on consumers’ location and
target their promotions accordingly. Also, field experiments are much easier to
implement and thus less costly than in the offline channel, so that we see more
experiments for digital promotions. For example, Luo et al. (2014) and Fong et al.
(2015) run field experiments to study how the design of mobile coupon campaigns
affects redemption rates.

Measuring Promotion Effectiveness with Panel Data

In this section, I describe the basic ideas behind three frequently used approaches for
analyzing non-experimental panel data (cell I in Fig. 2) and provide examples of
applications. For a more detailed discussion and further promotion models, see van
Heerde and Neslin (2017). Since managers mainly use store-level data to measure
promotion effectiveness, I first present two common approaches for this type of
analysis: the SCAN*PRO model developed in cooperation with Nielsen and the
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PROMOTIONSCAN model developed in cooperation with IRI. At the core of the
SCAN*PRO model (Wittink et al. 1987) is a multiplicative sales response function.
In contrast, PROMOTIONSCAN (Abraham and Lodish 1993) uses a baseline
approach. It determines the effect of a promotion as the difference between actual
sales and baseline sales, where the baseline, i.e., the sales level that would have been
achieved without the promotion, is estimated based on sales in promotion-free
weeks. A third example (Ailawadi et al. 2007) illustrates a more in-depth analysis
of promotion effects based on single-source panel data.

SCAN*PRO

In the SCAN*PRO model (Wittink et al. 1987; van Heerde et al. 2002), unit sales are
a multiplicative function of price and non-price promotions:

Qist ¼
YJ

j¼1

Pjst
BPjs

� �βj
� γ1jFjst � γ2jDjst � γ3jFADjst

" #
�
YT

t¼1

δtWt
� � �

YS

s¼1

λsZs
� � � euist (1)

with:

Qist = Unit sales of brand i in store s and time period t
Pjst = Price per unit of brand j in store s and time period t
BPjs = Base price per unit of brand j in store s (median of prices in weeks without

sales promotion)
Fjst= Indicator variable for feature (1 if brand j is featured but not on display in store

s and time period t, 0 else)
Djst = Indicator variable for display (1 if brand j is on display but not featured in

store s and time period t, 0 else)
FADjst = Indicator variable for feature and display (1 if brand j is featured and on

display in store s and time period t, 0 else)
Wt = Indicator variable for time period (1 if observation is from week t, 0 else)
Zs = Indicator variable for store (1 if observation is from store s, 0 else)
uist = Error term for brand i, store s, and time period t

Wittink et al. (1987) suggest aggregating the data to the level of weeks, stores,
and brands, but different levels of aggregation are possible (e.g., days instead of
weeks, retail chains instead of stores, and SKUs instead of brands). Typically,
researchers pool across stores and time periods, and estimate one model per brand.
Sales of the focal brand are a function of prices and promotions of this brand, but
also of the prices and promotions of competing brands in the same product category.
Prices are made comparable across stores by dividing actual price by base price. The
base price captures the regular price in a store and is defined as the median of prices
of a brand in a store in promotion-free time periods. Differences in unit sales levels
between stores can be accommodated in a similar way: by dividing by base sales. Or
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the researcher can include store dummies Zs in the model, as in Eq. (1). SCAN*PRO
models can also contain dummy variables for non-price promotions. Often these are
“supportive” non-price promotions like features and displays (see Eq. 1), but of
course, the effects of “true” non-price promotions can be modeled in the same way, if
the respective data is available. Finally, indicator variables for weeks Wt control for
seasonal effects and exceptional events.

The effect of price promotions is captured by the price elasticity βj. For i = j, this
is the direct elasticity (price of the focal brand i affects the sales of i), while for i 6¼ j it
is a cross-elasticity, (price of a competing brand j affects sales of the focal brand i).
The coefficients γ1j to γ3j are multipliers indicating how much larger unit sales are
with a non-price promotion than without.

An example for a SCAN*PRO model can be found in the study by Foekens et al.
(1999). The authors estimate the model in Eq. (1) with scanner data from 28 stores of
a US retail chain for three brands from one product category. Table 1 presents the
parameter estimates for price and non-price promotion effects. Direct effects are
highlighted by grey shading.

The three direct price elasticities (effect of Pi on sales of brand i) have typical
values of around �3, close to the mean short-term promotional price elasticity of
�3.63 that Bijmolt et al. (2005) find in their meta-analysis. The cross-price elastic-
ities (effect of Pj on sales of brand i) are also significant. Positive values indicate
brand switching – if one brand decreases price, the other brands lose sales. Features
only have a significant direct effect on sales for brand C (effect of FC on sales of
brand C). Here, unit sales are 2.12 times as high with a feature than without. Displays
cause sales to roughly double for all three brands (effect of Di on sales of brand i).
Some of the multipliers for cross-effects of non-price promotions (effect of Fi, Di,
and FADi on sales of brand i) are smaller than 1, indicating brand switching.

Table 1 Parameters of the SCAN*PRO model by Foekens et al. (1999, p. 262)

Independent variable Dependent variable: Unit sales of brand…
A B C

PA -2.96 0.26 0.54
PB 0.69 -2.42 1.34
PC 1.08 0.38 -3.21
FA n. s. 1.48 0.63
DA 1.80 n. s. 0.82
FADA 1.75 1.34 0.54
FB 0.38 n. s. n. s.
DB n. s. 1.54 n. s.
FADB 0.33 2.08 0.61
FC n. s. 1.42 2.12
DC n. s. n. s. 2.41
FADC n. s. 1.26 3.22

Direct effects are shaded in grey, the remaining effects are cross-effects
P Price, F Feature only, D Display only, FAD Feature and Display, n. s. not significant

1064 K. Gedenk



However, for brand B, Foekens et al. find significant multipliers larger than 1. Thus,
brand B benefits from non-price promotions of competing brands. This can be
explained by an attention effect. Features for brands A and C (alone or in combina-
tion with displays) draw consumers’ attention to the product category, and customers
with a preference for brand B buy more in the category but stay loyal to brand
B. Only price promotions provide a sufficient incentive for them to switch brands.
This suggests that brand B is a strong brand. Also, brand A should not pay an
advertising allowance to retailers, since features for brand A only benefit brand B.

Many extensions of this simple SCAN*PRO model have been suggested over the
years (van Heerde et al. 2002). For example researchers have estimated varying-
parameters/hierarchical models where the price elasticity is a function of second-
level variables like past promotions (Foekens et al. 1999) or store-size (Haans and
Gijsbrechts 2011). Van Heerde et al. (2000) and Neslin and Macé (2004) add lead
and lag effects (i.e., effects of past and future promotions) to model purchase
acceleration. Van Heerde et al. (2001) show that price cuts with different depths
have different effects on purchase behavior. And van Heerde et al. (2004) demon-
strate that a decomposition of the short-term sales bump caused by a promotion is
possible with aggregate sales data. Note that SCAN*PRO is not only frequently used
by academics but also by managers, reflecting the wide availability of store-level
panel data and the low effort required for the analysis. Van Heerde et al. (2002,
p. 201) report more than 3000 commercial applications by Nielsen, and that number
has certainly grown further by now.

PROMOTIONSCAN

With SCAN*PRO, researchers model the effect of promotions on sales directly and
estimate it with panel data from all weeks. In contrast, Abraham and Lodish (1993)
in their PROMOTIONSCAN model choose an indirect approach. They estimate a
baseline which reflects sales that would have been achieved without promotions,
using only data from weeks whose sales are not affected by promotions. Specifically,
they proceed in five steps:

1. Adjustment of data for trend and seasonality,
2. Elimination of periods where sales is affected by promotions,
3. Elimination of outliers,
4. Calculation of preliminary baseline by smoothing over promotion-free periods

and adding trend and seasonality back in,
5. Adjustment for out-of-stock situations and market-specific factors (e.g., market-

ing activities of the competition).

Some of these steps are performed several times in an iterative process. Together
with final consistency checks, this leads to robust estimations that can be automated
to a large degree. Once the researcher has estimated a baseline, he can compare it to
actual sales to determine the effect of promotions. Typically, actual sales are higher
than the baseline during a promotion, and lower afterwards because of stockpiling.
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A key difficulty with PROMOTIONSCAN is the identification of periods where
sales are not affected by promotions. The researcher needs to exclude not only the
weeks during a promotion but also the weeks with a post-promotion dip caused by
stockpiling afterwards. In product categories with frequent promotions, there are
sometimes only few weeks left with which to estimate a baseline.

