X datacamp

Data Manipulation with dplyr in R
Cheat Sheet

Learn R online at www.DataCamp.com

> Helpful Syntax

Installing and loading dplyr
Install dplyr through tidyverse

install.packages(“tidyverse”)

Install it directly
install.packages(“dplyr”)

Load dplyr into R
library(dplyr)

The %>% operator

%>% is a special operator in R found in the magrittr and dplyr packages. %>% lets you pass objects to functions
elegantly, and helps you make your code more readable. Consider this example of choosing columns a and b from the
dataframe df

Without the %>% operator
select(df, a, b)

By using the %>% operator
df %>% select(a, b)

>3 Dataset used throughout this cheat sheet

Throughout this cheat sheet, we weill be using this example dataset called airbnb_1listings, containing Airbnb
listings with data on their location, year listed, number of rooms, and more.

airbnb_listings
listing_id city country number_of_rooms year_listed
1 Paris France 5 2018
2 Tokyo Japan 2 2017
| 3 New York USA 2 2022

3 Transforming data with dplyr

Basic column operations with dplyr

Select one or more columns with select()
airbnb_listings %>%
select(listing_id, city)

Select columns based on start characters
airbnb_1listings %>%
select(starts_with("c"))

Select columns based on end characters
airbnb_listings %>%
select(ends_with("s"))

Select all but one column (e.g., listing_id)
airbnb_listings %>%
select(-listing_id)

Select all columns within a range
airbnb_1listings %>%
select(country:year_listed)

Reorder columns using relocate()
airbnb_listings %>%
relocate(city, country)

Rename a column using rename()
airbnb_listings %>%
rename(year=year_listed)

Select columns matching a regular expression
airbnb_1listings %>%
select(matches("(.n.)|[(n.)"))

Creating new columns with dplyr

Create a time_on_market column using the difference of today’s year and the year_listed
airbnb_listings %>%
mutate(time_on_market = 2022 - year_listed)

Create a full_address column by combining city and country
airbnb_1listings %>%
transmute(full_address = paste(city, country))

Add the number of observations for a column (e.g., number of listings per city)
airbnb_1listings %>%
add_count(city)

Working with rows

Filter rows on one condition (e.g., country)
airbnb_listings %>%
filter(country=="France")

Filter on two OR more conditions (country OR number_of_rooms)
airbnb_1listings %>%
filter(country=="France" | number_of_rooms > 3)

Filter on two AND more conditions (country AND number_of_rooms)
airbnb_listings %>%
filter(country=="France" & number_of_rooms > 3)

Filter by checking if a value exists in another set of values
airbnb_listings %>%
filter(country %in% c("Japan", "France"))

Filter rows based on index of rows (e.g., first 3 rows)
Airbnb_1listings %>%
slice(1:3)

Sort rows by values in a column in ascending order
airbnb_listings %>%
arrange(number_of_rooms)

Sort rows by values in a column in descending order
airbnb_1listings %>%
arrange(desc(city))

Remove duplicate rows in all the dataset
airbnb_1listings %>%
distinct()

Find unique values in the country column
airbnb_listings %>%
distinct(country)

Select rows based on top-n values of a column (e.g., top 3 listings with the highest amount
of rooms)

airbnb_listings %>%

top_n(3, number_of_rooms)

3 Aggregating data with dplyr

Count groups within a column (e.g., count number of cities in airbnb_listings)
airbnb_listings %>%
count(city)

Count groups within a column and return sorted
airbnb_1listings %>%
count(country, sort=TRUE)

Return the total sum of values for a column (e.g., total number of rooms)
airbnb_listings %>%
summarise(total_rooms=sum(number_of_rooms))

Return the average of values for a column (e.g, average number of rooms in a given listing)
airbnb_listings %>%
summarise(avg_room=mean(number_of_rooms))

Return a custom summary statistic (e.g., average amount of time a listing stays on)
airbnb_listings %>%
summarise(average_listing_duration= 2022 - mean(year_listed))

Group by a variable and return counts of each group (e.g., number of listings by country)
airbnb_listings %>%

group_by(country) %>%

summarise(n=n())

Group by a variable and return the average value per group (e.g., average number of rooms
in listings per city)

airbnb_listings %>%

group_by(city) %>%

summarise(avg_rooms=mean(number_of_rooms))

>3 Combining tables in dplyr

df_1

Appending a table to the right side (horizontal) of another

bind_cols(df_1, df_2)

Appending a table to the bottom (vertical) of another

bind_rows(df_1, df_2)

df

Combining rows that exist in both tables and dropping duplicates

union(df_1, df_2)

Finding identical columns in both tables

intersect(df_1, df_2)

Finding rows that don’t exist in another table

setdiff(df_1, df_2)

>3 Joining Tables with dplyr

To showcase joins in dplyr, we’ll use an additional dataset containing details on host_listings for airbnb listings

airbnb_listings
listing_id city country number_of_rooms year_listed
1 Paris France 5 2018
2 Tokyo Japan 2 2017
| 3 New York USA 2 2022
host_listings

host_id name listing_id number_of_reviews

1 Jen Bricker 1 34

2 Richie Cotton 2 12

E Raven Todd Dasliva 3 55 J

Joining tables in dplyr

Inner Join

Returns only records where a joining field finds a match in both tables.

airbnb_listings %>%

inner_join(host_listings, by="listing_id")

Left Join

Returns rows in left table and missing values for any columns from the
right table where joining field did not find a match

host_listings %>%

left_join(airbnb_1listings, by=

Right join

Returns rows in right table and missing values for any columns from the
left table where joining field did not find a match

host_listings %>%

right_join(airbnb_listings, by="1listing_id")

Full Join

Returns all records from both table, irrespective of whether there is a
match on the joining field

host_listings %>%

full_join(airbnb_listings, by="listing_id")

Anti Join

Returns records in the first table and excludes matching values from the

second table
airbnb_listings %>%

anti_join(host_listings, by="listing_id")

8 e ®*-

D: Learn Data Skills Online at www.DataCamp.com