Baseline models are also frequently used in practice. A prominent example that
combines academic research with a practical application is the study by Ailawadi
et al. (2006). The authors use the relatively simple and robust method to analyze all
promotions in 2003 of the US drug store chain CVS, i.e., 36 million promotions in
189 product categories and 3808 stores. They determine a baseline for a promotion by
computing moving averages across promotion-free weeks before and after the pro-
motion. The number of weeks taken into account varies, depending on the turnover
and seasonality of the product. The difference between actual sales and the baseline
yields the gross lift in unit sales of a product in a given store. Next, Ailawadi et al.
decompose this short-term sales bump and consider a promotion’s effect on other
product categories. The retailer (CVS) needs to identify the components of the gross
lift that are taken from other products in the category (brand switching) and from its
future sales (loyal acceleration). These two components do not constitute incremental
sales for the retailer, while the remaining components do. Furthermore, if a promotion
has a halo effect, i.e., if it increases sales of other product categories (e.g., due to store
switching), that is advantageous for the retailer. Therefore, Ailawadi et al. determine
the extent of brand switching and halo effects on other product categories based on
scanner data from CVS. They isolate loyal acceleration with the help of data from the
retailer’s loyalty program, since – as explained above – disaggregate data are more
appropriate than store-level data for measuring stockpiling (Neslin and Schneider
Stone 1996). Finally, the authors have access to data on retailer costs and on trade
promotions, so that they can measure not only the net sales effect but also the net
profit impact of promotions. Table 2 shows themedians for the various effects for four
broad groups of product categories as well as for the full sample.

The gross sales lift, i.e., the short-term increase in sales, is about 300%. Given
price cuts of 30% on average, this corresponds to price elasticities of roughly �10.
Note that these elasticities capture not only the effect of price promotions, but also
the support by non-price promotions like features and displays. A little less than half
of the gross sales lift (46% on average) derives from brand switching, and about 10%
from loyal acceleration. The remainder – about 45% – constitutes incremental sales
for CVS. In addition to these within-category effects, there is a halo effect: In three
out of four groups of product categories, promotions in one category also advance
sales in other product categories. Across the full sample, for each unit of the gross
sales lift, there is a sales increase of 0.16 units of products from other categories. All
these effects together (gross sales lift – brand switching – local acceleration + halo)
result in a net sales impact of 1.05 units on average. That is, on promotion, CVS sells
1.05 units more per article, week, and store than the baseline of 0.86 units. However,
the net profit impact is negative in two out of four groups of product categories. Here,
the incremental sales and the trade promotions CVS receives from the manufacturers
are not sufficient to compensate for the loss in margin. Overall, more than half of the
promotions analyzed are not profitable for CVS.
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Ailawadi et al. also identify drivers of both the net sales impact and the net profit
impact of promotions at CVS. Differences in promotion effectiveness are small
between stores, but substantial between brands, product categories, and types of
promotions. One of the most interesting results of the paper is that the drivers which
explain this variance, typically have opposing effects on incremental sales versus
incremental profit. For example, the depth of the price cut has a positive effect on the
net sales impact of promotions (because it provides more incentive to purchase), but
negatively affects their net profit impact (because it cuts more deeply into margins).
Also, a brand’s market share has a positive effect on the net sales impact, but a
negative effect on the net profit impact. This should remind managers of how
dangerous it is to only look at sales effects when measuring promotion effectiveness.
Also, corporate governance should not focus primarily on sales and market shares,
but rather on profit goals. With the wrong incentive system, it is difficult for
managers to eliminate unprofitable promotions, because typically this will only be
possible by sacrificing sales.

The analysis of promotion effectiveness with models like SCAN*PRO or PRO-
MOTIONSCAN has the big advantage that store-level data are easily available in
many industries, especially CPG, and that the analysis can be automated to a large
degree. On the other hand, disaggregate data allow for more detailed analysis of
promotion effects. The example of Ailawadi et al. (2006) illustrates how both types
of data and analyses can be combined. The authors use consumer-level data to
measure purchase acceleration. The next subsection describes the study by Ailawadi
et al. (2007) as an example of how an even more detailed decomposition of the sales
promotion bump can be done with single-source data.

Decomposition Based on Single-Source Data

Ailawadi et al. (2007) analyze the effectiveness of price promotions and “support-
ive” non-price-promotions from the perspective of a manufacturer. Their model is
based on data from a single-source panel and captures consumers’ decisions on
category purchase incidence, brand choice, and purchase quantity:

Table 2 Results of Ailawadi et al. (2006, p. 527) (medians)

Effect
Full
sample Health Beauty Edibles

General
merchandise

Gross sales lift 310% 264% 314% 308% 421%

Brand switching (fraction of
gross lift)

0.46 0.50 0.47 0.40 0.43

Loyal acceleration (fraction of
gross lift)

0.10 0.11 0.09 0.15 0.08

Halo (fraction of gross lift) 0.16 �0.04 0.30 0.05 0.28

Net unit sales impact 1.05 0.58 1.35 2.07 1.71

Baseline unit sales 0.86 0.80 0.67 2.00 0.75

Net profit impact �0.62 �0.93 0.23 �1.14 0.08

Baseline profit 1.29 1.69 1.24 0.91 0.94
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Pht i&qð Þ ¼ Pht incð Þ � Pht ijincð Þ � Pht qj inc&ið Þ (2)

with:

Pht (i & q) = Probability that household h purchases quantity q of brand i on
shopping trip t

Pht (inc) = Probability that household h makes a purchase in the focal product
category on shopping trip t

Pht (i| inc) = Probability that household h chooses brand i on shopping trip t,
conditional on a purchase in the product category

Pht (q| inc & i)= Probability that household h buys quantity q of brand i, conditional
on a purchase in the category and on choosing brand i

Each shopping trip of a household constitutes an observation. On a given
shopping trip, a household first decides on whether to make a purchase in the focal
product category or not. If he decides to purchase, he next chooses a brand, and
finally, he decides how much of it to buy. The authors use a nested logit model to
capture category purchase incidence and brand choice, and a poisson model for
purchase quantity.

Ailawadi et al. (2007) are primarily interested in a detailed analysis of purchase
acceleration. Purchase acceleration as a whole becomes visible in category incidence
and purchase quantity decisions: consumers buy earlier and/or more than they would
have done without a promotion. Part of this extra quantity that consumers now have
available goes into increased consumption, because consumers have fewer stock-
outs and increase their consumption rates. Since inventory levels and consumption
cannot be observed in panel data, the authors need to make assumptions about the
quantities consumed and update inventory levels accordingly. They estimate a model
with flexible consumption, and find that households consume more of a product if
they have more of it in stock. That is, promotions that increase the inventory of
households, lead to increased consumption.

In addition to increasing consumption, households also stockpile, i.e., sales are
stolen from the future. Ailawadi et al. (2007) introduce the distinction between sales
stolen from the brand’s own future sales (loyal acceleration) versus from competing
brands (preemptive switching). Finally, they also study how purchase acceleration
affects brand loyalty, by including detailed feedback effects in their brand choice
model. The respective parameters indicate that promotions decrease brand loyalty,
but this effect is smaller when consumers stockpile. An explanation could be that
consumers get more used to a brand if they use more of it, and thus are more likely to
repurchase out of habit.

Finally, an analysis based on disaggregate data needs to take into account that
consumers are heterogeneous in their brand preferences as well as in their response
to marketing mix variables. If this heterogeneity is ignored, model parameters will be
biased. Therefore, Ailawadi et al. (2007) use a continuous mixture model, where
parameters follow a normal distribution (Train 2009). Once the authors have esti-
mated the parameters of their model of purchase behavior, they determine the size of
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the sales bump caused by promotions and decompose it. Their decomposition
approach is based on unit sales and uses a Monte Carlo simulation. The authors
simulate purchase behavior with and without a promotion – differences are caused
by the promotion, and the authors assign them to the various components of the
promotion effect.

Table 3 presents the results of this decomposition for one yogurt and one ketchup
brand. The underlying model was estimated with data from a US single-source panel
for these two product categories and used a dummy variable for promotions, i.e.,
temporary price reductions and/or features and displays.

As in the previous examples, the short-term sales bump is large. For the yogurt
brand “Dannon,” sales increase by 12.45 units in the short run, compared to baseline
sales in non-promotion periods of 3.88 units. About one third of this sales bump
comes from brand switching and about two thirds from purchase acceleration. Most
of the extra inventory that households acquire from purchase acceleration goes into
increased consumption. That is, promotions make consumers eat much more yogurt,
which is a favorable effect for manufacturers. There is only little stockpiling (loyal
acceleration and preemptive switching), and when promotions steal sales from the
future, they mostly steal from the competition (preemptive switching), and not from
the focal brand’s future sales (loyal acceleration). This holds for three out of four
yogurt brands investigated. For the ketchup brand “Del Monte,” there is less of a
consumption effect than for yogurt, and the promotional sales bump is mostly driven
by brand switching instead, which is plausible. Again, for three out of four ketchup
brands, preemptive switching is larger than loyal acceleration.

Table 3 further shows that promotions affect consumption not only in the short,
but also in the long run. Finally, there is a weak positive effect of purchase
acceleration on brand loyalty. Note that this is not the total effect of promotions on

Table 3 Decomposition results by Ailawadi et al. (2007, p. 459)

Yogurt (“Dannon”)
Ketchup (“Del
Monte”)

Units
% of sales
bump Units

% of sales
bump

Baseline sales 3.88 0.80

Short-term sales bump 12.45 100% 3.85 100%

Decomposition of short-term sales bump

Brand switching 4.78 38.4% 2.26 58.6%

Purchase
acceleration

Short-term increase in
consumption

6.50 52.2% 1.14 29.5%

Loyal acceleration 0.41 3.3% 0.21 5.4%

Preemptive brand
switching

0.76 6.1% 0.25 6.5%

Long-term effects from purchase acceleration

Long-term increase in consumption �1.61 �12.9% 0.04 1.1%

Brand loyalty effect of purchase acceleration 0.20 1.6% 0.03 0.8%
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loyalty but only the part that can be attributed to consumers purchasing and
consuming more of the brand.

Summary

In order to determine sales promotion effectiveness, marketing researchers need to
measure the short-term sales bump caused by the promotion, decompose it into its
components, and capture the long-term effects of the promotion. Mostly, this is done
based on panel data. Aggregate data at the store level are available either from
retailers or from scanner panels, and the best disaggregate data at the household level
is available from single-source panels. With respect to these data sources, there is a
trade-off between costs and benefits. While disaggregate data allow a very detailed
measurement of promotion effects, single-source data is not widely available, costly,
and its analysis is difficult as well as time-consuming. Aggregate data yield fewer
insights but are more readily available and easier to analyze. Examples illustrate how
aggregate and disaggregate data can be used to measure promotion effectiveness.
Since all panel data analysis has some limitations, it often is helpful to also use
surveys and experiments. Finally, it is important to keep in mind that for monitoring
promotions, it is not sufficient to focus on sales effects, since many promotions
increase sales but decrease profits.
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Abstract

The proliferation of marketing media, especially since the advent of digital media,
has created an urgent need for marketers to understand their relative importance in
generating revenue for their brands. Ultimately, this understanding should result
in managers’ ability to project returns from their media investments. This chapter
will focus on quantitative methods that enable such media return calculations. We

D. M. Hanssens (*)
UCLA Anderson School of Management, Los Angeles, CA, USA
e-mail: dominique.hanssens@anderson.ucla.edu

© Springer Nature Switzerland AG 2022
C. Homburg et al. (eds), Handbook of Market Research,
https://doi.org/10.1007/978-3-319-57413-4_1

1073

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-57413-4_1&domain=pdf
mailto:dominique.hanssens@anderson.ucla.edu
https://doi.org/10.1007/978-3-319-57413-4_1#DOI


begin with a definition of “return on media” and show how it connects to the need
of estimating top-line lift, i.e., consumer response to media, from various data
sources. We introduce the standard media-mix response model and discuss the
estimation of media response elasticities. We extend these models to include
brand-building and customer-equity effects and intermediate-performance vari-
ables. Finally, we address return to media in the digital era, with specific reference
to path-to-purchase models, and we describe how media returns are derived from
sales response models.

Keywords

Return on media · Marketing mix · Sales response models · Attribution models ·
Marketing resource allocation

Introduction

Advertising is one of the most visible activities of companies and brands. Firms
and brands advertise for a variety of reasons, among them to help launch new
products, to announce price changes, to increase brand awareness, and to protect
the brand franchise against competitive encroachment. These efforts are expensive.
Worldwide advertising expenditures amounted to about $600 billion in 2015. In
relative terms, the advertising outlays in many firms are of an order of magnitude
comparable to that of their profitability. For example, in 2015, the worldwide ad
spending of Procter & Gamble was about $8.3 billion, while their net income was
about $7 billion. Thus, knowledge of the economic impact of, and more specifi-
cally, the return on advertising spending is of paramount importance to managers
and investors alike.

In recent years, there has been increasing pressure on marketing executives to
demonstrate the shareholder value created by these investments, which are, after all,
discretionary. Not surprisingly, a financial definition has emerged as the key metric for
value, viz., return on investment (ROI). This motivates the focus of the current chapter
on the models that are needed to obtain reasonable estimates of these media returns.

We start with a concise definition of return on media (ROM hereafter). Consistent
with finance practice, return on media is the estimate of the incremental financial
value (in monetary terms) to the firm generated by identifiable media expenditures,
less the cost of those expenditures as a percentage of the same expenditures (Some
firms do not subtract cost of media in the numerator. The resulting metric is still
usable, as it merely shifts the break-even value from 0 to 1. However, that definition
is, strictly speaking, not a “return”metric and runs the risk of being misinterpreted by
financial executives.):

ROM ¼ Incremental Financial Value Generated by Media� Cost of Media

Cost of Media
(1)
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Unlike other types of investments, media funds are rarely tied up in inventories,
fixed assets, or receivables, and most media expenditures come from what otherwise
would be liquid funds. Therefore, great care will need to be taken to validate
comparisons between the return on media and other ROI estimates. In particular,
the effects of some media spending may be short-lived, while other media actions
may generate revenue and profit returns over multiple years, building cumulative
impact and creating assets with future value. What is needed is a strong focus on the
first part of the numerator in (1), i.e., the incremental financial value attributed to the
media spending. This attribution needs to, first, understand the top-line effects of
media spending, which are typically expressed as unit sales or sales revenues. Unit
sales are then multiplied by gross profit margins to obtain gross financial contribu-
tion. Sales revenues are multiplied by percent gross margin, or, in the case of
relationship businesses, by the margin multiplier (Gupta et al. 2004) (The margin
multiplier transforms short-term revenue to long-term revenue by incorporating the
expected loyalty levels of newly acquired customers. The section on “Customer
Equity” offers more specifics.). Once the incremental financial contributions are
determined, it is straightforward to do the cost accounting part of the equation, i.e.
subtract and divide by media spending.

With respect to top-line media effects, there exists a detailed marketing science
literature on the sales response effects of advertising and other marketing drivers, see
for example Hanssens et al. (2001), to which we turn next. We will make ample use
of this literature in discussing the nature of consumer response to advertising
response and its implications for model building. This focus on top-line media
effects will also allow us to avoid some misinterpretations in industry’s use of
media return estimates, which we discuss first.

The Importance of Reference Points in Media Return Calculations

Although the math is simple, the meaning and significance of the ROM metric is
anything but straightforward. Above all, the first term in the numerator, “incremental
financial value generated by media” needs careful attention. “Incremental” can only
be measured if there is a baseline or reference point for comparison, i.e., “incremen-
tal compared to what.” Second, the metric makes it necessary to make an attribution
with respect to media expenditures, i.e., there needs to be a causal link between the
two. Finally, there is a time dimension with respect to “incremental value” that could
influence the calculations.

Industry studies often result in stated conclusions such as “the return of our TV
spending is 45%, whereas it is 32% for spending on print media. Therefore, TV
works better for us.” Regardless of which medium is more effective, such statements
are misleading, because they critically depend on the amount spent on each media.
For example, if print is highly impactful, but the firm overspends on print media, its
total return will be affected negatively, and could easily drop below that of other, less
impactful media. Total ROM comparisons across media can only be made when the
spending levels are the same, which is typically not the case.
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Figure 1 illustrates graphically the distinction between reporting total, incremen-
tal, and marginal ROM. Total ROM evaluates return on all spending, incremental for
a specified additional spending “increment,” and marginal is the estimated return on
the “last dollar” of media spending. Total and Incremental ROM are typically easier
to estimate and often result from experimental designs (so-called A/B testing), or
from models that use linear response functions. Evaluating the marginal returns to
spending is more challenging and, with the exception of complex and expensive
experiments, will usually involve models that include nonlinear response functions.
Conceptually and practically, these three types of returns are different and they
should not be compared to each other. Although diminishing returns will eventually
be encountered, there is no general rule on which of the three measures of ROM will
be higher or lower. Their relative values will depend on the shape of the response
function and where on that function the return is evaluated. In other words, the
critical difference among the three is the comparison or reference spending level.
Because media impact on revenue is nonlinear, it matters a great deal which
reference point is chosen. We therefore need to start the discussion with a summary
of what is known about the advertising-to-sales response function.

Fundamental Advertising Response Phenomena

As media returns are derived, first and foremost, from the media’s impact on top-line
revenue, we must recognize the specific nature of consumer response to media
advertising. This response is not linear. Instead, it is characterized by the following
five specific phenomena, which were first summarized in a seminal paper by John
Little (1979):

Financial
Value (S)
Generated by
Marketing

X2 = Total Spending
X2-X1 = Incremental

Y3

Y2

Y3+dy/dx

Y1

Y0

X0 X1

Marketing Spending(S) for set of Initiatives

TotalMROI = [(Y3-Y1) - X2]/X2

Marginal MROI at X2 = [(dy/dx) – (S1)]/S1

Incremental MROI for X2-X1 = {(Y3-Y2) – (X2-X1)}/(X2 –X1)

Baseline Sales= Y1

X2X2+S1

Fig. 1 Total, incremental, and marginal media returns (Source: Farris et al. (2015))
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• The steady-state response of sales to advertising is concave or S-shaped.
• Upward response is fast; downward response is slow.
• Competitive spending matters.
• Advertising effectiveness changes over time.
• Response can tail off even under constant spending.

Since this publication, a number of studies on advertising response have provided
quantifications of advertising response that put these findings in a sharper
perspective.

First, the predominant response function is concave, and the advertising elasticity
(Advertising elasticity is the percent change in sales divided by the percent change in
advertising. It implies that the sales change can be attributed to the advertising
change.) empirical generalization is 0.1 (Sethuraman et al. 2011). Threshold effects
that lead to S-shaped response functions may exist, but they are the exception (e.g.,
Rao and Miller 1975). In terms of overall sales sensitivity, advertising is the weakest
of the marketing-mix instruments (see Hanssens et al. (2001) for details). That does
not imply, however, that advertising is the least profitable instrument. It does imply
that a profit-optimizing level of media spending exists, which we will elaborate on in
a subsequent section.

Second, advertising elasticities are demonstrably higher for new products (elas-
ticity about 0.3) than for established products (about 0.01) (Sethuraman et al. 2011).
This is explained by the fact that, for both durables and consumables, advertising is
stronger in creating awareness than in fostering preference. In particular, advertising
has a stronger effect on trial rates than on repeat rates (Deighton et al. 1994). Initial
awareness creation is a key for new products whereas, for more established products,
prior consumer experience dominates. Indeed, the performance feedback loop (i.e.,
product usage experience or purchase reinforcement) is much stronger than adver-
tising in determining future consumer choices. Hence, while advertising can be used
to initiate trial, it alone is not sufficient to sustain repeat purchase without a favorable
product evaluation. This helps explain the declining role of advertising over the
product life cycle.

Third, visible short-term lifts are a condition for the existence of long-term
effects. For example, an extensive experimental study by Lodish et al. (1995)
showed that about one-third of television commercials showed a significant effect
on sales in the first year. The long-term impact of these effective commercials is
about twice the short-run effect. Thus ineffective media spending in the short run is
unlikely to make a difference in the long run.

Fourth, while competitive spending matters, the ultimate effects of advertising are
more influenced by the nature of consumer response itself than by the vigilance of
competitors’ reactions (Steenkamp et al. 2005). A straightforward approach to
include competitive media spending is to use a “share of voice”metric in advertising
response, i.e., brand spending divided by total (brand plus competition) spending in
a certain time period.

Fifth, smaller competitors tend to have higher advertising-to-sales (A/S) ratios
than market leaders (e.g., Tellis 2004). One explanation is that these smaller players
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desire to grow their market share and need to invest in advertising more so than their
competitors (in relative terms). Another explanation is that the market leaders have
already developed strong assets in the form of extensive distribution and brand
equity that make advertising less important for them, again in relative terms.

Finally, advertising wear-in and wear-out patterns help explain why ad response
can tail off even under constant spending. For consumables, we know that people
“learn faster than they forget,”which helps explain the different rise/decay rates in ad
response. Over half a century after his published experiments, Zielske’s (1959) result
that three to four exposures is best, still holds. If the brand continues to expose
consumers beyond the fourth impression, the impact is expected to be drastically
reduced. Furthermore, for durables, market rejuvenation is a key concept. Effective
advertising for a durable product reduces the untapped market (buyers remaining),
resulting in a loss of aggregate effectiveness. After some time has elapsed, the
market is rejuvenated with new prospects, and a new campaign can once again be
effective.

Many studies have focused on various qualitative aspects of advertising (see
Vakratsas 2005 for a review of contributions). Among the most promising is work on
eye movements that has revealed which aspects of a print ad (e.g., text, pictures,
brand name, relative position on the page, etc.) are the most impactful (Pieters et al.
1999). Their results could well lead to a new, improved practice of copy writing. On
the other hand, we know little about the relative importance of advertising quality
and advertising quantity, e.g., can higher spending make up for poorer advertising
quality?

Estimating Media Response Parameters

We now use these qualitative insights into the nature of advertising response to
address the specification and estimation of media response parameters. In a subse-
quent section, we will address how these estimates of top-line impact are used in
media return calculations that impact advertising decision-making.

The Shape of the Advertising-Response Function

All else equal, higher advertising spending is expected to increase sales for a variety
of reasons. Acquiring previously unaware prospects, increasing purchase quantities,
increasing brand switching in the direction of the advertised brand, and retaining a
larger fraction of the existing customer base are among the major sources. At the
same time, we expect there to be diminishing returns to these effects, again for
several reasons. Consumers cease to be responsive once they have learned the basic
message contained in the advertising (saturation effect), markets deplete as success-
ful advertising causes purchasing which then removes the buyers from the market, at
least temporarily (market-depletion effect) and, finally, there are natural ceilings to
the number or percent of target customers that can be reached (ceiling effect). While
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sales then still increase with increases in advertising support, each additional unit of
advertising brings less in incremental sales than the previous unit did.

As a consequence, the basic advertising-response function is nonlinear. More
specifically, it is expected to be concave, as in the following multiplicative model

St¼ ec At
β Xt

γ Zt
δ eut, (2)

where St refers to sales or another performance metric in period t (for example, week
t), At is the advertising support in that week, Xt refers to other elements of the
marketing mix, Zt corresponds to environmental factors, and ut is an error term. For
simplicity of exposition, we list only one X and one Z variable. The base response
model may be estimated across time periods t but could also be specified over cross-
sectional units i = 1,. . ., I (for example geographical regions, market segments or
individual consumers), or both. We expect 0 < β < 1 in estimation, a condition
which results in concavity of response.

The base model (2) implies that with infinite advertising comes infinite sales. In
practice, however, there will be a limit or ceiling to sales, usually determined by
prevailing market conditions. While there are other ways to represent concavity (see
e.g., Hanssens et al. 2001, pp. 100–102), the multiplicative function is particularly
appealing as it recognizes that media-mix effects interact with each other (i.e., the
marginal sales effect of an incremental advertising dollar depends on the other
elements in the equation). In addition, taking logarithms linearizes the model:

ln Stð Þ ¼ cþ β ln Atð Þ þ γ ln Xtð Þ þ δ ln Ztð Þ þ ut, (3)

making it more easily estimable. Finally, the response parameters are easily
interpreted as response elasticities. An example of an advertising response curve
with elasticity β = 0.13 may be found in Fig. 2a.

In some cases, the response is S-shaped, i.e., there is a minimum or threshold-
level of ad spend below which there is little or no impact, followed by a range of
advertising spending with rapidly increasing sales response. At even higher spend-
ing levels (i.e., past a certain “inflection point”), the usual diminishing returns appear
(see Fig. 2b). The base model (2) can readily be extended to an “odds” model that
allows for S-shaped response, as demonstrated by Johansson (1979):

St � Ið Þ= K� Stð Þ ¼ ec At
β Xt

γ Zt
δ eut, (4)

where I is the minimum sales level (e.g., the level at zero media spend), and K is the
ceiling level. For example, if sales is expressed in relative terms (i.e., market shares),
I could be set at 0% and K at 100%. For advertising response parameters 0 < β < 1,
model (4) is still concave, but for β > 1, the function is S-shaped. Johansson (1979)
discusses the formal estimation of (4) with maximum-likelihood methods, as well as
an easy approximation based on ordinary least squares.

For all practical purposes, concavity and S-shape are sufficient functional forms
to capture the essence of advertising response (We refer to Hanssens et al. (2001) for
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a review of other functional specifications that have been used in the literature.). In
some cases, the response may be even simpler; if all the advertising spending
observations lie in a restricted range of the data, the response function may well be
approximated by a linear function. Of course, one should be careful not to make
media effect inferences outside this restricted range.

Advertising-Response Dynamics

Advertising is communication, which can trigger memory, and thus its impact may
easily extend beyond the campaign period. Similarly, customers could be exposed to
a given advertising message (e.g., a magazine ad insert or pop-up digital ad) on
multiple occasions. Therefore, response models that simply relate current sales to
current advertising expenditures are likely to underestimate advertising’s total
impact. Provided good longitudinal data are available, advertising-response dynam-
ics can be represented by extending the core model in (2) to a distributed-lag model
over time t:

Inflection point
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Fig. 2 (a) Concave response function (b) S-shaped response function
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St¼ ec At
β Lð Þ Xt

γ Zt
δ eut, (5)

where β(L)=β0+β1L þ β2L2+ β3L3 þ . . . , and with L the lag operator (i.e., L2

At = At-2).
In this model, the cumulative advertising effects are obtained as Σi βi. The time-

delayed effects of advertising captured in the lag-polynomial β(L) are often referred
to as carry-over effects and tend to vary across products, categories, and media. As it
is hard to estimate a large number of β-parameters and/or to define a priori a precise
cut-off point for the number of lags to consider, one often imposes a certain structure
on the various β-parameters. A popular structure is the geometric decay implied in
the Koyck model, in that βi+1 = λβi (see e.g., Clarke 1976). Rather than a priori
imposing a certain structure, one could also use empirical specification methods to
determine the functional form of β(L), such as the Box-Jenkins transfer-function
method (see e.g., Helmer and Johansson 1977) or the Liu and Hanssens (1982)
direct-lag specification method. A technical description of these methods is beyond
the scope of this article but can be found in Hanssens et al. (2001, Chap. 7). We do
want to point out, however, that the distributed lag-model in (5) is flexible enough to
accommodate the well-known wear-in and wear-out effects of advertising. For
example, if it takes two periods for any economic impact to take place, one can
specify β(L) as β2L2. If, in addition, advertising effects wear out (decay) at a rate of
10% per period, the lag polynomial β(L) can be written as β2 L2/(1�0.9L).

An alternative approach to assessing the dynamic effects of advertising is
Adstock (Broadbent 1984), which has gained some popularity among practitioners.
The Adstock model rests on the assumption that each advertising effort adds to a
preexisting stock of advertising goodwill. Conversely, absent any current advertis-
ing, the stock decays at a constant rate. Thus, the empirical specification is

ADSTOCKt¼ α ADSTOCKt�1 þ 1� αð ÞAt, (6)

where α is the decay factor (0 < α < 1). Adstock models are elegant in conceptu-
alization and easy to use, as they circumvent the problem of empirical lag specifi-
cation. However, the decay parameter is set subjectively and that may lead to a bias
(usually an overestimation) in the advertising impact. Whenever possible, we rec-
ommend that decay parameters be estimated from the data. In addition, Adstock does
not make the critical distinction between purchase reinforcement and advertising
carryover. Suppose advertising generates trial for a new product, which leads to a
positive consumption experience and, therefore, subsequent (repeat) sales. While
advertising should be credited with generating the initial sales, it should share that
credit with purchase reinforcement for subsequent sales. Givon and Horsky (1990)
developed a distributed lag model to disentangle both effects. Their application in
several product categories revealed that the purchase feedback effect dominates the
advertising carryover effect.

Research on the dynamics of advertising impact has intensified in recent years,
in part because of the availability of high-quality advertising response data,
especially from digital media. This has created a need for more advanced estima-
tion methods such as persistence modeling, dynamic linear models, and Bayesian
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estimation. A detailed comparative review of these methods may be found in
Leeflang et al. (2009).

Data-Interval Bias

The determination of advertising response dynamics is closely related to the chosen
temporal data interval. In the past, data intervals posed a serious econometric
problem because they were too coarse to allow for detailed inference. For example,
sales and advertising movements sampled annually, or even quarterly, will almost
inevitably represent a mixture of consumer response effects, firm decision, and
competitive reaction effects. Thus, the nature of a contemporaneous correlation
between advertising and sales is difficult to ascertain. Moreover, marketing
researchers have long been puzzled by the empirical observation that estimated
carry-offer, and hence, advertising-duration effects, differed depending on whether
dynamic advertising models were estimated on monthly, quarterly, or annual data.
Conventional wisdom was then to use as “preferred” data interval the one that most
closely resembled the brand’s interpurchase time (see e.g., Leone (1995) for a
review). This view was challenged by Tellis and Franses (2006), who showed that
one can retrieve the correct carryover effects with aggregate data provided one has
information about the exact interexposure times. However, in many instances,
applied marketing researchers do not know the exact media insertion patterns, let
alone the interexposure time of consumers. In that case, using data at the lowest level
of aggregation was found to be a good heuristic.

Fortunately, advertising databases have become available at much more disag-
gregate sampling levels. For example, weekly media advertising spending data are
routinely collected by Kantar Media and Nielsen. When matched with weekly sales
numbers, distributed lag models of advertising effects may readily be estimated.
Contemporaneous correlations between advertising and sales can then safely be
interpreted as consumer response effects, since it would be difficult for most
organizations to react to competitive moves and/or to incorporate sales feedback in
advertising spending within 1 week. In some cases, the data interval is reduced even
further, for example to hourly measurements in the case of direct-response television
campaigns (e.g., Tellis et al. 2000). Overall, it is fair to conclude that advances in
data collection technology are gradually obsoleting the problem of temporal data
interval bias.

Another form of data aggregation bias is cross-sectional. For example, national
data may be used in an advertising response model, even though some regional
markets receive different advertising exposures than others. In nonlinear models (as
the multiplicative core model (2)), linear aggregation (e.g., when data of the indi-
vidual regions are summed to a national aggregate) will create biased estimates of
advertising’s effectiveness if advertising spending differed between the regions
across which the summation took place. We refer to Christen et al. (1997) for an
in-depth discussion of these issues.
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Asymmetric Response

The core response model assumes that advertising effects are symmetric, so if adding
10% to the spending increases sales by 2%, then cutting the spending by 10%
implies that sales will decrease by 2%. In reality, however, asymmetries may exist.

Consider the case where a successful new advertising campaign first acquires
several new customers quickly, then brings in a lower, but still positive number of
new customers. Similarly, at some point, a mature brand’s sales may have become
resistant to further advertising increases but quite sensitive to advertising reductions
(Vakratsas 2005), a situation many managers may feel applies to their brand.
Representing such a process requires that we model, separately, the effects of
“starting,” “continuing,” and “ending” of a campaign. That problem was tackled
by Simon (1982), who extends the core response model (with only contemporaneous
response effects for simplicity of exposure) as follows:

St¼ ec At βþ θ It Xt
γ Zt

δ eut, (7)

where It = 1 if the period corresponds to the beginning of a campaign, and It = 0
elsewhere. Similarly, one could add another time-varying dummy variable to denote
the ending of the campaign. Thus, the start of a campaign has a total positive impact
of (βþ θ), and the remainder of the campaign has a “level” impact of β. Simon refers
to the asymmetric effect θ as a “differential-stimulus” effect. This model was tested
by Hanssens and Levien (1983) in the context of Navy advertising for recruits. Their
lead generation model showed, for example, that radio advertising had a θ effect of
0.08 added to its level elasticity β of 0.26.

New data sources could provide even better insights into the asymmetric response
nature of advertising. For example, in the case of a durable product or service, a
company may be able to separate its weekly sales into two components: sales
coming from new customers and sales from existing customers. Since we know
that advertising has a stronger impact on trial sales than on repeat sales (e.g.,
Deighton et al. 1994), we may discover the asymmetries by applying the core
model (2) separately to both components.

Dealing with Reverse Causality

Scientists like to make inferences from experimental data, i.e., where the treatment
and control conditions are assigned randomly, so that the impact of the treatment is
readily isolated from other influences on the dependent variable of interest. Market-
ing managers, however, would not last long if their allocation decisions were made
randomly. In the case of advertising spending, for example, some months of the year
may be favored over others, and some products or regional markets will likewise
receive preferential allocation over others. In most cases, these allocations are made
based on ex ante expected sales performance. For example, motion picture studios
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routinely allocate substantial prelaunch advertising budgets to high-cost productions
that are expected to become blockbusters, sometimes as part of their contractual
obligations to high-profile actors.

These well-known managerial conditions create an inference problem called
endogeneity or reverse causality. Econometrically, it means that the error term in
model (2) may be correlated with some of the explanatory variables, in Casu
advertising. Ordinary least-squares estimation will then lead to biased estimates of
advertising’s effects on sales. For example, if management picks successful prod-
ucts to advertise more heavily, an OLS estimator may confuse a true advertising
effect with a “popular-product” effect, and thus overestimate the advertising
impact.

Endogeneity is most problematic with cross-sectional data, where the modeler
lacks the natural passing of time to establish the direction of effects. Standard
econometric tests such as the Hausman test are available to diagnose endogeneity,
and when detected, alternative estimators such as instrumental-variable methods
may be used. We refer to Van Heerde et al. (2005) for an in-depth discussion of
these methods. Even so, the most reliable inference of advertising impact on cross-
sectional data comes from experimental designs in which some markets or customers
are deliberately given different advertising treatments than others. A good example
in this context are the V-8 advertising experiments reported in Eastlack and Rao
(1986). Advertising experiments are now enjoying a resurgence because of the
relative ease with which they can be executed with digital media, see for example
Lambrecht and Tucker (2017).

On time-series data, endogeneity is less problematic provided one has suffi-
ciently short data intervals (e.g., weekly data). It is generally the case that
consumers can respond to advertising stimuli a lot faster than companies can
adjust their advertising spending to changes in consumer demand. Thus, if an
application of core model (2) reveals a 0.2 contemporaneous elasticity of adver-
tising, we can be reasonably confident that this is a true advertising response
effect. In addition, any lagged advertising response effects are by definition free of
reverse causality effects.

It is important to understand that the presence of decision feedback loops and
competitive reactions can create a long-run outcome of an advertising campaign that
may be quite different from its short-run impact. In order to assess such long-run
effects, the single-equation advertising response model in (2) is replaced by a
dynamic system with multiple equations, a method called “persistence modeling.”
A discussion of persistence models is beyond the scope of this chapter and may be
found in Dekimpe and Hanssens (1995) (Persistence modeling uses Vector Auto-
regressive Modeling (VAR) techniques.). Taken together, the combined chain-like
effects of consumer response, decision feedback and competitive response to various
marketing initiatives, including media advertising, can generate long-run sales
impacts that are up to five times that of their short-term response, as demonstrated
by Pauwels (2004) in the frozen-dinner market.
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Differences Across Media

Not all advertising media are created equal, and in many cases, a marketer will want
to understand the differential impact of spending in different media. The core
response model allows for this by including as many explanatory variables in the
response model as there are relevant media. For example, a media-mix model may be

St¼ ec TVt
β
1
Lð Þ
PRINTt

β
2
Lð Þ
EMAILt

β
3
Lð Þ
Xt

γ Zt
δ eut, (8)

where the combined advertising expenditures At are now replaced by the respective
expenditures in three media (as an illustration): TV, Print, and Email. Each medium
has its own response elasticity and lag structure. Provided the database has sufficient
degrees of freedom, and provided there is natural variation in the media spending
patterns, media-mix models can be used to disentangle the relative contribution of
each medium in explaining observed sales variations.

Media mix models have a long history starting with Montgomery and Silk (1972)
who analyzed a pharmaceutical market and showed the differential impact of print
advertising, direct mail, and sampling and literature. Dekimpe and Hanssens (1995)
considered both print and TV advertising for a major home-improvement chain and
found the medium with the lowest short-run effect (TV) to have the highest long-run
impact.

At the qualitative level, one can make predictions of differential media impact by
considering the information style delivered by each medium. Advertising is persua-
sive inasfar as it fosters consumers’ cognition, affect, and experience (Vakratsas and
Ambler 1999). Specifically, print or internet advertising is strong on cognition
because readers can absorb factual information about a product as long as they
like (for example, reading about the performance characteristics of an automobile).
TV, by contrast, is better at delivering affect through the use of sound and motion (for
example, portraying the thrill of a car’s swift acceleration). Communicating experi-
ence is often achieved with specific advertising content such as consumer testimo-
nials and celebrity endorsements, for which several media may be used. By matching
the delivery of cognition, affect, and experience to the needs of the advertised brand,
managers can formulate initial hypotheses about media differences that are testable
using model (8) and its variants.

Should a company invest all of its advertising spending in the medium with the
highest lift? While such a decision rule is simple, it would be incorrect. Not only do
sales benefit from synergistic effects of spending across the media but the laws of
diminishing returns would make such a rule suboptimal. Instead, managers should
allocate their advertising budget to media in proportion to the media response
elasticities, the so-called Dorfman-Steiner conditions. While a formal proof of this
proposition is beyond the scope of this chapter, it is readily obtained by maximizing
the profit function accompanying response model (8). See, for example Hanssens
et al. (2001) for a more detailed discussion. Explicitly allowing for synergistic effects
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between two media which are each characterized by diminishing returns, Naik and
Raman (2003) demonstrated that, as synergy increases, advertisers should not only
increase the total budget but also allocate more funds to the less effective medium.

Advertising Copy and Creative Effects

Creativity of communication is an integral part of advertising design and execution
and can have a substantial impact on the persuasive appeal of advertising. From a
response modeling perspective, creative impact can be measured in a number of
ways. First, one could use categorical variables to distinguish between different
creative executions (e.g., campaigns). A simple example with two campaign execu-
tions may be

St¼ ec At
β1 Lð Þþβ2 Lð Þ Et Xt

γ Zt
δ eut , (9)

where Et = 0 for the base execution, and Et = 1 for the new execution. Inasfar as the
new copy had a different impact on sales than the previous execution, the terms in
β2(L) will be different from zero. Alternatively, one could try to directly import
creative-quality metrics into the market-response model. For example, suppose a
panel of experts rate the creative execution of each advertising campaign on a 5-
point scale. Then the basic advertising response model may be extended to distin-
guish between spending elasticities and creative-execution elasticities as follows:

St¼ ec At
β1 Lð Þþβ2 Lð Þ Qt Xt

γ Zt
δ eut , (10)

where the β1(L) terms now measure the pure spending effects of advertising, and the
β2(L) terms measure how these effects increase with higher-quality creative, mea-
sured by Qt. This approach was used in a Bayesian framework for measuring
advertising copy effects by Gatignon (1984).

The internet age promises to bring new insights from the measurement of digital
communication content in general and the creative quality of advertising in partic-
ular. For example, text-mining algorithms are used by Culotta and Cutler (2016) to
monitor brand messages on Twitter and by Trusov et al. (2016) to target consumers
for advertising based on their web-surfing behavior.

Intermediate Performance Metrics

So far, the core response model (2) and its extensions have focused on cases where
the advertising➔sales relationship can be inferred in a direct way, which is the most
relevant for assessing accountability and financial planning. While these represent
the majority of applications, there are instances of relatively long sales cycles,
notably in some business-to-business markets, where advertising’s impact is better
represented in stages. For example, media spending may create awareness of a
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certain business-to-business offering; however, that awareness is insufficient to
create a sale. Instead, there need to be follow-up sales calls to an initial inquiry,
sometimes multiple calls, to guide the customer to an eventual product adoption.

Intermediate media performance metrics may include consumer awareness, con-
sumer consideration, and consumer preference metrics. They are generally survey
based and are not financial in nature and therefore do not readily lend themselves to
return calculations. However, they can be used as intermediate dependent variables
in a chain (system of equations), where each equation is similar in design to the core
response model (5). For example, media spending impacts consumer awareness in
an awareness equation. This, in turn, converts to sales in a separate sales equation.
The ultimate return of media spending then depends on their initial impact on
awareness multiplied by the awareness-to-sales conversion rate. Hanssens et al.
(2014) developed such a system for several brands in four consumer product
categories over a 7-year period. They reported that the model with intermediate
performance metrics provided superior performance in terms of sales prediction
accuracy as well as quality of managerial recommendations.

A major challenge with intermediate performance metrics is that they should be
collected at similar data intervals as the sales data, which is often unrealistic. For
example, sales data are available on a weekly or even daily basis, but consumer
preference surveys are conducted only quarterly. The advent of digital data sources,
however, provides new metrics that can prove to be useful. These include Google
queries (a proxy for consumer interest) and Facebook likes (a proxy for consumer
sentiment). Figure 4 illustrates how different digital response metrics impact the
estimation of media effectiveness, as discussed below.

Deriving Media Returns from the Estimated Response Parameters

Having obtained some reliable estimates of sales response to media spending (i.e.,
the top-line effects), how are media return estimates derived? Assuming a constant
profit margin, the net cash flows (CF) in period t – excluding nonmedia costs – may
be expressed as

CFt¼ St
� margin� At, (11)

where At is total advertising media spending.
The total return on media spending A is then obtained as

ROM ¼ CF Að Þ � CF A ¼ 0ð Þ½ �=A (12)

Note that ROM is a ratio, which is useful for an ex-post assessment of the return
of a specific media campaign or investment. However, as pointed out earlier, total
ROM should not be used to determine optimal levels of media spending. Doing
so will often result in underinvesting on media, because ROM typically declines
monotonically with higher spending (see Ambler and Roberts 2008 for an

Return on Media Models 1087



elaboration). Instead, the optimal media spend A* may be derived from maximizing
the cash-flow function (11) based on the response model (5):

A� ¼ ec
’� β Lð Þ�margin

h i1= 1�β Lð Þ½ �
, (13)

where we have incorporated the effects of other firm-controlled variables X and
environmental conditions Z into the adjusted baseline ec’ for ease of exposition. It is
easy to demonstrate that, at this optimal spend level, the marginal ROM is zero.

Importantly, the relationship between media spending and cash flow generation
depends on (i) the natural size (the baseline) of the business, (ii) the productivity of
media spending β(L), and (iii) the prevailing profit margin. Taken together, they fully
determine optimal short-run media-resource allocation. At the same time, these
determinants are exogenous; for example, it is assumed that more aggressive
media spending has no impact on either the baseline or media effectiveness itself.
Thus, the decision rule in (13) may be thought of as a harvesting or reactive view of
media resource allocation. We will discuss in a subsequent section how to incorpo-
rate asset-building effects of media spending, in particular brand equity and cus-
tomer equity.

The important take-away from the analysis so far is that only one ROM definition
is useful for media allocation decisions: the marginal media return should be zero
across all the media in the mix. Positive marginal returns indicate underspending and
negative values suggest overspending in that medium.

A corollary of this basic result is that, while total ROM estimates can always be
made, they are useful only for comparing the impact of equal spend levels. For
example, if total media ROI is 75% for TV spending and 60% for internet spending,
you cannot infer that TV is a more effective medium unless the two have the same
spending levels. Indeed, the internet spending may appear to be a less impactful
medium, whereas, in reality, the medium is highly effective but offers a lower ROM
due to high spending relative to TV.

Finally, note that it is difficult to obtain marginal ROM estimates – and, therefore,
optimal advertising spending levels – from advertising experiments, because these
generally result in only two or three points of the response curve. Media experiments
are more useful for assessing the causal impact of media on sales and for testing
different creative executions.

Path-to-Purchase and Attribution Models for Digital Media

The media return measurement approach described above applies to all media and as
such is widely used. In recent years, the availability of so-called path to purchase
data in the online world has resulted in a different approach for ROM assessment.
The central idea is that, at any point in time, individual consumers have different
purchase probabilities for a given category and brand, and they reveal these proba-
bilities by their online activities, including searching, blogging, and clicking on
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various online ads. These methods are generally known as digital attribution
methods.

Initially, digital attribution models used a simple last click heuristic, i.e., which-
ever medium the consumer used just prior to online purchase was given full credit
for the purchase conversion. Subsequently, more sophisticated models recognized
that prior media interventions may deserve some conversion credit as well, by
recognizing that consumers move through various stages in the purchase funnel
over time. A well-known digital attribution technique (Li and Kannan 2014) makes
the distinction between customer-initiated web actions (e.g., conducting a search,
visiting a website) and firm-initiated channels (e.g., delivering a pop-up display ad,
sending an e-mail). These actions change the consumer’s purchase probability over
time, to different degrees. Figure 3 presents the conceptual framework underlying
the authors’ digital attribution method.

The key challenge in digital attribution is to estimate the incremental purchase
probability achieved by a certain media intervention. To do so, the authors set up a
model that incorporates consumers’ movement from brand consideration stage to
visit stage to purchase stage and estimate it with Bayesian methods. Their empirical
analysis in the hospitality industry revealed strong differences across the media in
their ability to convert consumers’ apparent interest in a product to actual purchase.

Channels
Considered

Search, direct,
referral

Display, e-mail

Visit Through
Channels

Purchase
at Website

Costs

Customer-Initiated Firm-Initiated

CONCEPTUAL FRAMEWORK

Costs

Spillover
Effects

E-MailSearchDirect

Carryover
Effects

Benefits

Overall attractiveness of making a purchase =
f(mean attribute level of service, cumulative
informational content of previous visits)

Benefits

Fig. 3 Conceptual digital attribution model (Source: Li and Kannan (2014))
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The differences in estimated response effects of digital media inside the consumer
purchase funnel are illustrated in Fig. 4 (Pauwels and van Ewijk 2013). One
important conclusion from the figure is that, the deeper one goes into the consumer
purchase funnel, the lower the estimated media elasticities. The figure also shows
that digital elasticities are generally higher than TV elasticities, except on the
criterion of generating positive web conversations. This illustrates the principle
that traditional media (such as TV) can “drive consumers to the web” and, as such,
still provide an important role in the overall media mix.

An in-depth review of digital marketing, including attribution models, may be
found in Kannan and Li (2017). Overall, digital attribution models offer substantial
promise in the analysis of digital media ROI. At the same time, they depend on
accurate clickstream data and, as such, are limited to online purchasing. The use of
digital attribution models in industry will increase with their ability to act on
consumer actions in a “just-in-time” fashion. For example, mobile advertising
messages are particularly adept at reaching consumers who are close to a purchase
occasion.

Media Advertising and Asset Creation

A prevailing belief among practitioners and academics is that well-placed media
spending not only stimulates sales but also builds future assets for the firm. In order
to represent that capability of media, we must extend the core response model to
account for endogenously created assets that, in turn, will generate future cash flows.

Fig. 4 Comparison of TV and online media elasticities on online performance metrics (Source:
Pauwels and van Ewijk (2013))
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Not doing so may result in underestimating media returns, because only the cash
flows coming from incremental sales effects are incorporated. By contrast, by
considering stock metrics of business performance, in addition to cash flows, we
may represent important long-term media effects. Among those stock metrics, the
most important are brand equity and customer equity.

Brand Equity

Perhaps the most frequently studied stock metric in the marketing literature is the
concept of brand equity. An excellent review is given in Ailawadi et al. (2003), who
propose the revenue premium as a financially relevant measure for the value of a
brand in a given industry. The revenue premium is defined as the difference in
revenue realized by branded vs. unbranded competitors, i.e.,

Revenue premium ¼ volumebrand � pricebrand�volumenonbrand � pricenonbrand (14)

This reflects the idea that brand equity may boost sales volume, allow for a
price premium, or both. Put differently, brand-building activities may enhance
future cash flows as a result of realizing a higher sales volume and/or a higher
price. The measure is shown to be actionable, stable over time, and to have
considerable diagnostic value in terms of the brand’s long-run health, thereby
conforming to our earlier criteria. Interestingly, Ailawadi et al. (2003) also dem-
onstrate how branded products exhibit asymmetric upward and downward (mar-
ket-share) price elasticities. Using data from a variety of consumer-packaged
products, they derive that low-revenue premium brands have an average down
price elasticity of �1.195, and an average up elasticity of �0.921. High-equity
brands, in contrast, have an average down share elasticity of �0.747, and an up
elasticity of only �0.183. Hence, while brands with a higher revenue premium
gain some share when they reduce their prices, they lose comparatively less share
when they increase their price. As such, brand equity is a stock metric that
enhances future cash flows through three different routes described earlier: higher
baseline sales (volume premium), higher profit margins (price premium), and
increased marketing effectiveness (differential β(L)).

Note that some marketing activity may deteriorate brand equity. For example,
Mela et al. (1997) used time-varying response models to demonstrate that increasing
the frequency of sales promotions may increase customers’ price sensitivity to the
brand. As a result, either a smaller percent of sales is generated at full price, or the
brand’s price premium is lowered. Both scenarios result in damage to the brand’s
equity.

From a media return perspective, the revenue premium that captures brand
equity in (14) is typically estimated using the sales-response model (5) for
different brands in a category and examining differences in the intercept and
slope parameters. A time-varying-parameter version of this model may also be
used in this context.
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Customer Equity

While brand equity focuses on the supply side, i.e., the offerings of the firm,
customer equity (CE) is an asset valued on the demand side, with specific reference
to the firm’s customer base. Customer lifetime value (CLV) is generally defined as
the present value of all future profits obtained from a customer over his/her life of
relationship with a firm (Gupta et al. 2004):

CLV ¼
X
T

t¼0

pt � ctð Þrt
1þ ið Þt � AC (15)

where pt = revenue generated by a consumer at time t, ct = direct cost of servicing
the customer at time t, i= discount rate or cost of capital for the firm, rt= probability
of customer repeat buying or being “alive” at time t, AC= customer acquisition cost,
and T = time horizon for estimating CLV.

Customer equity (CE) is the sum of the firm’s customers’ lifetime values. CLV
and CE measure “net present value” from a customer asset perspective, and thus
speak to both shareholder value and customer value.

Marketing spending may impact customer equity in several ways: through
acquiring new customers (at a cost AC per customer), through retaining existing
customers (at a servicing cost ct in each period), and through increasing per-customer
revenue, which is sometimes referred to as share of wallet. In relationship businesses
such as insurance and financial services, these effects can be quantified through
direct counting of customers and aggregation of their CLVs. In most cases, however,
the direct-count approach is not feasible or practical, and we should infer market-
ing’s impact on customer equity at a more aggregate level (see e.g., Rust et al. 2004).
This may be achieved by examining marketing’s role in purchase reinforcement, i.e.,
using an existing sale to create more future sales from that customer. Purchase
reinforcement modeling applies mainly in frequently purchased product and service
categories, where consumers have reason to expect a similar-quality experience
between one purchase occasion and the next. Givon and Horsky (1990) developed
a market-share model that contrasts the impact of purchase experience (β) relative to
advertising-induced retention (λ) as follows:

Sharet ¼ α 1� λð Þ þ βþ λð ÞSharet�1 � β λ Sharet�2 þ γ Adsharet þ et (16)

This model is a special case of the dynamic core response function (5) with two-
period dynamics. Thus it lends itself to calculations of the cash-flow impact (and
therefore return) of investments in advertising vs. customer service provision. In
their empirical investigation of four frequently purchased product categories, the
authors reported that β > λ, i.e., the impact of purchase experience exceeds that of
advertising spending. As such, even without renewed instantaneous media support, a
stock effect is at work that results in future sales.

Since then, more complex models have been developed that infer movements in
customer equity from sales transactions data and brand-related marketing actions
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in a variety of sectors. For example, Hanssens et al. (2008) explored the impact of
various marketing activities and external factors on the growth in customer equity
for a major financial institution. Customer equity has, in various studies, been
found to be an actionable and stable metric, which offers reliable guidance and an
explicit linkage to financial performance (see e.g., Gupta and Lehmann 2005 for a
review).

Other Response Metrics

Our discussion of return on media would not be complete without considering other,
indirect ways in which media spending can enhance firm performance and, therefore,
be subject to return calculations. We list below a number of important alternative
performance metrics, discussed in Dekimpe and Hanssens (2011), and we make
some observations about how advertising is known to affect them. Note that the
response models for these alternative metrics are generally similar in nature to the
models we have discussed in this chapter.

Protecting or enhancing price premiums. There is evidence that, ceteris paribus,
nonprice advertising leads to lower price sensitivity and hence the ability to charge
higher prices (e.g., Farris and Albion 1980). Note that, by the same token, price
advertising may increase price sensitivity (see also Kaul and Wittink 1995).

Enhancing sales-call effectiveness. Advertising support may pre-educate a pros-
pect so that subsequent sales calls have a higher chance of success. For example,
Gatignon and Hanssens (1987) found this to be the case in military recruitment, i.e.,
the effectiveness of recruiting efforts increases with higher levels of media support.

Building distribution. When the trade makes stocking decisions based on antic-
ipated consumer demand and when they perceive that demand to be influenced by
advertising, higher distribution levels may be obtained (e.g., Parsons 1974). Since
the distribution-to-sales elasticity is known to be high, this indirect route of media
impact can be quite substantial.

Motivating employees. Advertising may have an “internal” audience in addition
to its usual external audience (e.g., Gilly and Wolfinbarger 1998). This is particularly
important in service-intensive industries, for example the hospitality sector, where
“happy employees” can contribute to customer satisfaction.

Lifting stock price. Investors are exposed to advertising as much as consumers
are. Evidence from the PC industry suggests that advertising may increase stock
prices above and beyond the effect expected from an increase in sales and profits
(Joshi and Hanssens 2010). In addition, advertising can reduce earnings volatility,
which also impacts stock prices positively. This is because media spending is
relatively easily manipulated and is fully amortized in the period in which it occurs.
That makes it a convenient expenditure category to expand in times of strong
earnings and reduce in times of weak earnings, thereby reducing the firm’s earnings
volatility and its cost of capital. This strategic use of advertising is enhanced by the
finding that, over long time periods, higher media expenditures are associated with
lower systemic risk of the firm (McAlister et al. 2007).
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Conclusion

This chapter has reviewed the analytical aspects of determining the return on media
(ROM), which is a managerial task of increasing importance given the proliferation
of new, technology-enabled advertising media. We first provided a tight definition of
return on media that allows marketers to speak the language of finance, which is
important in budget allocations. We then reviewed some common mistakes in ROM
interpretation found in industry and concluded that media return measurement
should start with assessing the top-line effects (i.e., on brand sales revenue) of
media spending. This led us to formulate the key phenomena of advertising response
that should be present in models of media return. Next, we reviewed several
challenges that arise in the measurement of advertising effects, including the shape
of the advertising response function, dynamic effects of advertising, optimal data
intervals for measurement, asymmetric response, reverse causality, differences in
media effects, copy and creative impact, and intermediate performance metrics.
Next, we derived media return values from sales response models and discussed
their use in media mix allocation. Finally, we extended the measurement of media
returns to purchase path analyses of digital media, to the incorporation of asset
building effects such as brand equity and customer equity, and to the use of various
alternative business performance metrics.
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Empirical identification, 167
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Hausman test, 202
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regression model, 192–198
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of treatment, 844
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Engle and Granger approach, 522
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Exclusion restriction, 192, 196, 846, 847
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Exogenous latent variable, 591
Exogenous variables, 523, 526, 527
Experimental bias, 982
Experimental-causal-chain designs, 16
Experimental design, 6, 47, 53, 793
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environment)
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extraneous variables, 13–14
independent variable, 7–13, 29
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preliminary testing, 27–28, 30
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online experiments, 20–21
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description, 252
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and likelihood function, 254–256
segmentation variable and mixed density
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segment determination, 258–260

Firm images
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First-stage regression, 193, 195, 207
Fisher’s classification functions, 341
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Forecast error variance decomposition (FEVD),
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Latent variable model, 344, 551, 556, 564, 567

empirical example, 579–581
extensions of, 571

Latent variables, 154, 163, 590
Least squares dummy variables (LSDV)

regression, 433
Least squares method, 302, 307, 311, 315
Levene’s test, 295
Likelihood-ratio test, 351, 353, 354, 388
Linear mixed models (LMMs), 294
Linear regression model, 300, 301, 304, 307,

312, 317, 319, 321, 322, 324,
326, 722

aim of, 302
benchmark, 610
goal of, 317
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Measurement-of-mediation design, 16
Measurement theory, 72–74, 592–594
Mechanical Turk (MTurk), 23, 91, 93
Mediated moderation, 880
Mediation analysis, 769–771, 859

causal inference, 891–894
classification, 869–870
complete mediation, 869
conditional direct effect, 881
conditional indirect effect, 881
conditional process analysis, 885
direct effect 860, 862, 863
effect size measures, 870
indirect effect, 860, 862
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regression analysis vs. structural equation

modeling, 898–899
sample size and power, 895–896
software tools, 900
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variable metrics, 870–871
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Meta-analysis, 375
Method effects, 570, 571
Metric equivalence models, 139
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168
Mixed-ANOVA, 289

Index 1105



MLwiN, 397
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Monte Carlo simulation approach, 534
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cross-level models, 380
global properties, 379
homologous models, 380
independent variables, at level 1, 383
independent variables, at level 2, 383–384
individual-level constructs, 378
intraclass correlation, 379
latent growth models, 380
longitudinal data, 380
model estimation and assessing model fit,

386–389
multilevel structural equation modeling,

392–396
random slopes, testing for, 384–385
sample size considerations, 390–392

shared properties, 379
single-level models, 379
software, 396–397
statistical relevance, 375–378
unobserved heterogeneity, 379
variable centering, 389–390

Multilevel structure, 372
equation modeling, 392–396
in marketing organizations, 374

Multinomial logit (MNL) model, 791
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systematic information on, 1059
tools, 1056–1058

Sales response function, 318, 320, 326
Sales response models, 1094
Sample size, 22, 42, 51–53

considerations, 390–392
Sampling frame equivalence, 136
Sampling frames, 86
Sampling methods, 151
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Transformation of variables, 310, 318–320
Treatment effect, 830

local average treatment effect (ATE), 44-47,
829, 848

Treatment group, 40, 41, 45, 46, 825, 826, 828–
831

T-test, 270

Two-level regression model, 381–392
Two-stage least squares (2SLS) approach, 194,

199, 202
Two-way fixed effects model, 212
Two-way interaction, 56

U
U-method, 356
Unambiguousness, 101
Undirected network, 699
Unit root test, 473, 481, 483, 494, 502, 519
Univariate time series models

autoregressive and moving average process,
471–473

autoregressive integrated moving average
model, 474–476

evolution vs. stationarity, 472–474
single equation time-series models,

exogenous variables, 476–479
Unobserved demand shocks, 189
Unobserved effects models, 211
Unobserved heterogeneity, 379
Unobserved population heterogeneity, 574
Unsupervised learning, 684, 687
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